請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98219完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林招松 | zh_TW |
| dc.contributor.advisor | Chao-Sung Lin | en |
| dc.contributor.author | 岩子晅 | zh_TW |
| dc.contributor.author | Zih-Syuan Yen | en |
| dc.date.accessioned | 2025-07-30T16:22:58Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-25 | - |
| dc.identifier.citation | [1]W. Miller et al., "Recent development in aluminium alloys for the automotive industry," Materials Science and Engineering: A, vol. 280, no. 1, pp. 37-49, 2000.
[2]A. T. Kermanidis, "Aircraft aluminum alloys: applications and future trends," Revolutionizing Aircraft Materials and Processes, pp. 21-55, 2020. [3]I. J. Polmear, "Light Alloys : Metallurgy of the Light Metals, 3rd ed. London: Arnold," 1995. [4]J. R. David, Aluminum and aluminum alloys 1993: ASM international [5]E. C. EduPack, "CES EduPack," 2017. [6]J. G. Kaufman, Introduction to aluminum alloys and tempers. ASM international, 2000. [7]黃振賢, 機械材料. 新文京開, 2003. [8]E. A. Starke Jr and J. T. Staley, "Application of modern aluminum alloys to aircraft," Progress in aerospace sciences, vol. 32, no. 2-3, pp. 131-172, 1996. [9]M. E. Schlesinger, Aluminum recycling. CRC press, 2006. [10]R. Abbaschian and R. E. Reed-Hill, Physical Metallurgy Principles. Cengage Learning, 2008. [11]N. S. Kumar, G. Pramod, P. Samrat, and M. Sadashiva, "A critical review on heat treatment of aluminium alloys," Materials Today: Proceedings, vol. 58, pp. 71-79, 2022. [12]G.-T. Shen, " A Study of Pretreated and Zirconium Conversion Coated 2024-T3 Aluminum Alloy," National Taiwan University, 2022. [13]J. Staley and D. Lege, "Advances in aluminium alloy products for structural applications in transportation," Le Journal de Physique IV, vol. 3, no. C7, pp. C7-179-C7-190, 1993. [14]A. P. Boag, "The relationship between microstructure and stable pitting initiation in aerospace aluminium alloy 2024-T3," Doctor of Philosophy) RMIT University, 2008. [15]A. Boag, A. Hughes, A. Glenn, T. Muster, and D. McCulloch, "Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles," Corrosion Science, vol. 53, no. 1, pp. 17-26, 2011. [16]L. P. Barber, "Characterization of the solidification behavior and resultant microstructures of magnesium-aluminum alloys," 2004. [17]A. Boag et al., "Stable pit formation on AA2024-T3 in a NaCl environment," Corrosion Science, vol. 52, no. 1, pp. 90-103, 2010. [18]W. D. Callister Jr and D. G. Rethwisch, Callister's materials science and engineering. John Wiley & Sons, 2020. [19]G. E. Totten and D. S. MacKenzie, Handbook of Aluminum: Volume 2: Alloy production and materials manufacturing. CRC press, 2003. [20]K. K. Sankaran and R. S. Mishra, Metallurgy and design of alloys with hierarchical microstructures. Elsevier, 2017. [21]N. D. Alexopoulos, Z. Velonaki, C. I. Stergiou, and S. K. Kourkoulis, "Effect of ageing on precipitation kinetics, tensile and work hardening behavior of Al-Cu-Mg (2024) alloy," Materials Science and Engineering: A, vol. 700, pp. 457-467, 2017. [22]Y. Lin, Y.-C. Xia, Y.-Q. Jiang, H.-M. Zhou, and L.-T. Li, "Precipitation hardening of 2024-T3 aluminum alloy during creep aging," Materials Science and Engineering: A, vol. 565, pp. 420-429, 2013. [23]G. Sha, R. Marceau, X. Gao, B. Muddle, and S. Ringer, "Nanostructure of aluminium alloy 2024: Segregation, clustering and precipitation processes," Acta Materialia, vol. 59, no. 4, pp. 1659-1670, 2011. [24]J. Silcock, T. Heal, and H. Hardy, "Structural ageing characteristics of binary aluminium-copper alloys," J. Inst. Metals, vol. 82, 1954. [25]J. Zhang, M. Klasky, and B. C. Letellier, "The aluminum chemistry and corrosion in alkaline solutions," Journal of Nuclear materials, vol. 384, no. 2, pp. 175-189, 2009. [26]M. Pourbaix, "Atlas of electrochemical equilibria in aqueous solutions," NACE, 1966. [27]E. McCafferty, Introduction to Corrosion Science. Springer, 2010. [28]G. Frankel, "Pitting corrosion of metals: a review of the critical factors," Journal of the Electrochemical society, vol. 145, no. 6, p. 2186, 1998. [29]G. Scamans, N. Birbilis, and R. Buchheit, "Corrosion of aluminum and its alloys," in Shreir's Corrosion: Elsevier, 2010, pp. 1974-2010. [30]R. Ambat and E. Dwarakadasa, "Studies on the influence of chloride ion and pH on the electrochemical behaviour of aluminium alloys 8090 and 2014," Journal of applied electrochemistry, vol. 24, no. 9, pp. 911-916, 1994. [31]廖啓民, "鋁合金的腐蝕與防治," 防蝕工程, vol. 5, no. 4, pp. 29-40, 1991. [32]I.-W. Huang, B. L. Hurley, F. Yang, and R. G. Buchheit, "Dependence on temperature, pH, and Cl− in the uniform corrosion of aluminum alloys 2024-T3, 6061-T6, and 7075-T6," Electrochimica Acta, vol. 199, pp. 242-253, 2016. [33]R. Foley, "Localized corrosion of aluminum alloys—a review," Corrosion, vol. 42, no. 5, pp. 277-288, 1986. [34]I.-W. Huang and R. Buchheit, "Uniform corrosion dependence on temperature and pH of aluminum alloys 2024-T3," ECS Transactions, vol. 66, no. 17, p. 97, 2015. [35]S. V. Yadla, V. Sridevi, M. Lakshmi, and S. K. Kumari, "A review on corrosion of metals and protection," International Journal of Engineering Science & Advanced Technology, vol. 2, no. 3, pp. 637-644, 2012. [36]F. Mansfeld and J. Kenkel, "Galvanic corrosion of Al alloys—III. The effect of area ratio," Corrosion Science, vol. 15, no. 4, pp. 239-250, 1975. [37]C. Vargel, Corrosion of aluminium. Elsevier, 2020. [38]T. Erlinger, C. Kralovec, and M. Schagerl, "Monitoring of atmospheric corrosion of aircraft aluminum alloy AA2024 by acoustic emission measurements," Applied Sciences, vol. 13, no. 1, p. 370, 2022. [39]A. S. Azar, A. Lekatou, M. F. Sunding, J. S. Graff, N. Tzima, and S. Diplas, "Corrosion performance and degradation mechanism of a bi-metallic aluminum structure processed by wire-arc additive manufacturing," NPJ Materials Degradation, vol. 5, no. 1, p. 26, 2021. [40]M. Kciuk, A. Kurc, and J. Szewczenko, "Structure and corrosion resistance of aluminium AlMg2. 5; AlMg5Mn and AlZn5Mg1 alloys," Journal of Achievements in Materials and Manufacturing Engineering, vol. 41, no. 1/2, pp. 74-81, 2010. [41]X.-j. Xu et al., "Role of constituent intermetallic phases and precipitates in initiation and propagation of intergranular corrosion of an Al-Li-Cu-Mg alloy," Corrosion Science, vol. 201, p. 110294, 2022. [42]C. Luo, X. Zhou, G. Thompson, and A. Hughes, "Observations of intergranular corrosion in AA2024-T351: The influence of grain stored energy," Corrosion Science, vol. 61, pp. 35-44, 2012. [43]X. Zhang et al., "Intergranular corrosion in AA2024-T3 aluminium alloy: the influence of stored energy and prediction," Corrosion Science, vol. 155, pp. 1-12, 2019. [44]N. Birbilis et al., "A closer look at constituent induced localised corrosion in Al-Cu-Mg alloys," Corrosion Science, vol. 113, pp. 160-171, 2016. [45]J. Li, B. Hurley, and R. Buchheit, "Effect of temperature on the localized corrosion of AA2024-T3 and the electrochemistry of intermetallic compounds during exposure to a dilute NaCl solution," Corrosion, vol. 72, no. 10, pp. 1281-1291, 2016. [46]M. Olgiati, P. J. Denissen, and S. J. Garcia, "When all intermetallics dealloy in AA2024-T3: Quantifying early stage intermetallic corrosion kinetics under immersion," Corrosion Science, vol. 192, p. 109836, 2021. [47]R. Buchheit, M. Martinez, and L. Montes, "Evidence for Cu ion formation by dissolution and dealloying the Al2CuMg intermetallic compound in rotating ring‐disk collection experiments," Journal of the Electrochemical Society, vol. 147, no. 1, p. 119, 2000. [48]C.-M. Liao, J. Olive, M. Gao, and R. Wei, "In-situ monitoring of pitting corrosion in aluminum alloy 2024," Corrosion, vol. 54, no. 6, pp. 451-458, 1998. [49]S.-Y. Chen, C.-Y. Huang, and C.-S. Lin, "Microstructure inhomogeneity of the constituent particles of 7075-T6 aluminum alloy after alkaline cleaning and desmutting," Corrosion Science, vol. 184, p. 109354, 2021. [50]U. Tiringer, J. Kovač, and I. Milošev, "Effects of mechanical and chemical pre-treatments on the morphology and composition of surfaces of aluminium alloys 7075-T6 and 2024-T3," Corrosion science, vol. 119, pp. 46-59, 2017. [51]J. B. Durkee, "Cleaning with solvents," in Developments in Surface Contamination and Cleaning: Elsevier, 2008, pp. 759-871. [52]S. Joshi, W. G. Fahrenholtz, and M. J. O’Keefe, "Effect of alkaline cleaning and activation on aluminum alloy 7075-T6," Applied Surface Science, vol. 257, no. 6, pp. 1859-1863, 2011. [53]G.-T. Shen, S.-Y. Chen, C.-Y. Huang, and C.-S. Lin, "Microstructural evolution and corrosion behavior of constituent particles of AA2024-T3 Al alloy during zirconium conversion coating," Applied Surface Science, vol. 635, p. 157657, 2023. [54]R. Fabian, Vacuum Technology: practical heat treating and brazing. ASM international, 1993. [55]P. Zhou, Y. Liu, L. Liu, B. Yu, T. Zhang, and F. Wang, "Critical role of pretreatment on the corrosion resistance of Zr conversion coating on 6061 aluminum alloy: The combined effect of surface topography and potential difference between different phases," Surface and Coatings Technology, vol. 377, p. 124904, 2019. [56]A. Hughes and T. Nikpour, "Infl uence of Salt Fog Fallout on the Failure of Chromated Aluminum Alloy 2024-T3 Panels in Neutral Salt Fog, MARCH 2005," Corrosion, vol. 61, no. 03, 2005. [57]S. Intem, A. Hughes, A. Neufeld, T. Markley, and A. Glenn, "Underfilm corrosion on polyurethane-coated aluminum alloy 2024-T3 containing dissimilar metal fasteners," Journal of Coatings Technology and Research, vol. 3, pp. 313-322, 2006. [58]Y. Guo and G. S. Frankel, "Characterization of trivalent chromium process coating on AA2024-T3," Surface and Coatings Technology, vol. 206, no. 19-20, pp. 3895-3902, 2012. [59]J. J. Alba-Galvín et al., "Application of commercial surface pretreatments on the formation of cerium conversion coating (Cecc) over high-strength aluminum alloys 2024-t3 and 7075-t6," Metals, vol. 11, no. 6, p. 930, 2021. [60]I. Milošev and P. Rodič, "The effect of surface pretreatment of aluminum alloy 7075-T6 on the subsequent inhibition by cerium (III) acetate in chloride-containing solution," Journal of The Electrochemical Society, vol. 169, no. 1, p. 011504, 2022. [61]R. Viroulaud, J. Światowska, A. Seyeux, S. Zanna, J. Tardelli, and P. Marcus, "Influence of surface pretreatments on the quality of trivalent chromium process coatings on aluminum alloy," Applied Surface Science, vol. 423, pp. 927-938, 2017. [62]J. Vander Kloet, A. W. Hassel, and M. Stratmann, "Effect of pretreatment on the intermetallics in aluminum alloy 2024-T3," 2005. [63]L. Li, A. L. Desouza, and G. M. Swain, "Effect of deoxidation pretreatment on the corrosion inhibition provided by a trivalent chromium process (TCP) conversion coating on AA2024-T3," Journal of the Electrochemical Society, vol. 161, no. 5, p. C246, 2014. [64]Y. Liu et al., "Influence of nitric acid pre-treatment on Al–Cu alloys," Electrochimica Acta, vol. 53, no. 13, pp. 4454-4460, 2008. [65]I. Milošev and G. Frankel, "Conversion coatings based on zirconium and/or titanium," Journal of The Electrochemical Society, vol. 165, no. 3, pp. C127-C144, 2018. [66]P. Santa Coloma, U. Izagirre, Y. Belaustegi, J. Jorcin, F. Cano, and N. Lapeña, "Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications," Applied Surface Science, vol. 345, pp. 24-35, 2015. [67]S. Hesamedini and A. Bund, "Trivalent chromium conversion coatings," Journal of Coatings Technology and Research, vol. 16, pp. 623-641, 2019. [68]S. L. Suib, J. La Scala, W. Nickerson, A. Fowler, and N. Zaki, "Determination of hexavalent chromium in NAVAIR trivalent chromium process (TCP) coatings and process solutions," Metal Finishing, vol. 107, no. 2, pp. 28-34, 2009. [69]C. A. Munson, S. A. McFall-Boegeman, and G. M. Swain, "Cross comparison of TCP conversion coating performance on aluminum alloys during neutral salt-spray and thin-layer mist accelerated degradation testing," Electrochimica Acta, vol. 282, pp. 171-184, 2018. [70]L. Li, D. Y. Kim, and G. M. Swain, "Transient formation of chromate in trivalent chromium process (TCP) coatings on AA2024 as probed by Raman spectroscopy," Journal of The Electrochemical Society, vol. 159, no. 8, p. C326, 2012. [71]T. R. Giles, B. H. Goodreau, W. E. Fristad, J. Kroemer, and M. Frank, "An update of new conversion coating for the automotive industry," SAE International Journal of Materials and Manufacturing, vol. 1, no. 1, pp. 575-581, 2009. [72]H. E. Mohammadloo, A. Sarabi, R. M. Hosseini, M. Sarayloo, H. Sameie, and R. Salimi, "A comprehensive study of the green hexafluorozirconic acid-based conversion coating," Progress in Organic Coatings, vol. 77, no. 2, pp. 322-330, 2014. [73]S. Tiwari, M. Tripathi, and R. Singh, "Electrochemical behavior of zirconia based coatings on mild steel prepared by sol–gel method," Corrosion Science, vol. 63, pp. 334-341, 2012. [74]L. Li, B. W. Whitman, and G. M. Swain, "Characterization and performance of a Zr/Ti pretreatment conversion coating on AA2024-T3," Journal of the Electrochemical Society, vol. 162, no. 6, p. C279, 2015. [75]G. Šekularac, J. Kovač, and I. Milošev, "Comparison of the Electrochemical Behaviour and Self-sealing of Zirconium Conversion Coatings Applied on Aluminium Alloys of series 1xxx to 7xxx," Journal of The Electrochemical Society, vol. 167, no. 11, p. 111506, 2020. [76]M. Bauccio, ASM metals reference book. ASM international, 1993. [77]A. M. Glenn, A. E. Hughes, A. Torpy, G. Nolze, and N. Birbilis, "Defect density associated with constituent particles in AA2024‐T3 and its role in corrosion," Surface and interface analysis, vol. 48, no. 8, pp. 780-788, 2016. [78]A. Boag et al., "How complex is the microstructure of AA2024-T3?," Corrosion Science, vol. 51, no. 8, pp. 1565-1568, 2009. [79]Y.-. Kuo, "The Corrosion Resistance of Rare-Earth Metal Conversion Coating on Aluminum Alloy 2024-T3," National Taiwan University, 2024. [80]A. Aghabalaeivahid and M. Shalvandi, "Microstructure-based crystal plasticity modeling of AA2024-T3 aluminum alloy defined as the α-Al, θ-Al2Cu, and S-Al2CuMg phases based on real metallographic image," Materials Research Express, vol. 8, no. 10, p. 106521, 2021. [81]A. Hughes et al., "Corrosion of AA2024-T3 Part II: Co-operative corrosion," Corrosion Science, vol. 53, no. 1, pp. 27-39, 2011. [82]A. Glenn et al., "Corrosion of AA2024-T3 part III: propagation," Corrosion Science, vol. 53, no. 1, pp. 40-50, 2011. [83]A. ughes et al., "Co-operative corrosion phenomena," Corrosion science, vol. 52, no. 3, pp. 665-668, 2010. [84]U. Donatus, M. Terada, C. R. Ospina, F. M. Queiroz, A. F. S. Bugarin, and I. Costa, "On the AA2198-T851 alloy microstructure and its correlation with localized corrosion behaviour," Corrosion Science, vol. 131, pp. 300-309, 2018. [85]X. Zhou, C. Luo, T. Hashimoto, A. Hughes, and G. Thompson, "Study of localized corrosion in AA2024 aluminium alloy using electron tomography," Corrosion Science, vol. 58, pp. 299-306, 2012. [86]M. Eslami, V. Pachchigar, M. Sankaran, and D. V. Krogstad, "Critical influence of chemical pretreatments on the deposition and effectiveness of Zr-based conversion coating on AA2024-T3 aluminum alloy," Applied Surface Science, vol. 697, p. 163018, 2025. [87]G. Scamans, "Shear processing of aluminium alloy surfaces and its influence on corrosion," Aluminium International Today, vol. 19, no. 4, p. 26, 2007. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98219 | - |
| dc.description.abstract | 2024-T3鋁合金具有比強度高、易加工性等優點,是常用於航太產業之輕量化材料。2024-T3鋁合金中添加了銅、鎂等合金元素以提升機械性質,然而,異質的微結構卻使其容易受到局部腐蝕,進而降低使用壽命,因此須透過表面處理以提高耐腐蝕性。由於傳統使用的六價鉻化成處理已因為其毒性和致癌性而被限制使用,鋯化成處理因此成為熱門的替代方案之一。
本研究探討鋯化成膜對於提升2024-T3鋁合金耐腐蝕性之效果,利用浸泡實驗和微結構觀察,比較僅經過前處理和經過化成處理的2024-T3鋁合金腐蝕行為與機制,並藉由動電位極化曲線探討異質微結構對於鋁合金電化學行為的影響。 2024-T3鋁合金的晶出相可分為Al-Cu-Fe-Mn相、Al2Cu相(θ相)和Al2CuMg相(S相)共三種,在前處理和化成處理後,大多數的晶出相顆粒相對於鋁基地為陰極,鋯化成膜因陰極位置還原反應旺盛而在此沉積較厚。 微結構影像和即時攝影結果顯示,前處理2024-T3鋁合金浸泡1小時內即產生腐蝕環並伴隨著晶間攻擊,環外的晶出相周圍皆嚴重腐蝕,環內的晶出相則受到陰極保護,浸泡10小時後環內出現肉眼可見腐蝕點。化成處理2024-T3鋁合金的晶出相僅在鋯化成膜缺陷處遭腐蝕,雖發生晶間攻擊,但腐蝕環在浸泡15小時後才出現,並在48小時內無出現肉眼可見腐蝕點。鋯化成膜降低了約90%的浸泡6小時腐蝕事件數量。 由於2024-T3鋁合金上的鋯化成膜存在許多缺陷,從動電位極化曲線難以顯示其保護效果,此外,鋯化成膜雖然擴大了純鋁陽極極化曲線的鈍化區間,但其陰極電流密度卻最大。鋯化成膜之組成成分和均勻性仍須進一步研究以釐清其對於電化學行為之影響。 | zh_TW |
| dc.description.abstract | 2024-T3 aluminum alloys are widely used in the aerospace industry as lightweight structural materials due to their high specific strength and good formability. The addition of alloying elements such as copper and magnesium enhance their mechanical properties. However, the resulting heterogeneous microstructure makes them highly susceptible to localized corrosion, which shortens their service life. Therefore, surface treatments are required to improve their corrosion resistance. Due to the toxicity and carcinogenicity of conventional hexavalent chromium conversion coatings, zirconium conversion coatings have emerged as a promising alternative.
This study investigates the effectiveness of zirconium conversion coatings in enhancing the corrosion resistance of 2024-T3 aluminum alloy. Through immersion tests and microstructural observations, the corrosion behavior and mechanisms of pretreated and conversion-coated samples were compared. Potentiodynamic polarization curves were also used to examine how the heterogeneous microstructure affects the electrochemical behavior of aluminum alloys. The constituent particles in 2024-T3 aluminum alloy include Al-Cu-Fe-Mn phase, Al2Cu phase (θ phase), and Al2CuMg phase (S phase). After pretreatments and conversion coating, most constituent particles behave as cathodic sites relative to the aluminum matrix. The zirconium conversion film tends to deposit more thickly at these cathodic sites due to more intense local cathodic reactions. In pretreated samples, corrosion rings and intergranular attack appeared within 1 hour of immersion. Severe corrosion was observed around the constituent particles outside the corrosion rings, while constituent particles inside the rings were cathodically protected. After 10 hours of immersion, macroscopic corrosion pits developed inside the rings. In contrast, for the conversion-coated samples, corrosion occurred only at defect sites within the zirconium coating. Although intergranular attack still occurred, corrosion rings did not appear until after 15 hours of immersion, and no macroscopic pits were observed within 48 hours. The zirconium coating reduced the number of corrosion events after 6 hours of immersion by approximately 90%. Due to defects in the zirconium conversion film on 2024-T3 aluminum alloy, its protective effect was not clearly reflected in the polarization curves. In addition, the anodic polarization curve of pure aluminum with zirconium conversion coating showed an extended passivation region, despite exhibiting the highest cathodic current density. Further studies on the composition and uniformity of the zirconium conversion film are needed to clarify its influence on electrochemical behavior. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:22:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:22:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目次 v 圖次 viii 表次 xiii 第一章 前言 1 第二章 文獻回顧 2 2.1 鋁合金簡介 2 2.1.1 鋁之簡介 2 2.1.2 鋁合金之分類及命名 4 2.2 鋁合金之加工製造與熱處理 7 2.2.1 概述 7 2.2.2 固化 7 2.2.3 均質化 7 2.2.4 固溶處理 8 2.2.5 冷加工 8 2.2.6 時效處理 9 2.3 2024-T3鋁合金與其異質相 11 2.3.1 2024-T3鋁合金簡介 11 2.3.2 晶出相 12 2.3.3 分散相 14 2.3.4 析出物 15 2.4 鋁合金之腐蝕行為 17 2.4.1 鋁之腐蝕行為 17 2.4.2 腐蝕行為之分類 20 2.4.3 伽凡尼腐蝕 23 2.4.4 孔蝕 24 2.4.5 晶間腐蝕 25 2.4.6 2024-T3鋁合金之腐蝕行為 27 2.5 鋁合金之改質前處理 32 2.5.1 概述 32 2.5.2 鹼洗處理 32 2.5.3 酸洗處理 34 2.6 鋁合金之化成處理 37 2.6.1 概述 37 2.6.2 鉻酸鹽化成處理 37 2.6.3 鋯酸鹽化成處理 41 第三章 實驗方法 46 3.1 實驗流程 46 3.2 研磨與拋光 46 3.3 前處理與化成處理 47 3.3.1 前處理 47 3.3.2 化成處理 48 3.4 腐蝕量測 49 3.4.1 浸泡實驗 49 3.4.2 即時攝影 49 3.4.3 動電位極化曲線 49 3.5 微結構與成分分析 50 3.5.1 光學顯微鏡 50 3.5.2 掃描式電子顯微鏡 50 3.5.3 聚焦離子束與電子束顯微系統 51 3.5.4 能量散佈光譜儀 51 第四章 實驗結果與討論 52 4.1 2024-T3鋁合金成分與微結構分析 52 4.1.1 底材之成分與微結構分析 52 4.1.2 表面處理試片之表面形貌概述 56 4.1.3 前處理試片之表面形貌 57 4.1.4 化成處理試片之表面形貌 62 4.2 前處理試片之腐蝕行為 66 4.2.1 浸泡後前處理試片之表面形貌 66 4.2.2 浸泡後前處理試片之橫截面 73 4.3 化成處理試片之腐蝕行為 75 4.3.1 浸泡後化成處理試片之表面形貌 75 4.3.2 浸泡後化成處理試片之橫截面 83 4.4 試片浸泡期間之即時攝影 85 4.5 動電位極化曲線 88 4.6 腐蝕行為與機制 97 第五章 結論 101 第六章 未來展望 103 參考文獻 104 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 2024-T3鋁合金 | zh_TW |
| dc.subject | 前處理 | zh_TW |
| dc.subject | 鋯化成處理 | zh_TW |
| dc.subject | 浸泡實驗 | zh_TW |
| dc.subject | 晶出相 | zh_TW |
| dc.subject | 微結構 | zh_TW |
| dc.subject | pretreatment | en |
| dc.subject | microstructure | en |
| dc.subject | constituent particle | en |
| dc.subject | 2024-T3 aluminum alloy | en |
| dc.subject | immersion test | en |
| dc.subject | zirconium conversion coating | en |
| dc.title | 2024-T3鋁合金鋯化成膜之腐蝕行為 | zh_TW |
| dc.title | Corrosion Behavior of Zirconium Conversion Coating on 2024-T3 Aluminum Alloys | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 汪俊延;林景崎;朱鵬維;蔡文達 | zh_TW |
| dc.contributor.oralexamcommittee | Jun-Yen Uan;Jing-Chie Lin;Peng-Wei Chu;Wen-Ta Tsai | en |
| dc.subject.keyword | 2024-T3鋁合金,前處理,鋯化成處理,浸泡實驗,晶出相,微結構, | zh_TW |
| dc.subject.keyword | 2024-T3 aluminum alloy,pretreatment,zirconium conversion coating,immersion test,constituent particle,microstructure, | en |
| dc.relation.page | 110 | - |
| dc.identifier.doi | 10.6342/NTU202502360 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-25 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2025-07-31 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 8.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
