Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98371
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉振良zh_TW
dc.contributor.advisorCheng-Liang Liuen
dc.contributor.author周哲安zh_TW
dc.contributor.authorChe-An Chouen
dc.date.accessioned2025-08-05T16:06:25Z-
dc.date.available2025-08-06-
dc.date.copyright2025-08-05-
dc.date.issued2025-
dc.date.submitted2025-07-29-
dc.identifier.citation1. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren and G. Chen, Energy Environ. Sci., 2009, 2, 466-479.
2. H. Mamur, Ö. F. Dilmaç, J. Begum and M. R. A. Bhuiyan, Cleaner Mater., 2021, 2, 100030.
3. M. Massetti, F. Jiao, A. J. Ferguson, D. Zhao, K. Wijeratne, A. Würger, J. L. Blackburn, X. Crispin and S. Fabiano, Chem. Rev., 2021, 121, 12465-12547.
4. C. Li, F. Jiang, C. Liu, P. Liu and J. Xu, Appl. Mater. Today, 2019, 15, 543-557.
5. Oersted, Ann. Phys., 1823, 73, 430-432.
6. H. S. Kim, W. Liu, G. Chen, C.-W. Chu and Z. Ren, PNAS, 2015, 112, 8205-8210.
7. X.-L. Shi, J. Zou and Z.-G. Chen, Chem. Rev., 2020, 120, 7399-7515.
8. G. J. Snyder and E. S. Toberer, Nat. Mater., 2008, 7, 105-114.
9. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B, 1993, 47, 12727-12731.
10. T. Hong, C. Guo, D. Wang, B. Qin, C. Chang, X. Gao and L.-D. Zhao, Mater. Today Energy, 2022, 25, 100985.
11. W. Kim, J. Mater. Chem. C, 2015, 3, 10336-10348.
12. Y. Zhu, D. Wang, T. Hong, L. Hu, T. Ina, S. Zhan, B. Qin, H. Shi, L. Su, X. Gao and L.-D. Zhao, Nat. Commun., 2022, 13, 4179.
13. Q. Xiong, G. Han, G. Wang, X. Lu and X. Zhou, Adv. Funct. Mater., 2024, 34, 2411304.
14. W. Zhao, J. Ding, Y. Zou, C.-a. Di and D. Zhu, Chem. Soc. Rev., 2020, 49, 7210-7228.
15. Y. Lu, J.-Y. Wang and J. Pei, Chem. Mater., 2019, 31, 6412-6423.
16. H. Yao, Z. Fan, H. Cheng, X. Guan, C. Wang, K. Sun and J. Ouyang, Macromol. Rapid Commun., 2018, 39, 1700727.
17. Q. Jiang, J. Yang, P. Hing and H. Ye, Mater. Adv., 2020, 1, 1038-1054.
18. Y. Zhang, Q. Zhang and G. Chen, Carbon Energy, 2020, 2, 408-436.
19. P. Liu, Y. Li, Z. Ni and C.-Y. Guo, Microstructures, 2024, 4, 2024061.
20. M. N. Hasan, H. Wahid, N. Nayan and M. S. Mohamed Ali, Int. J. Energy Res., 2020, 44, 6170-6222.
21. Z. Liang, R. Shu, C. Xu, Y. Wang, H. Shang, J. Mao and Z. Ren, Adv. Mater., 2025, 37, 2416394.
22. Q. Zhang, Y. Sun, W. Xu and D. Zhu, Adv. Mater., 2014, 26, 6829-6851.
23. B. Russ, A. Glaudell, J. J. Urban, M. L. Chabinyc and R. A. Segalman, Nat. Rev. Mater., 2016, 1, 16050.
24. S. Soumya, K. S. Fatima, S. Lekshmi, S. G. Namboothiri, P. K. Krishnapriya, V. A. Shreya, V. S. Harikrishnan, A. C. Mohan, H. Joh, J. R. Rani, V. Panwar, K. M. Sreedhar, J. P, S. Samanta, J. Y. Jo and G. Anoop, J. Alloys Compd., 2025, 1028, 180661.
25. H. Jin, J. Li, J. Iocozzia, X. Zeng, P.-C. Wei, C. Yang, N. Li, Z. Liu, J. H. He, T. Zhu, J. Wang, Z. Lin and S. Wang, Angew. Chem. Int. Ed., 2019, 58, 15206-15226.
26. Y. Du, S. Z. Shen, K. Cai and P. S. Casey, Prog. Polym. Sci., 2012, 37, 820-841.
27. S. Zhou, X.-L. Shi, L. Li, Q. Liu, B. Hu, W. Chen, C. Zhang, Q. Liu and Z.-G. Chen, Adv. Mater., 2025, 37, 2500947.
28. J.-S. Yun, S. Choi and S. H. Im, Carbon Energy, 2021, 3, 667-708.
29. F. Daneshvar, H. Chen, K. Noh and H.-J. Sue, Nanoscale Adv., 2021, 3, 942-962.
30. M. Choudhary, A. Sharma, S. A. Raj, M. T. H. Sultan, D. Hui and A. U. M. Shah, Nanotechnol. Rev., 2022, 11, 2632-2660.
31. N. Baig, I. Kammakakam and W. Falath, Mater. Adv., 2021, 2, 1821-1871.
32. Y. Nonoguchi, T. Miyao, C. Goto, T. Kawai and K. Funatsu, Adv. Mater. Interfaces, 2022, 9, 2101723.
33. A. O. Rashed, A. Merenda, T. Kondo, M. Lima, J. Razal, L. Kong, C. Huynh and L. F. Dumée, Sep. Purif. Technol., 2021, 257, 117929.
34. Y. Bao, Y. Sun, F. Jiao and W. Hu, Adv. Electron. Mater., 2023, 9, 2201310.
35. C. Gao, M. Guo, Y. Liu, D. Zhang, F. Gao, L. Sun, J. Li, X. Chen, M. Terrones and Y. Wang, Carbon, 2023, 212, 118133.
36. C. Pramanik, J. R. Gissinger, S. Kumar and H. Heinz, ACS Nano, 2017, 11, 12805-12816.
37. H. Yang, L. Neal, E. E. Flores, A. Adronov and N. Y. Kim, J. Surfactants Deterg., 2023, 26, 607-622.
38. S. Hata, F. Kitano, H. Ihara, T. Murayama, Y. Du, Y. Shiraishi and N. Toshima, ACS Appl. Eng. Mater., 2023, 1, 894-900.
39. S. Hata, K. Maeshiro, M. Shiraishi, S. Yasuda, Y. Shiozaki, K. Kametani, Y. Du, Y. Shiraishi and N. Toshima, Carbon Energy, 2023, 5, e285.
40. S. Hata, K. Maeshiro, M. Shiraishi, Y. Du, Y. Shiraishi and N. Toshima, ACS Appl. Electron. Mater., 2022, 4, 1153-1162.
41. R. Rastogi, R. Kaushal, S. K. Tripathi, A. L. Sharma, I. Kaur and L. M. Bharadwaj, J. Colloid Interface Sci., 2008, 328, 421-428.
42. J. G. Jang, T.-h. Kim, S. H. Kim and J.-I. Hong, ACS Appl. Mater. Interfaces, 2025, 17, 857-866.
43. J. G. Jang, T.-h. Kim, S. H. Kim and J.-I. Hong, ACS Appl. Electron. Mater., 2023, 5, 5573-5579.
44. L. Zhang, J. Jin, S. Huang, B. Tan, J. Luo, D. Wang, D. Liu and L. Wang, Chem. Eng. J., 2021, 426, 131859.
45. A. Nish, J.-Y. Hwang, J. Doig and R. J. Nicholas, Nat. Nanotechnol., 2007, 2, 640-646.
46. N. Nandihalli, C.-J. Liu and T. Mori, Nano Energy, 2020, 78, 105186.
47. J. Liang, R. Cui, X. Zhang, K. Koumoto and C. Wan, Adv. Funct. Mater., 2023, 33, 2208813.
48. Z.-M. Xiong, Z.-Y. Li, J.-R. Zhang, L. Guo, P. Fu, F.-P. Du and Y.-F. Zhang, ACS Appl. Mater. Interfaces, 2024, 16, 54038-54048.
49. L. Zhang, H. Shang, Q. Zou, C. Feng, H. Gu and F. Ding, Small, 2024, 20, 2306125.
50. V. Rathi, R. Brajpuriya, R. Gupta, K. P. S. Parmar and A. Kumar, Energy Adv., 2024, 3, 389-412.
51. Y. Liu, W. Yang, A. Sharma, D. Rosas-Villalva, H. Xu, M. A. Haque, F. Laquai and D. Baran, Adv. Electron. Mater., n/a, 2400216.
52. Q.-B. Zheng, C.-C. Tseng, M.-H. Lin, J.-M. Lin, S.-H. Tung, Y.-J. Cheng and C.-L. Liu, J. Mater. Chem. C, 2024, 12, 7446-7455.
53. S. H. Kim, S. Jeong, D. Kim, C. Y. Son and K. Cho, Adv. Electron. Mater., 2023, 9, 2201293.
54. X. Mao, Z. Li, Y. Liu, X. Nie, B. Li, Q. Jiang, C. Gao, Y. Gao and L. Wang, Chem. Eng. J., 2021, 405, 126616.
55. M. S. Dresselhaus, G. Dresselhaus and M. Hofmann, Vib. Spectrosc., 2007, 45, 71-81.
56. W.-C. Shih, M. Matsuda, K. Konno, P.-S. Lin, T. Higashihara and C.-L. Liu, Composites, Part B, 2024, 286, 111779.
57. Z. Li, L. Bai and J. Zheng, J. Therm. Anal. Calorim., 2018, 131, 2503-2512.
58. W. Orellana, Appl. Phys. Lett., 2014, 105.
59. A. Burian, J. C. Dore and K. Jurkiewicz, Rep. Prog. Phys., 2019, 82, 016501.
60. A. E. Aliev, C. Guthy, M. Zhang, S. Fang, A. A. Zakhidov, J. E. Fischer and R. H. Baughman, Carbon, 2007, 45, 2880-2888.
61. P. Gonnet, Z. Liang, E. S. Choi, R. S. Kadambala, C. Zhang, J. S. Brooks, B. Wang and L. Kramer, Curr. Appl Phys., 2006, 6, 119-122.
62. G. P. Moriarty, S. De, P. J. King, U. Khan, M. Via, J. A. King, J. N. Coleman and J. C. Grunlan, J. Polym. Sci., Part B: Polym. Phys., 2013, 51, 119-123.
63. D. Kim, Y. Kim, K. Choi, J. C. Grunlan and C. Yu, ACS Nano, 2010, 4, 513-523.
64. T. Y. Kim, C.-H. Park and N. Marzari, Nano Lett., 2016, 16, 2439-2443.
65. N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo and D. Ruch, Prog. Polym. Sci., 2016, 61, 1-28.
66. M.-H. Lin, M. G. Mohamed, C.-J. Lin, Y.-J. Sheng, S.-W. Kuo and C.-L. Liu, Adv. Funct. Mater., 2024, 34, 2406165.
67. J. Wang, K. Cai, J. Yin and S. Shen, Synth. Met., 2017, 224, 27-32.
68. Q. Yao, Q. Wang, L. Wang and L. Chen, Energy Environ. Sci., 2014, 7, 3801-3807.
69. C. Bounioux, P. Díaz-Chao, M. Campoy-Quiles, M. S. Martín-González, A. R. Goñi, R. Yerushalmi-Rozen and C. Müller, Energy Environ. Sci., 2013, 6, 918-925.
70. L. Wang, Q. Yao, W. Shi, S. Qu and L. Chen, Mater. Chem. Front., 2017, 1, 741-748.
71. Y. Chen, Y. Zhao and Z. Liang, Energy Environ. Sci., 2015, 8, 401-422.
72. J. L. Blackburn, A. J. Ferguson, C. Cho and J. C. Grunlan, Adv. Mater., 2018, 30, 1704386.
73. K. H. Lee, S.-i. Kim, J.-C. Lim, J. Y. Cho, H. Yang and H.-S. Kim, Adv. Funct. Mater., 2022, 32, 2203852.
74. V. Schmidt, P. F. J. Mensch, S. F. Karg, B. Gotsmann, P. Das Kanungo, H. Schmid and H. Riel, Appl. Phys. Lett., 2014, 104.
75. Y. Zeng, W. Zheng, Y. Guo, G. Han and Y. Yi, J. Mater. Chem. A, 2020, 8, 8323-8328.
76. B. D. Naab, S. Guo, S. Olthof, E. G. B. Evans, P. Wei, G. L. Millhauser, A. Kahn, S. Barlow, S. R. Marder and Z. Bao, J. Am. Chem. Soc., 2013, 135, 15018-15025.
77. C. Rivera-Cárcamo, C. Scarfiello, A. B. García, Y. Tison, H. Martinez, W. Baaziz, O. Ersen, C. Le Berre and P. Serp, Adv. Mater. Interfaces, 2021, 8, 2001777.
78. A. Y. Lee, C. J. Powell, J. M. Gorham, A. Morey, J. H. J. Scott and R. J. Hanisch, Data Sci. J., 2024, 23.
79. R. Precht, S. Stolz, E. Mankel, T. Mayer, W. Jaegermann and R. Hausbrand, Phys. Chem. Chem. Phys., 2016, 18, 3056-3064.
80. M. Xiong, X. Yan, J.-T. Li, S. Zhang, Z. Cao, N. Prine, Y. Lu, J.-Y. Wang, X. Gu and T. Lei, Angew. Chem. Int. Ed., 2021, 60, 8189-8197.
81. P. Reiser, F. S. Benneckendorf, M.-M. Barf, L. Müller, R. Bäuerle, S. Hillebrandt, S. Beck, R. Lovrincic, E. Mankel, J. Freudenberg, D. Jänsch, W. Kowalsky, A. Pucci, W. Jaegermann, U. H. F. Bunz and K. Müllen, Chem. Mater., 2019, 31, 4213-4221.
82. T.-H. Kim, J. G. Jang, S. H. Kim and J.-I. Hong, Adv. Sci., 2023, 10, 2302922.
83. J. Xiao, Z. Zhang, S. Wang, C. Gao and L. Wang, Chem. Eng. J., 2024, 479, 147569.
84. Q. Guo, X. Wang, P. Zhao, Z. Zhang, L. Geng, Y. Liu, Y. Teng, Y. Zhong and L. Kang, Adv. Mater., 2025, 37, 2415442.
85. M. Blanco, B. Nieto-Ortega, A. de Juan, M. Vera-Hidalgo, A. López-Moreno, S. Casado, L. R. González, H. Sawada, J. M. González-Calbet and E. M. Pérez, Nat. Commun., 2018, 9, 2671.
86. N. Martín Sabanés, M. D. Eaton, S. Moreno-Da Silva, A. Naranjo and E. M. Pérez, Nanoscale, 2024, 16, 2048-2059.
87. S. Grimm, S. P. Schießl, Y. Zakharko, M. Rother, M. Brohmann and J. Zaumseil, Carbon, 2017, 118, 261-267.
88. P.-S. Lin, J.-M. Lin, S.-H. Tung, T. Higashihara and C.-L. Liu, Small, 2024, 20, 2306166.
89. S. Hata, M. Shiraishi, S. Yasuda, G. Juhasz, Y. Du, Y. Shiraishi and N. Toshima, Energy Material Advances, 2022, 2022.
90. T. M. Tritt, Thermal conductivity: theory, properties, and applications, Springer Science & Business Media, 2005.
91. T.-h. Kim and J.-I. Hong, ACS Appl. Mater. Interfaces, 2022, 14, 55627-55635.
92. S. Hu, Z. Ren, A. B. Djurišić and A. L. Rogach, ACS Energy Lett., 2021, 6, 3882-3905.
93. T.-h. Kim, J. G. Jang, S. H. Kim and J.-I. Hong, ACS Appl. Mater. Interfaces, 2023, 15, 46872-46880.
94. J. Liu, P. D. Pickett, B. Park, S. P. Upadhyay, S. V. Orski and J. L. Schaefer, Polym. Chem., 2020, 11, 461-471.
95. Y. Shang, N. Chen, Y. Li, S. Chen, Z. Li, S. Li, X. Ren, Y. Ye, L. Li, F. Wu and R. Chen, Angew. Chem. Int. Ed., 2025, 64, e202423808.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98371-
dc.description.abstract隨著科技和經濟的蓬勃發展,人們開始回頭反思過去以經濟成長為唯一指標的發展模式,使綠色能源逐漸受到重視。熱電效應能直接將廢熱轉換成電能,相比其他發電方式能大幅減少損耗且不會排放溫室氣體,成為備受關注的發電方式。熱電發電效率主要由導電度、賽貝克係數、熱導率和工作溫度決定,各項參數間具有較強的關聯性,同時優化各參數成為最主要的挑戰。為了最佳化熱電發電效率,使用有機/無機奈米複合材料可以利用有機和無機材料各自的優勢,已成為有效得到提高熱電優值(zT)材料的方法。本研究介紹兩種新型熱電複合材料系統,透過混合非富勒烯受體和單壁奈米碳管,得到具有高zT的熱電元件。
第一個研究中,非富勒烯受體聚合物(polymerized non-fullerene acceptor, PNFA)具有較佳的載子遷移率及共軛性質,顯示其在熱電領域的應用潛力。透過改變PNFA的中央核心結構,調控PNFA和單壁奈米碳管(single-walled carbon nanotube, SWCNT)間的作用力大小,製得同時具有高導電度和高賽貝克係數的P型熱電材料,最佳化zT可達到0.29。使用N-DMBI後摻雜可得到N型熱電元件,並將其與原P型材料串接,製成由5對P-N元件串聯而成的可撓曲熱電發電機。在兩端溫差為45 K時,輸出電壓為20.8 mV和輸出功率為109.3 nW。此研究透過調控PNFA的中央核心結構,以達成室溫範圍高zT的P型熱電複合材料,並闡述PNFA中央核心結構與熱電性能間的關聯性,開創PNFA有機熱電材料系統的研究。
第二個研究中,離子化非富勒烯受體(ionized Non-Fullerene Acceptor, iNFA)同時具有大量芳香環共軛結構和在主鍊上的離子結構,預期除了可以良好的分散SWCNT,也可以透過離子結構有效的摻雜SWCNT。透過優化iNFA的重量比例,成功製作出具有高導電度和高賽貝克係數的N型熱電材料,最佳化zT為9.2×10-3,為純SWCNT的約八倍。利用不同性質的NFA/CNT複合材料製作出P型與N型熱電元件,並串接5對P-N元件製成可撓曲熱電發電機,在兩端溫差為45 K時,輸出電壓為21.4 mV和輸出功率為214.3 nW。此研究利用全新的NFA與SWCNT混合,製作出P型及N型的熱電複合材料,並闡述NFA的結構與熱電性能間的關聯性,開創NFA有機熱電材料系統的研究。
zh_TW
dc.description.abstractWith rapid technological and economic progress, development models are shifting from growth-driven to sustainable, with green energy as a key focus. Thermoelectric conversion directly transforms waste heat into electricity, reducing energy loss and greenhouse gas emissions. However, optimizing thermoelectric efficiency is challenging due to the strong interdependence of electrical conductivity, Seebeck coefficient and thermal conductivity. Organic/inorganic nanocomposites, which combine the strengths of both material types, have emerged as a promising strategy to enhance the thermoelectric figure of merit (zT). This study presents two novel thermoelectric composites based on blends of non-fullerene acceptors (NFAs) and single-walled carbon nanotubes (SWCNTs), achieving high zT values.
In first study, polymerized NFAs (PNFAs) exhibit high charge-carrier mobility and extended conjugation, demonstrating significant potential for thermoelectric applications. By engineering the central core structure of PNFA, we modulated the interaction strength between PNFA and SWCNTs. This optimization yielded p-type thermoelectric materials with concurrently high electrical conductivity and Seebeck coefficient, achieving a peak zT of 0.29. Subsequent n-type doping with N-DMBI enabled the fabrication of n-type devices. These p- and n-type materials were integrated into a flexible thermoelectric generator comprising five serially connected p-n couples. At a temperature gradient (ΔT) of 45 K, the device delivered a maximum output voltage of 20.8 mV and a peak power output of 109.3 nW. This work establishes the correlation between PNFA’s core structure and thermoelectric performance, pioneering the study of PNFA-based organic thermoelectric systems.
In second study, ionic NFAs (iNFAs) feature both extended aromatic conjugation and ionic groups integrated directly into the molecular backbone. This unique design enables effective SWCNT dispersion and efficient doping. By optimizing the iNFA weight ratio, we developed n-type thermoelectric materials with high electrical conductivity and Seebeck coefficient, achieving a maximum zT of 9.2 × 10⁻3—eightfold higher than that of pristine SWCNTs. Using iNFA/CNT composites with tailored properties, we fabricated both p-type and n-type modules. A flexible generator integrating five p-n couples yielded a maximum voltage of 21.4 mV and a peak power output of 214.3 nW at ΔT= 45 K. This study demonstrates the structure-property relationship of iNFAs and pioneers the development of iNFA-based thermoelectric systems.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:06:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-05T16:06:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 iii
ABSTRACT vii
摘要 ix
Table of Content xi
List of Figures xiii
List of Tables xvi
1. Introduction 1
1.1. Background 1
1.1.1. Thermoelectric Effect 1
1.1.2. Composite Thermoelectric Materials 5
1.2. Development of Carbon Nanotube-Based Composite Thermoelectric Materials 6
1.2.1. Challenge of CNT 8
1.2.2. Small Molecule/CNT 9
1.2.3. Polymer/CNT 15
1.3. Research Motivation 21
2. Experimental Section 25
2.1. Materials 25
2.2. NFA-Based Organic Molecule 25
2.3. Thermoelectric Composite Film and Generator Fabrication 26
2.3.1. PNFA/CNT 26
2.3.2. INFA/CNT 27
2.4. Instrument 28
2.4.1. Characterization 28
2.4.2. Thermoelectric and Generator Measurement 32
3. Central Core Engineering of Polymerized Non-Fullerene Acceptor/SWCNT composites via Sequential N-DMBI Doping for High-zT Flexible Thermoelectric Generators 33
3.1. Short Introduction 33
3.2. Results and Discussion 34
3.2.1. Spectroscopy 34
3.2.2. Morphology and Microstructure 38
3.2.3. Thermoelectric and Electric Properties 46
3.2.4. N-Doping Mechanism and P-N Integrated Thermoelectric Generator 55
3.3. Summary 63
4. Molecularly Engineered Ionic Non-Fullerene Acceptor: A Novel N-Type Dopant for Enhanced Thermoelectric Performance in SWCNT Composite Films 66
4.1. Short Introduction 66
4.2. Results and Discussion 67
4.2.1. Spectroscopy 67
4.2.2. Morphology and Microstructure 71
4.2.3. Thermoelectric and Electrical Properties 79
4.2.4. P-N Integrated Thermoelectric Generator 87
4.3. Summary 89
5. Conclusion and Future Perspective 91
References 93
-
dc.language.isoen-
dc.subject複合材料zh_TW
dc.subject有機熱電zh_TW
dc.subject非富勒烯受體zh_TW
dc.subject奈米碳管zh_TW
dc.subject高熱電優值zh_TW
dc.subjecthigh figure of meriten
dc.subjectcarbon nanotubeen
dc.subjectnon-fullerene acceptoren
dc.subjectcomposite materialen
dc.subjectthermoelectricen
dc.title非富勒烯受體/奈米碳管複合材料:分子設計到熱電應用zh_TW
dc.titleNon-Fullerene Acceptor/Carbon Nanotube Composites:Molecular Design to Thermoelectric Applicationsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭彥如;童世煌;林昆翰zh_TW
dc.contributor.oralexamcommitteeYen-Ju Cheng;Shih-Huang Tung;Kun-Han Linen
dc.subject.keyword有機熱電,複合材料,高熱電優值,奈米碳管,非富勒烯受體,zh_TW
dc.subject.keywordthermoelectric,composite material,high figure of merit,carbon nanotube,non-fullerene acceptor,en
dc.relation.page97-
dc.identifier.doi10.6342/NTU202502683-
dc.rights.note未授權-
dc.date.accepted2025-07-31-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
6.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved