Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98281
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈聖峰zh_TW
dc.contributor.advisorSheng-Feng Shenen
dc.contributor.author劉蕙嘉zh_TW
dc.contributor.authorHui-Chia Liuen
dc.date.accessioned2025-07-31T16:13:19Z-
dc.date.available2025-08-01-
dc.date.copyright2025-07-31-
dc.date.issued2025-
dc.date.submitted2025-07-22-
dc.identifier.citationBecher, P. G., Flick, G., Rozpędowska, E., Schmidt, A., Hagman, A., Lebreton, S., Larsson, M. C., Hansson, B. S., Piškur, J., Witzgall, P., & Bengtsson, M. (2012). Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Functional Ecology, 26(4), 822–828. https://doi.org/10.1111/j.1365-2435.2012.02006.x
Beeler, A. E., Rauter, C. M., & Moore, A. J. (2002). Mate discrimination by females in the burying beetle Nicrophorus orbicollis: The influence of male size on attractiveness to females. Ecological Entomology, 27(1), 1–6. https://doi.org/10.1046/j.1365-2311.2002.0371a.x
Bilu, E., Hopper, K. R., & Coll, M. (2006). Host choice by Aphidius colemani: Effects of plants, plant–aphid combinations and the presence of intra-guild predators. Ecological Entomology, 31(4), 331–336. https://doi.org/10.1111/j.1365-2311.2006.00786.x
Burkepile, D. E., Parker, J. D., & Palmer, T. M. (2006). Chemically mediated competition between decomposing carrion and herbivores. Ecology, 87(10), 2513–2517. https://doi.org/10.1890/0012-9658(2006)87[2513:CMCBDC]2.0.CO;2
Card, G. M. (2012). Escape behaviors in insects. Current Opinion in Neurobiology, 22(2), 180–186. https://doi.org/10.1016/j.conb.2011.12.009
Chen, B.-F., Liu, M., Rubenstein, D. R., & Shen, S.-F. (2020). A chemically triggered transition from conflict to cooperation in burying beetles. Ecology Letters, 23(3), 588–596. https://doi.org/10.1111/ele.13445
Chen, M., Zhang, C., Wang, J., Zhan, Z., Chen, J., & Luan, X. (2023). Distribution and niche overlap of American mink and Eurasian otter in Northeast China. Biodiversity Science, 31(1), 22289. https://doi.org/xxxxx
Colinet, H., Sinclair, B. J., Vernon, P., & Renault, D. (2015). Insects in fluctuating thermal environments. Annual Review of Entomology, 60, 123–140. https://doi.org/10.1146/annurev-ento-010814-021017
Conover, D. O., & Present, T. M. C. (1990). Countergradient variation in growth rate: Compensation for length of the growing season among Atlantic silversides (Menidia menidia) from different latitudes. Oecologia, 83(3), 316–324. https://doi.org/10.1007/BF00317846
Coulson, T., Mace, G. M., Hudson, E., & Possingham, H. (2001). The use and abuse of population viability analysis. Trends in Ecology & Evolution, 16(5), 219–221. https://doi.org/10.1016/S0169-5347(01)02137-5
Dalpasso, A., Seglie, D., Bergò, P. E., Giachello, S., & Romano, A. (2023). Effects of temperature and precipitation changes on shifts in breeding phenology of an endangered toad. Scientific Reports, 13, 14573. https://doi.org/10.1038/s41598-023-40568-w
da Silva, E. D. B., Kuhn, T. M. A., & Monteiro, L. B. (2011). Oviposition behavior of Grapholita molesta Busck (Lepidoptera: Tortricidae) at different temperatures. Neotropical Entomology, 40(4), 415–420.
Di Giovanni, A. J., Villa, J., Stanback, M. T., Thompson, C. F., Sakaluk, S. K., Hauber, M. E., & Hanley, D. (2023). Decision rules for egg-color-based rejection by two cavity-nesting hosts of the brown-headed cowbird. Journal of Experimental Biology, 226(14), jeb245188. https://doi.org/10.1242/jeb.245188
Dudley, R. (2000). Insect flight metabolism. In M. T. Brown & J. H. Brown (Eds.), Advances in Insect Physiology (Vol. 27, pp. 1–32). Academic Press. https://doi.org/10.1016/S0065-2806(08)60266-0
Escobar, L. E., Qiao, H., Lee, C., & Phelps, N. B. D. (2017). Novel methods in disease biogeography: A case study with heterosporosis. Frontiers in Veterinary Science, 4, Article 105. https://doi.org/10.3389/fvets.2017.00105
Glass, J. R., Burnett, N. P., Combes, S. A., & Harrison, J. F. (2024). Flying, nectar-loaded honey bees conserve water and improve heat tolerance by reducing wingbeat frequency and metabolic heat production. Proceedings of the National Academy of Sciences, 121(4), e2311025121. https://doi.org/10.1073/pnas.2311025121
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427. https://doi.org/10.1101/SQB.1957.022.01.039
Hwang, W., Li, Y., & Yang, Y. L. (2024). Conditional reproductive strategy of male burying beetles, Nicrophorus nepalensis. Behavioral Ecology and Sociobiology, 78, 117. https://doi.org/10.1007/s00265-024-03536-6
IUCN. (2021). Species and climate change: Issue brief. International Union for Conservation of Nature. https://www.iucn.org/resources/issues-brief/species-and-climate-change
IPCC. (2023). AR6 Synthesis Report: Climate Change 2023 – Figures. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar6/syr/figures
Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local adaptation. Ecology Letters, 7(12), 1225–1241. https://doi.org/10.1111/j.1461-0248.2004.00684.x
Coulson, T., Mace, G. M., Hudson, E., & Possingham, H. (2001). The use and abuse of population viability analysis. Trends in Ecology & Evolution, 16(5), 219–221. https://doi.org/10.1016/S0169-5347(01)02137-1
Kellermann, V., van Heerwaarden, B., Sgrò, C. M., & Hoffmann, A. A. (2009). Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science, 325(5945), 1244–1246. https://doi.org/10.1126/science.1175443
Kenna, D., Pawar, S., & Gill, R. J. (2021). Thermal flight performance reveals impact of warming on bumblebee foraging potential. Functional Ecology, 35(11), 2508–2522. https://doi.org/10.1111/1365-2435.13887
Kim, W., Pham, T. H., Nguyen, P. D., & Lee, W. (2022). Locomotion and flow speed preferences in natural habitats by large water striders, Ptilomera tigrina, with micro-morphological adaptations for rowing. Journal of Ethology, 40(3), 211–221. https://doi.org/10.1007/s10164-022-00749-y
Lactin, D. J., & Johnson, D. L. (1996). Behavioural optimization of body temperature by nymphal grasshoppers (Melanoplus sanguinipes, Orthoptera: Acrididae) in temperature gradients established using incandescent bulbs. Journal of Thermal Biology, 21, 231–238. https://doi.org/10.1016/0306-4565(96)00007-1
Mitchell, A., & Bergmann, P. J. (2016). Thermal and moisture habitat preferences do not maximize jumping performance in frogs. Functional Ecology, 30(5), 733–742. https://doi.org/10.1111/1365-2435.12535
Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I. C., ... & Williams, S. E. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355(6332), eaai9214. https://doi.org/10.1126/science.aai9214
Potticary, A. L., Belk, M. C., Creighton, J. C., Ito, M., Kilner, R., Komdeur, J., Royle, N. J., Rubenstein, D. R., Schrader, M., Shen, S. F., Sikes, D. S., Smiseth, P. T., Smith, R., Steiger, S., Trumbo, S. T., & Moore, A. J. (2024). Revisiting the ecology and evolution of burying beetle behavior (Staphylinidae: Silphinae). Ecology and Evolution, 14(8), e70175. https://doi.org/10.1002/ece3.70175
Scott, M. P. (1998). The ecology and behavior of burying beetles. Annual Review of Entomology, 43, 595–618. https://doi.org/10.1146/annurev.ento.43.1.595
Shelford, V. E. (1911). Animal communities in temperate America as illustrated in the Chicago region: A study in animal ecology. University of Chicago Press.
Sheil, D. (2016). Disturbance and distributions: Avoiding exclusion in a warming world. Ecology and Society, 21(1), Article 10. https://doi.org/10.5751/ES-07920-210110
Sikes, D. S., Madge, R. B., & Trumbo, S. T. (2006). Revision of Nicrophorus in part: New species and inferred phylogeny of the nepalensis-group based on evidence from morphology and mitochondrial DNA (Coleoptera: Silphidae: Nicrophorinae). Invertebrate Systematics, 20(3), 305–365. https://doi.org/10.1071/IS05020
Smith, A. N., & Creighton, J. C. (2022). Bigger is better, sometimes: The interaction between body size and carcass size determines fitness, reproductive strategies, and senescence in two species of burying beetles. Ecology and Evolution, 12(2), e8572. https://doi.org/10.1002/ece3.8572
Soberón, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2(0), 1–10. https://doi.org/10.17161/bi.v2i0.4
Stavenga, D. G., Tinbergen, J., & Schwering, P. B. W. (1994). Non-invasive measurement of temperature changes in tethered flying blowflies by thermal imaging. In X. P. V. Maldague (Ed.), Advances in signal processing for nondestructive evaluation of materials (NATO Advanced Science Institutes Series, Series E: Applied Sciences, Vol. 262, pp. 459–467). Dordrecht, Netherlands: Kluwer Academic Publishers.
Sun, S.-J., Rubenstein, D. R., Chen, B.-F., Chan, S.-F., Liu, J.-N., Liu, M., Hwang, W., Yang, P.-S., & Shen, S.-F. (2014). Climate-mediated cooperation promotes niche expansion in burying beetles. eLife, 3, e02440. https://doi.org/10.7554/eLife.02440
Sun, S.-J., & Kilner, R. M. (2021). Parental care system and brood size drive sex difference in reproductive allocation: An experimental study on burying beetles. Frontiers in Ecology and Evolution, 9, 739396.
Sunday, J. M., Bates, A. E., Kearney, M. R., Colwell, R. K., Dulvy, N. K., Longino, J. T., & Huey, R. B. (2014). Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America, 111(15), 5610–5615. https://doi.org/10.1073/pnas.1316145111
Suzuki, S. (2009). Mate choice and copulation frequency in the burying beetle Nicrophorus quadripunctatus (Coleoptera: Silphidae): Effect of male body size and presence of a rival. Psyche: A Journal of Entomology, 2009, 1–7. https://doi.org/10.1155/2009/394861
Tsai, H.-Y., Rubenstein, D. R., Chen, B.-F., Liu, M., Chan, S.-F., Chen, D.-P., Sun, S.-J., Yuan, T.-N., & Shen, S.-F. (2020a). Antagonistic effects of intraspecific cooperation and interspecific competition on thermal performance. eLife, 12, e83830. https://doi.org/10.7554/eLife.83830
Tsai, H.-Y., Rubenstein, D. R., Fan, Y.-M., et al. (2020b). Locally-adapted reproductive photoperiodism determines population vulnerability to climate change in burying beetles. Nature Communications, 11, 1398. https://doi.org/10.1038/s41467-020-15208-w
Trumbo, S. T. (1992). Evolution of parental care in insects. Annual Review of Entomology, 37, 163–186. https://doi.org/10.1146/annurev.en.37.010192.001115
Wood, D. W., & Bjorndal, K. A. (2000). Relation of temperature, moisture, salinity, and slope to nest site selection in loggerhead sea turtles (Caretta caretta). Copeia, 2000(1), 119–128. https://doi.org/10.1643/0045-8511(2000)2000[0119:ROTMSA]2.0.CO;2
陳德沛(2020)。尼泊爾埋葬蟲不同溫度下的運動表現。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/ruupfr。
陳厚安(2024)。種間競爭壓力促進尼泊爾埋葬蟲合作行為的地區性適應。﹝碩士論文。國立臺灣師範大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/7whpx2。
黃詩蘋(2022)。同屬物種間的競爭抑制尼泊爾埋葬蟲的合作行為﹝碩士論文,國立臺灣大學﹞。華藝線上圖書館。https://doi.org/10.6342/NTU202203375
黃文伯、葛兆年(2013)。台灣福山地區三種埋葬蟲的分布與尼泊爾埋葬蟲(Coleoptera: Silphidae)的族群動態。《生物學報》,48,1–11。
台灣醫事檢驗學會(編)(2009)。感染症分生檢驗檢體之收集、傳送、處理與儲存。台灣醫事檢驗學會。https://www.labmed.org.tw/Upfiles/Test_5A/2012928183644.pdf
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98281-
dc.description.abstract在氣候變遷加劇的背景下,物種如何選擇棲息環境並調整其分布,成為生態學的核心議題。然而,除了生理耐受性外,行為偏好是否也會隨環境而演化、進而影響物種分布,仍鮮少被實證探討。本研究聚焦於一個關鍵問題:環境如何影響物種溫度偏好的演化?本研究以尼泊爾埋葬蟲(Nicrophorus nepalensis)為模式物種,選取合歡山、陽明山與四川三地族群,透過運動表現、生殖表現與繁殖偏好溫度實驗,結合野外分布資料,探討溫度偏好的形成機制與族群間是否存在區域適應,以測試兩項假說:(1)生理表現優先假說:生物偏好其運動能力最佳之溫度;(2)生殖表現優先假說:生物偏好有利繁殖之溫度。研究結果顯示,三個族群在實驗室中繁殖出的個體,運動表現皆於低溫(14°C)下最佳,但偏好溫度不盡相同:合歡山族群偏好14°C,四川與陽明山族群則偏好17°C,且此偏好具有遺傳基礎。偏好差異可由各地族群在野外所面對之種間競爭壓力解釋:雖然三個族群在無競爭環境下的繁殖表現在溫度間沒有顯著差異,合歡山族群因在野外17°C時面臨高度種間競爭,繁殖成功主要集中於較低溫條件,進而偏好14°C;相較之下,四川與陽明山族群在17°C時所受的種間競爭壓力相對較小,因此偏好此最適繁殖溫度。這些結果顯示,各族群的溫度偏好反映其在野外種間競爭下最佳的繁殖溫度,且此偏好具遺傳基礎,是反映其對當地環境的區域適應,支持生殖表現優先假說。本研究結果指出,行為偏好是連結生態互動與物種分布的重要機制,未來評估物種對氣候變遷的反應時,應將行為偏好與區域適應納入考量,以提升物種分布預測的準確性,並加強不同族群層級的保育規劃與管理效益。zh_TW
dc.description.abstractAs climate change intensifies, uncovering the mechanisms that drive species distributions has become a central goal in ecology, especially for improving predictions of future range shifts. However, whether behavioral preferences evolve with environmental conditions and influence species distributions remains rarely tested. In this study, I investigated how environmental factors shape the evolution of thermal preferences in species. Using the burying beetle Nicrophorus nepalensis, I studied three populations from Hehuanshan (Taiwan), Yangmingshan (Taiwan), and Sichuan (China). Through experiments on locomotor performance, reproductive performance, and thermal preference, combined with field distribution data, I examined the mechanisms behind thermal preference and tested for local adaptation. I focused on two hypotheses: (1) the physiological performance priority hypothesis, where organisms prefer temperatures maximizing locomotor performance; and (2) the reproductive performance priority hypothesis, where organisms prefer temperatures enhancing reproduction. My results showed that although all populations performed best at low temperatures (14°C) in locomotion tests, their thermal preferences differed. The Hehuanshan population preferred 14°C, while the Sichuan and Yangmingshan populations preferred 17°C, with these preferences having a genetic basis. This difference reflects varying interspecific competition in the wild. While all populations shared similar performance of reproductive between temperatures under laboratory conditions, the Hehuanshan population experienced strong competition at this temperature in the wild and achieved higher reproductive success at lower temperatures. In contrast, the other two populations faced less competition at 17°C and maintained this preference. These findings demonstrate that thermal preferences reflect reproductive performance under natural competition and represent local adaptation, supporting the reproductive performance priority hypothesis. I highlight behavioral preference as a key mechanism linking ecological interactions to species distributions and emphasize its importance in predicting species’ responses to climate change and improving conservation planning.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-31T16:13:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-31T16:13:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目次 v
圖次 vii
表次 viii
第一章 前言 1
第二章 材料與方法 3
2.1 研究物種 3
2.2 室內實驗設置 4
2.2.1 共用設備與實驗設施 4
2.2.2 生殖偏好溫度測試 4
2.2.3 運動表現測試 5
2.2.4 生殖表現測試 7
2.2.5 過往資料統整 8
2.3 資料分析 8
2.3.1 生殖偏好溫度測試 8
2.3.2 運動表現測試 8
2.3.3 生殖表現測試 9
2.3.4 野外分布資料 9

第三章 結果 9
3.1 生殖偏好溫度 9
3.2 運動表現 10
3.2.1 起飛率 10
3.2.2 行走時間 10
3.2.3 逃離溫差與逃離溫度 10
3.3 生殖表現 11
3.3.1 生殖成功率 11
3.3.2 子代表現 12
3.4 族群野外資料 12

第四章 討論 12
4.1 各地區生殖偏好溫度差異 13
4.2 不同族群均在低溫有較佳運動表現 13
4.3 種間競爭調節族群在不同溫度下的生殖表現 14
4.4 種間競爭影響分布機制與偏好 14
4.5 族群間生殖偏好溫度存在區域適應 15
4.6 結論 16
參考文獻 17
附錄 22
-
dc.language.isozh_TW-
dc.subject偏好zh_TW
dc.subject溫度zh_TW
dc.subject尼泊爾埋葬蟲zh_TW
dc.subject生殖表現zh_TW
dc.subject生理表現zh_TW
dc.subject區域適應zh_TW
dc.subjectburying beetleen
dc.subjectNicrophorus nepalensisen
dc.subjectPhysiological performanceen
dc.subjectbreeding preferenceen
dc.subjecttemperaturesen
dc.subjectlocal adaptationen
dc.subjectReproductive performanceen
dc.title地區間尼泊爾埋葬蟲之偏好溫度與區域適應zh_TW
dc.titlePreferred temperature and local adaptation of burying beetles(Nicrophorus nepalensis)en
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor柯柏如zh_TW
dc.contributor.coadvisorPo-Ju Keen
dc.contributor.oralexamcommittee孫烜駿;陳一菁zh_TW
dc.contributor.oralexamcommitteeSyuan-Jyun Sun;I-Ching Chenen
dc.subject.keyword尼泊爾埋葬蟲,偏好,生理表現,生殖表現,區域適應,溫度,zh_TW
dc.subject.keywordNicrophorus nepalensis,burying beetle,breeding preference,Physiological performance,Reproductive performance,local adaptation,temperatures,en
dc.relation.page48-
dc.identifier.doi10.6342/NTU202501479-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-24-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
dc.date.embargo-lift2025-08-01-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf3.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved