Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98252
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周苡嘉zh_TW
dc.contributor.advisorYi-Chia Chouen
dc.contributor.author葉又誠zh_TW
dc.contributor.authorYu-Cheng Yehen
dc.date.accessioned2025-07-31T16:06:53Z-
dc.date.available2025-08-01-
dc.date.copyright2025-07-31-
dc.date.issued2025-
dc.date.submitted2025-07-29-
dc.identifier.citation[1]Baliga, B.J., Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design, and Applications. 2018: Woodhead Publishing.
[2]Mishra, U.K. et al., AlGaN/GaN HEMTs-an overview of device operation and applications. Proceedings of the IEEE 90, 1022-1031 (2002).
[3]DenBaars, S.P. et al., Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Materialia, 61, 945-951 (2013).
[4]Trivellin, N. et al. A review on the reliability of GaN-based laser diodes. in 2010 IEEE International Reliability Physics Symposium. IEEE. (2010).
[5]蕭達慶/工研院材化所,氮化物半導體材料技術發展現況,(2017).
[6]Amano, H. et al., Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Applied Physics Letters, 48, 353 (1986).
[7]Nakada, Y. et al., GaN heteroepitaxial growth on silicon nitride buffer layers formed on Si (111) surfaces by plasma-assisted molecular beam epitaxy. Applied Physics Letters, 73, 827 (1998).
[8]Jonas, E. et. al., Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges. IEEE Journal of Emerging and Selected Topics in Power Electronics, 4(3) (2016).
[9]Nakamura, S.N.S. et al., GaN growth using GaN buffer layer. Japanese Journal of Applied Physics 30, L1705 (1991).
[10]Paskova, T. et al., Development and prospects of nitride materials and devices with nonpolar surfaces. Physica Status Solidi (b), 245, 1011-1025 (2008).
[11]Zhu, D.D. et al., van der Waals epitaxy and photoresponse of two-dimensional CdSe plates. Nanoscale, 8, 11375-11379 (2016).
[12]Ma, Z., V. Skumryev, and M. Gich, Magnetic properties of synthetic fluorophlogopite mica crystals. Materials Advances, 1, 1464-1471 (2020).
[13]Bluhm, H. et al., Formation of dipole-oriented water films on mica substrates at ambient conditions. Surface Science, 462, L599-L602 (2000).
[14]Frisenda, R., et al., Naturally occurring van der Waals materials. npj 2D Materials and Applications 38(4) (2020).
[15]Lu, L., et al., Atomic scale understanding of the epitaxy of perovskite oxides on flexible mica substrate. Advanced Materials Interfaces 7,1901265, (2000).
[16]Spagnoli, C. et al., Imaging structured water and bound polysaccharide on mica surface at ambient temperature. Journal of American Chemistry Society, 125, 7124-7128 (2003).
[17]Liu, X. et al., Ultralow Off‐State Current and Multilevel Resistance State in Van der Waals Heterostructure Memristors. Advanced Functional Materials 34, 2309642 (2024).
[18]Zhang, X., et al., 2D Mica Crystal as Electret in Organic Field-Effect Transistors for Multistate Memory. Advanced Materials 28, 3755-3760 (2016).
[19]Xiao, W., et al., Thermally stable and radiation hard ferroelectric Hf0. 5Zr0. 5O2 thin films on muscovite mica for flexible nonvolatile memory applications. ACS Applied Electronic Materials 1, 919-927 (2019).
[20]Wang, X., et al., Mica-based triboelectric nanogenerators for energy harvesting. Applied Clay Science 215, 106330 (2021).
[21]Castellanos‐Gomez, A. et al., Atomically thin mica flakes and their application as ultrathin insulating substrates for graphene. Small 7, 2491-2497 (2011).
[22]Ochedowski, O. et al., Graphene on mica-intercalated water trapped for life. Scientific reports. 4, 6003 (2014).
[23]Wang, S. et al., 2D Bi2Se3 van der Waals epitaxy on mica for optoelectronics applications. Nanomaterials 10, 1653 (2020).
[24]Zou, X. et al., Damage-free mica/MoS2 interface for high-performance multilayer MoS2 field-effect transistors. Nanotechnology 30, 345204 (2019).
[25]Koma, A. et al., Fabrication and characterization of heterostructures with subnanometer thickness. Microelectronic Engineering, 2(1-3), 129-136 (1984).
[26] Koma, A. et al., Summary Abstract: Fabrication of ultrathin heterostructures with van der Waals epitaxy. Journal of Vacuum Science & Technology B, 3, 724 (1985).
[27]Bitla, Y. et al., MICAtronics: A new platform for flexible X-tronics. FlatChem, 3, 26-42 (2017).
[28]Liang, D. et al., Quasi van der Waals epitaxy nitride materials and devices on two dimension materials. Nano Energy, 69, 104463 (2020).
[29]Liu, F. et al., Determination of the preferred epitaxy for III-nitride semiconductors on wet-transferred graphene. Science Advances, 9, eadf8484 (2023).
[30]Liang, D. et al., Quasi van der Waals Epitaxy of Single Crystalline GaN on Amorphous SiO2/Si(100) for Monolithic Optoelectronic Integration. Advanced Science, 11, 2305576 (2024).
[31]Jiang, B. et al., Toward Direct Growth of Ultra-Flat Graphene. Advanced Functional Materials, 32, 2200428 (2022).
[32]Liu, F. et al., Lattice polarity manipulation of quasi‐vdW epitaxial GaN films on graphene through interface atomic configuration. Advanced Materials, 34, 2106814 (2022).
[33]Chun, J. et al., Laser lift-off transfer printing of patterned GaN light-emitting diodes from sapphire to flexible substrates using a Cr/Au laser blocking layer. Scripta Materialia, 77, 13-16 (2014).
[34]Kim, J. et al., Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nature communications, 5, 4836 (2014).
[35]Yamada, A. et al., Molecular beam epitaxy of GaN on a substrate of MoS2 layered compound. Journal of Crystal Growth, 201/202, 332-335 (1999).
[36]Matsuki, N. et al., Heteroepitaxial growth of gallium nitride on muscovite mica plates by pulsed laser deposition. Solid State Communications, 136, 338-341 (2005).
[37]Chang, Y.-W. et al., Direct growth of flexible GaN film via van der Waals epitaxy on mica. Materials Today Chemistry, 26, 101243 (2022).
[38]Stolyarchuk, N. et al., Intentional polarity conversion of AlN epitaxial layers by oxygen. Scientific Reports, 8, 14111 (2018).
[39]Hetzl, M. et al., Polarity Control of Heteroepitaxial GaN Nanowires on Diamond. Nano Letters, 17, 3582-3590 (2017).
[40]Liu, F. et al., Lattice Polarity Manipulation of Quasi-vdW Epitaxial GaN Films on Graphene Through Interface Atomic Configuration. Advanced Materials, 34, 2106814 (2022).
[41]Huang, L. et al., Growth of high-quality AlN epitaxial film by optimizing the Si substrate surface. Applied Surface Science, 435, 163-169 (2018).
[42]Bhuiyan, A.G. et al., RF-MBE growth and orientation control of GaN on epitaxial graphene. Results in Physical, 20, 103714 (2021).
[43]Shon, W.-J. et al., Structural properties of GaN films grown on multilayer graphene films by pulsed sputtering. Applied Physics Express, 7, 085502 (2014).
[44]Stan, C.V. et al., X-Ray Diffraction under Extreme Conditions at the Advanced Light Source. Quantum Beam Science, 2(1) (2018)
[45]Harrington, G., Back-to-Basics tutorial: X-ray diffraction of thin films. Journal of Electroceramics, 47(1):1-23 (2021).
[46]Vickerman, J.C. and Gilmore, I.S., Surface Analysis – The Principal Techniques, 2nd Edition. National Physical Laboratory, Teddington, UK. (2009).
[47] Huang, L., et al., Growth of high-quality AlN epitaxial film by optimizing the Si substrate surface. Applied Surface Science, 435, 163-169 (2018).
[48]Kum, D., et al., The Effect of Substrate Surface Roughness on GaN Growth Using MOCVD Processes. Journal of Electronic Materials, 26, 1098-1102 (1997).
[49]Liu, Z.-H., et al., Characterisation of oxygen plasma-modified mica surfaces using XPS and AFM. Applied Surface Science, 108, 319-332 (1997).
[50]Wang, K.-T., et al., Photomask-Free, Direct Selective Electroless Deposition on Glass by Controlling Surface Hydrophilicity. ACS Omega, 4, 7706-7710 (2019).
[51]Hiraba, H., et al., Influence of Oxidation of Copper on Shear Bond Strength to an Acrylic Resin Using an Organic Sulfur Compound. Materials, 13, 2092 (2020).
[52]Cant, D., et al., Standard Approaches to XPS and AES Quantification—A Summary of ISO 18118:2024 on the Use of Relative Sensitivity Factors. Surface and Interface Analysis, 0, 1–5 (2024).
[53]Parker, J., et al., Plasma Modification of Mica. Journal of Colloid and Interface Science, 134, 449-458 (1990).
[54]Brown, N. M. D., et al., An investigation using atomic force microscopy and X-ray photoelectron spectroscopy of the modification of the surface of mica with an argon RF-plasma discharge. Applied Surface Science, 90, 155-164 (1995).
[55]Siegle, H., et al., Zone-boundary phonons in hexagonal and cubic GaN. Physical Review B, 55, 7000 (1997).
[56]Wagner, J.-M. and F. Bechstedt, Phonon deformation potentials of α-GaN and-AlN: An ab initio calculation. Applied Physics Letters, 77, 346-348 (2000).
[57]Sahoo, P., et al., Surface optical modes in GaN nanowires. International journal of nanotechnology, 7, 823-832 (2010).
[58]Kozawa, T., et al., Raman scattering from LO phonon‐plasmon coupled modes in gallium nitride. Journal of Applied Physics, 75, 1098-1101 (1994).
[59]Williams, Q., et al., The high-pressure behavior of micas: Vibrational spectra of muscovite, biotite, and phlogopite to 30 GPa. American Mineralogist, 97, 241-252 (2012).
[60]Bairamov, B., et al., Direct evidence of tensile strain in wurtzite structure n− GaN layers grown on n− Si (111) using AlN buffer layers. Physical Review B, 60, 16741 (1999).
[61]Kumar, M., et al., Facile synthesis and photoluminescence spectroscopy of 3D-triangular GaN nano prism islands. Dalton Transactions, 43, 11855-11861 (2014).
[62]Song, D. Y., et al., Effect of stress and free-carrier concentration on photoluminescence in InN. Applied Physics Letters, 92, 121913 (2008).
[63]Reshchikov, M. A., et al., Luminescence properties of defects in GaN. Journal of Applied Physics, 97, 061301 (2005).
[64]Lee, I., et al., Evolution of Stress Relaxation and Yellow Luminescence in GaN/Sapphire by Si Incorporation. Applied Physics Letters, 71, 1359-1361 (1997).
[65]Ambacher, O., Growth and applications of Group III-nitrides. Journal of Physics D: Applied Physics, 31, 2653–2710 (1998).
[66]DenBaars, S. P., et al., Development of N-polar GaN for electronic and optoelectronic applications. MRS Bulletin, 34, 275–280 (2009).
[67]Mazumder, B., et al., Asymmetric interfacial abruptness in N-polar and Ga-polar GaN/AlN/GaN heterostructures. Applied Physics Letters, 101, 091601 (2012).
[68]Li, D., et al., Determination of GaN polarity by KOH selective etching and atomic force microscopy. Journal of Crystal Growth, 310, 1644–1648 (2008).
[69]Zhuang, D., et al., Wet etching of GaN, AIN, and SiC: a review. Materials Science and Engineering R-Reports, 48(1), 1–46 (2005).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98252-
dc.description.abstract本研究著重於探討氧電漿(O2 plasma)前處理對於在氟金雲母(F-mica)基板上成長氮化鎵(GaN)磊晶品質提升的影響。實驗使用了固定功率的氧電漿,並設置了四種前處理時間參數,分別是:未處理(pristine)、10分鐘、20分鐘與30分鐘,接著將這四種前處理完的F-mica基板送入氫化物氣相磊晶系統(HVPE),使用相同的參數成長GaN磊晶。研究發現,氧電漿的施打有助於成核與晶體品質的改善。
為了深入探討氧電漿的實際影響,本研究針對未處理與處理完的F-mica基板進行了AFM、XPS等分析,發現氧電漿的施打有助於粗糙度的提升,並影響F-mica表面的原子排列,進而改變後續磊晶的品質。此外,本研究結合了拉曼光譜與PL光譜的資訊,計算出GaN磊晶內的應力大小,更直接地呈現出不同樣品的品質差異,驗證出20分鐘的前處理時間為最適宜的參數。
最後,本研究針對品質最好的樣品進行了信賴度測試,透過週期性的彎曲樣品以及後續的PL光譜量測,實證了GaN磊晶在柔性F-mica基板具有一定的可靠性。這些研究成果證實了直接在新型二維材料上成長GaN磊晶的可行性,並成功開發出一種有效的表面改質方法。
zh_TW
dc.description.abstractThis study investigates the effect of oxygen plasma (O2 plasma) pretreatment on improving the quality of gallium nitride (GaN) epitaxy grown on fluorophlogopite mica (F-mica) substrates. Using fixed-power plasma, four pretreatment durations were applied: pristine (untreated), 10 minutes, 20 minutes, and 30 minutes. The treated substrates were then used to grow GaN layers via hydride vapor phase epitaxy (HVPE) under identical conditions. Results show that plasma treatment enhances nucleation and crystal quality.
Surface analyses using AFM and XPS revealed that oxygen plasma increases surface roughness and alters atomic arrangement, which benefits subsequent epitaxial growth. Raman and photoluminescence (PL) spectroscopy were used to evaluate internal stress in the GaN layers, confirming that 20 minutes of pretreatment yielded the best results.
Reliability tests on the optimal sample, including cyclic bending and PL measurements, demonstrated that GaN on flexible F-mica maintains good stability. Overall, the study confirms the feasibility of direct GaN growth on 2D materials and presents an effective surface modification approach.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-31T16:06:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-31T16:06:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsMaster’s Thesis Acceptance Certificate i
謝辭 ii
中文摘要 iii
Abstract iv
目次 v
圖次 viii
表次 x
第一章 緒論 1
1.1氮化鎵(Gallium Nitride, GaN)材料簡介 1
1.2氟晶雲母(Fluorophlogopite, F-mica)材料簡介 4
1.3準凡德瓦爾磊晶(Quasi-van der Waals Epitaxy)簡介 5
1.4研究動機 7
第二章 實驗儀器介紹與實驗流程 9
2.1氫化物氣相磊晶(Hydride Vapor Phase Epitaxy, HVPE) 9
2.2 X射線繞射分析儀(X-ray Diffraction, XRD) 12
2.3原子力顯微鏡(Atomic Force Microscopy, AFM) 14
2.4 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 16
2.5拉曼光譜儀(Raman Spectroscopy) 17
2.6光致螢光光譜(Photoluminescence, PL) 19
2.7 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 20
2.8信賴度測試(Reliability Test) 21
2.9實驗流程 22
第三章 實驗結果與討論 25
3.1 GaN磊晶結構與品質之分析 25
3.1.1 XRD 2θ-ω掃描結果與分析 25
3.1.2搖擺曲線(XRC)結果與分析 27
3.1.3小結 28
3.2氧電漿對於F-mica基板的實際影響之分析 29
3.2.1 AFM結果與分析 29
3.2.2 XPS結果與分析 30
3.2.3小結 36
3.3 GaN磊晶之拉曼光譜分析 37
3.3.1聲子模介紹 37
3.3.2殘存應力計算 39
3.3.3小結 41
3.4 GaN磊晶之PL光譜分析 42
3.4.1特徵峰介紹 42
3.4.2近能隙發光(NBE)與黃帶(YL)分析 44
3.4.3殘存應力計算 46
3.4.4小結 47
3.5 信賴度測試與PL光譜分析 48
3.5.1信賴度測試方法 48
3.5.2近能隙發光(NBE)與黃帶(YL)分析 48
3.5.3殘存應力計算 51
3.5.4小結 52
3.6 GaN磊晶極性檢測 53
3.6.1 GaN極性簡介與檢測方法 53
3.6.2 未處理樣品之檢測結果 54
3.6.3 預處理20分鐘樣品之檢測結果 56
3.6.4小結 58
第四章 結論與未來展望 59
第五章 參考文獻 60
-
dc.language.isozh_TW-
dc.subject氫化物氣相磊晶zh_TW
dc.subject氟金雲母zh_TW
dc.subject表面處理zh_TW
dc.subject準凡德瓦爾磊晶zh_TW
dc.subject氮化鎵zh_TW
dc.subjectfluorophologophite micaen
dc.subjectsurface pretreatmenten
dc.subjectquasi-van der Waals epitaxyen
dc.subjecthydride vapor phase epitaxyen
dc.subjectgallium nitrideen
dc.title透過氧電漿表面預處理提升柔性準凡德瓦爾磊晶品質zh_TW
dc.titleQuality Improvement of Flexible Quasi-van der Waals Epitaxy through Oxygen Plasma Surface Pretreatmenten
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林彥甫;陳祺zh_TW
dc.contributor.oralexamcommitteeYen-Fu Lin;Chi Chenen
dc.subject.keyword氮化鎵,氫化物氣相磊晶,氟金雲母,表面處理,準凡德瓦爾磊晶,zh_TW
dc.subject.keywordgallium nitride,hydride vapor phase epitaxy,fluorophologophite mica,surface pretreatment,quasi-van der Waals epitaxy,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202502631-
dc.rights.note未授權-
dc.date.accepted2025-07-30-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved