請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98170完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈立言 | zh_TW |
| dc.contributor.advisor | Lee-Yan Sheen | en |
| dc.contributor.author | 楊沛霖 | zh_TW |
| dc.contributor.author | Pei-Lin Yang | en |
| dc.date.accessioned | 2025-07-30T16:11:44Z | - |
| dc.date.available | 2025-07-31 | - |
| dc.date.copyright | 2025-07-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-22 | - |
| dc.identifier.citation | Abouelela, M. E., & Helmy, Y. A. (2024). Next-Generation Probiotics as Novel Therapeutics for Improving Human Health: Current Trends and Future Perspectives. Microorganisms, 12(3).
Alabdul Razzak, I., Fares, A., Stine, J. G., & Trivedi, H. D. (2025). The Role of Exercise in Steatotic Liver Diseases: An Updated Perspective. Liver Int, 45(1), e16220. Ashrafian, F., Shahriary, A., Behrouzi, A., Moradi, H. R., Keshavarz Azizi Raftar, S., Lari, A., Hadifar, S., Yaghoubfar, R., Ahmadi Badi, S., Khatami, S., Vaziri, F., & Siadat, S. D. (2019). Akkermansia muciniphila-Derived Extracellular Vesicles as a Mucosal Delivery Vector for Amelioration of Obesity in Mice. Front Microbiol, 10, 2155. Backus, R., & Wara, A. (2016). Development of Obesity: Mechanisms and Physiology. Vet Clin North Am Small Anim Pract, 46(5), 773-784. Bernier, J. F., Calvert, C. C., Famula, T. R., & Baldwin, R. L. (1986). Maintenance energy requirement and net energetic efficiency in mice with a major gene for rapid postweaning gain. J Nutr, 116(3), 419-428. Bessone, F., Razori, M. V., & Roma, M. G. (2019). Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci, 76(1), 99-128. Bo, T., Gao, L., Yao, Z., Shao, S., Wang, X., Proud, C. G., & Zhao, J. (2024). Hepatic selective insulin resistance at the intersection of insulin signaling and metabolic dysfunction-associated steatotic liver disease. Cell Metabolism, 36(5), 947-968. Booijink, R., Ramachandran, P., & Bansal, R. (2024). Implications of innate immune sexual dimorphism for MASLD pathogenesis and treatment. Trends in Pharmacological Sciences, 45(7), 614-627. Cañas, M. A., Fábrega, M. J., Giménez, R., Badia, J., & Baldomà, L. (2018). Outer Membrane Vesicles From Probiotic and Commensal Escherichia coli Activate NOD1-Mediated Immune Responses in Intestinal Epithelial Cells. Front Microbiol, 9, 498. Canfora, E. E., Jocken, J. W., & Blaak, E. E. (2015). Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology, 11(10), 577-591. Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A. M., Fava, F., Tuohy, K. M., Chabo, C., Waget, A. l., Delmée, E., Cousin, B. a., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J.-F. o., Gibson, G. R., Casteilla, L., Delzenne, N. M., Alessi, M. C., & Burcelin, R. m. (2007). Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes, 56(7), 1761-1772. Chan, W. K., Chuah, K. H., Rajaram, R. B., Lim, L. L., Ratnasingam, J., & Vethakkan, S. R. (2023). Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J Obes Metab Syndr, 32(3), 197-213. Chen, M. J., Chen, Y., Lin, J. Q., Hu, R., Liu, D., Chen, J. Y., Li, K., & Jiang, X. Y. (2024). Evidence summary of lifestyle interventions in adults with metabolic dysfunction-associated steatotic liver disease. Front Nutr, 11, 1421386. Chen, Y. T., Chen, T. I., Yin, S. C., Huang, C. W., Huang, J. F., Lu, S. N., Yeh, M. L., Huang, C. F., Dai, C. Y., Chen, Y. W., Chuang, W. L., Yu, M. L., & Lee, M. H. (2024). Prevalence, proportions of elevated liver enzyme levels, and long-term cardiometabolic mortality of patients with metabolic dysfunction-associated steatotic liver disease. J Gastroenterol Hepatol, 39(9), 1939-1949. Cordain, L., Eaton, S. B., Sebastian, A., Mann, N., Lindeberg, S., Watkins, B. A., O’Keefe, J. H., & Brand-Miller, J. (2005). Origins and evolution of the Western diet: health implications for the 21st century1,2. The American Journal of Clinical Nutrition, 81(2), 341-354. de Meijer, V. E., Le, H. D., Meisel, J. A., & Puder, M. (2010). Repetitive orogastric gavage affects the phenotype of diet-induced obese mice. Physiology & Behavior, 100(4), 387-393. Dong, T., Li, J., Liu, Y., Zhou, S., Wei, X., Hua, H., Tang, K., Zhang, X., Wang, Y., Wu, Z., Gao, C., & Zhang, H. (2024). Roles of immune dysregulation in MASLD. Biomedicine & Pharmacotherapy, 170, 116069. Doron, S., & Snydman, D. R. (2015). Risk and Safety of Probiotics. Clinical Infectious Diseases, 60(suppl_2), S129-S134. Duan, J., Li, Q., Cheng, Y., Zhu, W., Liu, H., & Li, F. (2024). Therapeutic potential of Parabacteroides distasonis in gastrointestinal and hepatic disease. MedComm (2020), 5(12), e70017. Elsayed, H. R. H., El-Nablaway, M., Othman, B. H., Abdalla, A. M., El Nashar, E. M., Abd-Elmonem, M. M., & El-Gamal, R. (2021). Can Dasatinib Ameliorate the Hepatic changes, Induced by Long Term Western Diet, in Mice? Annals of Anatomy - Anatomischer Anzeiger, 234, 151626. Ezeji, J. C., Sarikonda, D. K., Hopperton, A., Erkkila, H. L., Cohen, D. E., Martinez, S. P., Cominelli, F., Kuwahara, T., Dichosa, A. E. K., Good, C. E., Jacobs, M. R., Khoretonenko, M., Veloo, A., & Rodriguez-Palacios, A. (2021). Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health. Gut Microbes, 13(1), 1922241. Fang, Y. L., Chen, H., Wang, C. L., & Liang, L. (2018). Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From "two hit theory" to "multiple hit model". World J Gastroenterol, 24(27), 2974-2983. Febbraio, M. A., Reibe, S., Shalapour, S., Ooi, G. J., Watt, M. J., & Karin, M. (2019). Preclinical Models for Studying NASH-Driven HCC: How Useful Are They? Cell Metabolism, 29(1), 18-26. Fernández-Ruiz, I. (2023). Gut bacterium protects against atherosclerosis by degrading BCAAs. Nature Reviews Cardiology, 20(1), 3-3. Flessa, C. M., Nasiri-Ansari, N., Kyrou, I., Leca, B. M., Lianou, M., Chatzigeorgiou, A., Kaltsas, G., Kassi, E., & Randeva, H. S. (2022). Genetic and Diet-Induced Animal Models for Non-Alcoholic Fatty Liver Disease (NAFLD) Research. Int J Mol Sci, 23(24). Fruh, S. M. (2017). Obesity: Risk factors, complications, and strategies for sustainable long-term weight management. J Am Assoc Nurse Pract, 29(S1), S3-s14. Fukushima, H., Yamashina, S., Arakawa, A., Taniguchi, G., Aoyama, T., Uchiyama, A., Kon, K., Ikejima, K., & Watanabe, S. (2018). Formation of p62-positive inclusion body is associated with macrophage polarization in non-alcoholic fatty liver disease. Hepatol Res, 48(9), 757-767. Gastaldelli, A., & Newsome, P. N. (2025). NAFLD vs MASLD (Metabolic Dysfunction–Associated Steatotic Liver Disease)—Why the Need for a Change of Nomenclature? The Journal of Clinical Endocrinology & Metabolism, dgaf094. Guirguis, E., Dougherty, J., Thornby, K., Grace, Y., & Mack, K. (2025). Resmetirom: The First Food and Drug Administration-Approved Medication for Nonalcoholic Steatohepatitis (NASH). Ann Pharmacother, 59(2), 162-173. Gunn, A. L. (2016). OpenStax: Microbiology Provides a Cost-Effective and Accessible Resource for Undergraduate Microbiology Students. Journal of Microbiology & Biology Education, 17(2), 305-306. Han, S. K., Baik, S. K., & Kim, M. Y. (2023). Non-alcoholic fatty liver disease: Definition and subtypes. Clin Mol Hepatol, 29(suppl), S5-s16. Hansen, H. H., Ægidius, H. M., Oró, D., Evers, S. S., Heebøll, S., Eriksen, P. L., Thomsen, K. L., Bengtsson, A., Veidal, S. S., Feigh, M., Suppli, M. P., Knop, F. K., Grønbæk, H., Miranda, D., Trevaskis, J. L., Vrang, N., Jelsing, J., & Rigbolt, K. T. G. (2020). Human translatability of the GAN diet-induced obese mouse model of non-alcoholic steatohepatitis. BMC Gastroenterology, 20(1), 210. Hosseini-Giv, N., Basas, A., Hicks, C., El-Omar, E., El-Assaad, F., & Hosseini-Beheshti, E. (2022). Bacterial extracellular vesicles and their novel therapeutic applications in health and cancer. Front Cell Infect Microbiol, 12, 962216. Ibrahim, S. H., Hirsova, P., Malhi, H., & Gores, G. J. (2016). Animal Models of Nonalcoholic Steatohepatitis: Eat, Delete, and Inflame. Dig Dis Sci, 61(5), 1325-1336. Jacobs, A., Warda, A. S., Verbeek, J., Cassiman, D., & Spincemaille, P. (2016). An Overview of Mouse Models of Nonalcoholic Steatohepatitis: From Past to Present. Curr Protoc Mouse Biol, 6(2), 185-200. Jahn, D., Kircher, S., Hermanns, H. M., & Geier, A. (2019). Animal models of NAFLD from a hepatologist's point of view. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1865(5), 943-953. Jain, P., Jain, A., Deshmukh, R., Samal, P., Satapathy, T., & Ajazuddin. (2025). Metabolic dysfunction-associated steatotic liver disease (MASLD): Exploring systemic impacts and innovative therapies. Clinics and Research in Hepatology and Gastroenterology, 49(6), 102584. Jegatheesan, P., & De Bandt, J. P. (2017). Fructose and NAFLD: The Multifaceted Aspects of Fructose Metabolism. Nutrients, 9(3). Ji, J., Jin, W., Liu, S. J., Jiao, Z., & Li, X. (2023). Probiotics, prebiotics, and postbiotics in health and disease. MedComm (2020), 4(6), e420. Jiang, F., Wang, L., Ying, H., Sun, J., Zhao, J., Lu, Y., Bian, Z., Chen, J., Fang, A., Zhang, X., Larsson, S. C., Mantzoros, C. S., Wang, W., Yuan, S., Ding, Y., & Li, X. (2024). Multisystem health comorbidity networks of metabolic dysfunction-associated steatotic liver disease. Med, 5(11), 1413-1423.e1413. Kang, J., Postigo-Fernandez, J., Kim, K., Zhu, C., Yu, J., Meroni, M., Mayfield, B., Bartolomé, A., Dapito, D. H., Ferrante, A. W., Jr., Dongiovanni, P., Valenti, L., Creusot, R. J., & Pajvani, U. B. (2023). Notch-mediated hepatocyte MCP-1 secretion causes liver fibrosis. JCI Insight, 8(3). Kazankov, K., Jørgensen, S. M. D., Thomsen, K. L., Møller, H. J., Vilstrup, H., George, J., Schuppan, D., & Grønbæk, H. (2019). The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nature Reviews Gastroenterology & Hepatology, 16(3), 145-159. Keam, S. J. (2024). Resmetirom: First Approval. Drugs, 84(6), 729-735. Keshavarz Azizi Raftar, S., Ashrafian, F., Yadegar, A., Lari, A., Moradi Hamid, R., Shahriary, A., Azimirad, M., Alavifard, H., Mohsenifar, Z., Davari, M., Vaziri, F., Moshiri, A., Siadat Seyed, D., & Zali Mohammad, R. (2021). The Protective Effects of Live and Pasteurized Akkermansia muciniphila and Its Extracellular Vesicles against HFD/CCl4-Induced Liver Injury. Microbiology Spectrum, 9(2), e00484-00421. Kleiner, D. E., Brunt, E. M., Van Natta, M., Behling, C., Contos, M. J., Cummings, O. W., Ferrell, L. D., Liu, Y. C., Torbenson, M. S., Unalp-Arida, A., Yeh, M., McCullough, A. J., & Sanyal, A. J. (2005). Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology, 41(6), 1313-1321. Koppe, S. W., Sahai, A., Malladi, P., Whitington, P. F., & Green, R. M. (2004). Pentoxifylline attenuates steatohepatitis induced by the methionine choline deficient diet. J Hepatol, 41(4), 592-598. Krenkel, O., Puengel, T., Govaere, O., Abdallah, A. T., Mossanen, J. C., Kohlhepp, M., Liepelt, A., Lefebvre, E., Luedde, T., Hellerbrand, C., Weiskirchen, R., Longerich, T., Costa, I. G., Anstee, Q. M., Trautwein, C., & Tacke, F. (2018). Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology, 67(4), 1270-1283. LaBrecque, D. R., Abbas, Z., Anania, F., Ferenci, P., Khan, A. G., Goh, K. L., Hamid, S. S., Isakov, V., Lizarzabal, M., Peñaranda, M. M., Ramos, J. F., Sarin, S., Stimac, D., Thomson, A. B., Umar, M., Krabshuis, J., & LeMair, A. (2014). World Gastroenterology Organisation global guidelines: Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J Clin Gastroenterol, 48(6), 467-473. Larter, C. Z., Yeh, M. M., Van Rooyen, D. M., Brooling, J., Ghatora, K., & Farrell, G. C. (2012). Peroxisome proliferator-activated receptor-α agonist, Wy 14,643, improves metabolic indices, steatosis and ballooning in diabetic mice with non-alcoholic steatohepatitis. J Gastroenterol Hepatol, 27(2), 341-350. Leamy, A. K., Egnatchik, R. A., & Young, J. D. (2013). Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Progress in Lipid Research, 52(1), 165-174. Lebeaupin, C., Vallée, D., Hazari, Y., Hetz, C., Chevet, E., & Bailly-Maitre, B. (2018). Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol, 69(4), 927-947. Lei, F., Zeng, F., Yu, X., Deng, Y., Zhang, Z., Xu, M., Ding, N., Tian, J., & Li, C. (2023). Oral hydrogel nanoemulsion co-delivery system treats inflammatory bowel disease via anti-inflammatory and promoting intestinal mucosa repair. Journal of Nanobiotechnology, 21(1), 275. Li, B., Liu, Y., Ma, X., & Guo, X. (2025). The association between non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio and hepatic steatosis and liver fibrosis among US adults based on NHANES. Scientific Reports, 15(1), 6527. Li, Y., Yang, P., Ye, J., Xu, Q., Wu, J., & Wang, Y. (2024). Updated mechanisms of MASLD pathogenesis. Lipids in Health and Disease, 23(1), 117. Li, Z., Feng, P. P., Zhao, Z. B., Zhu, W., Gong, J. P., & Du, H. M. (2019). Liraglutide protects against inflammatory stress in non-alcoholic fatty liver by modulating Kupffer cells M2 polarization via cAMP-PKA-STAT3 signaling pathway. Biochem Biophys Res Commun, 510(1), 20-26. Liang, J. Q., Teoh, N., Xu, L., Pok, S., Li, X., Chu, E. S. H., Chiu, J., Dong, L., Arfianti, E., Haigh, W. G., Yeh, M. M., Ioannou, G. N., Sung, J. J. Y., Farrell, G., & Yu, J. (2018). Dietary cholesterol promotes steatohepatitis related hepatocellular carcinoma through dysregulated metabolism and calcium signaling. Nature Communications, 9(1), 4490. Liang, W., Menke, A. L., Driessen, A., Koek, G. H., Lindeman, J. H., Stoop, R., Havekes, L. M., Kleemann, R., & van den Hoek, A. M. (2014). Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One, 9(12), e115922. Lim, J. S., Mietus-Snyder, M., Valente, A., Schwarz, J.-M., & Lustig, R. H. (2010). The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nature Reviews Gastroenterology & Hepatology, 7(5), 251-264. Lin, T.-L., Shu, C.-C., Lai, W.-F., Tzeng, C.-M., Lai, H.-C., & Lu, C.-C. (2019). Investiture of next generation probiotics on amelioration of diseases – Strains do matter. Medicine in Microecology, 1-2, 100002. Liu, J. H., Chen, C. Y., Liu, Z. Z., Luo, Z. W., Rao, S. S., Jin, L., Wan, T. F., Yue, T., Tan, Y. J., Yin, H., Yang, F., Huang, F. Y., Guo, J., Wang, Y. Y., Xia, K., Cao, J., Wang, Z. X., Hong, C. G., Luo, M. J., Hu, X. K., Liu, Y. W., Du, W., Luo, J., Hu, Y., Zhang, Y., Huang, J., Li, H. M., Wu, B., Liu, H. M., Chen, T. H., Qian, Y. X., Li, Y. Y., Feng, S. K., Chen, Y., Qi, L. Y., Xu, R., Tang, S. Y., & Xie, H. (2021). Extracellular Vesicles from Child Gut Microbiota Enter into Bone to Preserve Bone Mass and Strength. Adv Sci (Weinh), 8(9), 2004831. Liu, R., Scimeca, M., Sun, Q., Melino, G., Mauriello, A., Shao, C., Francesca, B., Pierluigi, B., Eleonora, C., Valentina, R., Giuseppe, S., Ying, W., Shi, Y., Piacentini, M., Tisone, G., Agostini, M., & Centre, T. O. R. (2023). Harnessing metabolism of hepatic macrophages to aid liver regeneration. Cell Death & Disease, 14(8), 574. Longo, M., Zatterale, F., Naderi, J., Parrillo, L., Formisano, P., Raciti, G. A., Beguinot, F., & Miele, C. (2019). Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci, 20(9). Loomba, R., Lawitz, E., Mantry, P. S., Jayakumar, S., Caldwell, S. H., Arnold, H., Diehl, A. M., Djedjos, C. S., Han, L., Myers, R. P., Subramanian, G. M., McHutchison, J. G., Goodman, Z. D., Afdhal, N. H., & Charlton, M. R. (2018). The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: A randomized, phase 2 trial. Hepatology, 67(2), 549-559. Luo, W., Xu, Q., Wang, Q., Wu, H., & Hua, J. (2017). Effect of modulation of PPAR-γ activity on Kupffer cells M1/M2 polarization in the development of non-alcoholic fatty liver disease. Scientific Reports, 7(1), 44612. Matsusue, K., Haluzik, M., Lambert, G., Yim, S. H., Gavrilova, O., Ward, J. M., Brewer, B., Jr., Reitman, M. L., & Gonzalez, F. J. (2003). Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest, 111(5), 737-747. Matsuura, M. (2013). Structural Modifications of Bacterial Lipopolysaccharide that Facilitate Gram-Negative Bacteria Evasion of Host Innate Immunity. Front Immunol, 4, 109. McGill, M. R. (2016). The past and present of serum aminotransferases and the future of liver injury biomarkers. Excli j, 15, 817-828. Mensink, R. P., Zock, P. L., Kester, A. D. M., & Katan, M. B. (2003). Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials12. The American Journal of Clinical Nutrition, 77(5), 1146-1155. Miao, L., Targher, G., Byrne, C. D., Cao, Y.-Y., & Zheng, M.-H. (2024). Current status and future trends of the global burden of MASLD. Trends in Endocrinology & Metabolism, 35(8), 697-707. Natividad, J. M., Lamas, B., Pham, H. P., Michel, M.-L., Rainteau, D., Bridonneau, C., da Costa, G., van Hylckama Vlieg, J., Sovran, B., Chamignon, C., Planchais, J., Richard, M. L., Langella, P., Veiga, P., & Sokol, H. (2018). Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nature Communications, 9(1), 2802. Nio, Y., Yamauchi, T., Iwabu, M., Okada-Iwabu, M., Funata, M., Yamaguchi, M., Ueki, K., & Kadowaki, T. (2012). Monocyte chemoattractant protein-1 (MCP-1) deficiency enhances alternatively activated M2 macrophages and ameliorates insulin resistance and fatty liver in lipoatrophic diabetic A-ZIP transgenic mice. Diabetologia, 55(12), 3350-3358. Odegaard, J. I., Ricardo-Gonzalez, R. R., Red Eagle, A., Vats, D., Morel, C. R., Goforth, M. H., Subramanian, V., Mukundan, L., Ferrante, A. W., & Chawla, A. (2008). Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab, 7(6), 496-507. Otto, G. P., Rathkolb, B., Oestereicher, M. A., Lengger, C. J., Moerth, C., Micklich, K., Fuchs, H., Gailus-Durner, V., Wolf, E., & Hrabě de Angelis, M. (2016). Clinical Chemistry Reference Intervals for C57BL/6J, C57BL/6N, and C3HeB/FeJ Mice (Mus musculus). J Am Assoc Lab Anim Sci, 55(4), 375-386. Pafili, K., & Roden, M. (2021). Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Molecular Metabolism, 50, 101122. Pan, X., Wang, P., Luo, J., Wang, Z., Song, Y., Ye, J., & Hou, X. (2015). Adipogenic changes of hepatocytes in a high-fat diet-induced fatty liver mice model and non-alcoholic fatty liver disease patients. Endocrine, 48(3), 834-847. Panyod, S., Wu, W. K., Ho, C. T., Lu, K. H., Liu, C. T., Chu, Y. L., Lai, Y. S., Chen, W. C., Lin, Y. E., Lin, S. H., & Sheen, L. Y. (2016). Diet Supplementation with Allicin Protects against Alcoholic Fatty Liver Disease in Mice by Improving Anti-inflammation and Antioxidative Functions. J Agric Food Chem, 64(38), 7104-7113. Penas, F., Mirkin, G. A., Vera, M., Cevey, Á., González, C. D., Gómez, M. I., Sales, M. E., & Goren, N. B. (2015). Treatment in vitro with PPARα and PPARγ ligands drives M1-to-M2 polarization of macrophages from T. cruzi-infected mice. Biochim Biophys Acta, 1852(5), 893-904. Poupardin, R., Wolf, M., & Strunk, D. (2021). Adherence to minimal experimental requirements for defining extracellular vesicles and their functions. Adv Drug Deliv Rev, 176, 113872. Qiao, S., Liu, C., Sun, L., Wang, T., Dai, H., Wang, K., Bao, L., Li, H., Wang, W., Liu, S.-J., & Liu, H. (2022). Gut Parabacteroides merdae protects against cardiovascular damage by enhancing branched-chain amino acid catabolism. Nature Metabolism, 4(10), 1271-1286. Rafique, N., Jan, S. Y., Dar, A. H., Dash, K. K., Sarkar, A., Shams, R., Pandey, V. K., Khan, S. A., Amin, Q. A., & Hussain, S. Z. (2023). Promising bioactivities of postbiotics: A comprehensive review. Journal of Agriculture and Food Research, 14, 100708. Rajewski, P., Cieściński, J., Rajewski, P., Suwała, S., Rajewska, A., & Potasz, M. (2025). Dietary Interventions and Physical Activity as Crucial Factors in the Prevention and Treatment of Metabolic Dysfunction-Associated Steatotic Liver Disease. Biomedicines, 13(1). Ravela, N., Shackelford, P., Blessing, N., Yoder, L., Chalasani, N., & Samala, N. (2025). Early experience with resmetirom to treat metabolic dysfunction-associated steatohepatitis with fibrosis in a real-world setting. Hepatol Commun, 9(4). Régnier, M., Polizzi, A., Smati, S., Lukowicz, C., Fougerat, A., Lippi, Y., Fouché, E., Lasserre, F., Naylies, C., Bétoulières, C., Barquissau, V., Mouisel, E., Bertrand-Michel, J., Batut, A., Saati, T. A., Canlet, C., Tremblay-Franco, M., Ellero-Simatos, S., Langin, D., Postic, C., Wahli, W., Loiseau, N., Guillou, H., & Montagner, A. (2020). Hepatocyte-specific deletion of Pparα promotes NAFLD in the context of obesity. Scientific Reports, 10(1), 6489. Rinella, M. E., Lazarus, J. V., Ratziu, V., Francque, S. M., Sanyal, A. J., Kanwal, F., Romero, D., Abdelmalek, M. F., Anstee, Q. M., Arab, J. P., Arrese, M., Bataller, R., Beuers, U., Boursier, J., Bugianesi, E., Byrne, C. D., Castro Narro, G. E., Chowdhury, A., Cortez-Pinto, H., Cryer, D. R., Cusi, K., El-Kassas, M., Klein, S., Eskridge, W., Fan, J., Gawrieh, S., Guy, C. D., Harrison, S. A., Kim, S. U., Koot, B. G., Korenjak, M., Kowdley, K. V., Lacaille, F., Loomba, R., Mitchell-Thain, R., Morgan, T. R., Powell, E. E., Roden, M., Romero-Gómez, M., Silva, M., Singh, S. P., Sookoian, S. C., Spearman, C. W., Tiniakos, D., Valenti, L., Vos, M. B., Wong, V. W.-S., Xanthakos, S., Yilmaz, Y., Younossi, Z., Hobbs, A., Villota-Rivas, M., & Newsome, P. N. (2023). A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Journal of Hepatology, 79(6), 1542-1556. Rosendo-Silva, D., Viana, S., Carvalho, E., Reis, F., & Matafome, P. (2023). Are gut dysbiosis, barrier disruption, and endotoxemia related to adipose tissue dysfunction in metabolic disorders? Overview of the mechanisms involved. Internal and Emergency Medicine, 18(5), 1287-1302. Salminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M. M., Sanders, M. E., Shamir, R., Swann, J. R., Szajewska, H., & Vinderola, G. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18(9), 649-667. Samanta, A., & Sen Sarma, M. (2024). Metabolic dysfunction-associated steatotic liver disease: A silent pandemic. World J Hepatol, 16(4), 511-516. Sanders, M. E., Akkermans, L. M., Haller, D., Hammerman, C., Heimbach, J., Hörmannsperger, G., Huys, G., Levy, D. D., Lutgendorff, F., Mack, D., Phothirath, P., Solano-Aguilar, G., & Vaughan, E. (2010). Safety assessment of probiotics for human use. Gut Microbes, 1(3), 164-185. Sawada, K., Chung, H., Softic, S., Moreno-Fernandez, M. E., & Divanovic, S. (2023). The bidirectional immune crosstalk in metabolic dysfunction-associated steatotic liver disease. Cell Metabolism, 35(11), 1852-1871. Saxena, R., Crawford, J. M., Navarro, V. J., Friedman, A. L., & Robert, M. E. (2002). Utilization of Acidophil Bodies in the Diagnosis of Recurrent Hepatitis C Infection after Orthotopic Liver Transplantation. Modern Pathology, 15(9), 897-903. Schober, I., Koblitz, J., Sardà Carbasse, J., Ebeling, C., Schmidt, M. L., Podstawka, A., Gupta, R., Ilangovan, V., Chamanara, J., Overmann, J., & Reimer, L. C. (2025). BacDive in 2025: the core database for prokaryotic strain data. Nucleic Acids Research, 53(D1), D748-D756. Schreiber, F., Balas, I., Robinson, M. J., & Bakdash, G. (2024). Border Control: The Role of the Microbiome in Regulating Epithelial Barrier Function. Cells, 13(6). Sellmann, C., Priebs, J., Landmann, M., Degen, C., Engstler, A. J., Jin, C. J., Gärttner, S., Spruss, A., Huber, O., & Bergheim, I. (2015). Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time. J Nutr Biochem, 26(11), 1183-1192. Semmler, G., Datz, C., Reiberger, T., & Trauner, M. (2021). Diet and exercise in NAFLD/NASH: Beyond the obvious. Liver Int, 41(10), 2249-2268. Shen, Y., Giardino Torchia, M. L., Lawson, G. W., Karp, C. L., Ashwell, J. D., & Mazmanian, S. K. (2012). Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe, 12(4), 509-520. Shi, J., Fan, J., Su, Q., & Yang, Z. (2019). Cytokines and Abnormal Glucose and Lipid Metabolism. Front Endocrinol (Lausanne), 10, 703. Shi, Q., Xue, C., Zeng, Y., Chu, Q., Jiang, S., Zhang, Y., Yuan, X., Zhu, D., & Li, L. (2025). PPARα agonist ameliorates cholestatic liver injury by regulating hepatic macrophage homeostasis. Int J Biol Macromol, 287, 138510. Singh, B. K., Tripathi, M., & Verma, M. K. (2024). Dietary Determinants of Metabolic Syndrome: Focus on the Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). In K. D. Monyeki, H. C. G. Kemper, & P. Modjadji (Eds.), Metabolic Syndrome - Lifestyle and Biological Risk Factors. Rijeka: IntechOpen. Song, R., Li, Z., Zhang, Y., Tan, J., & Chen, Z. (2024). Comparison of NAFLD, MAFLD and MASLD characteristics and mortality outcomes in United States adults. Liver Int, 44(4), 1051-1060. Sookoian, S., & Pirola, C. J. (2024). Resmetirom for treatment of MASH. Cell, 187(12), 2897-2897.e2891. Sun, H., Guo, Y., Wang, H., Yin, A., Hu, J., Yuan, T., Zhou, S., Xu, W., Wei, P., Yin, S., Liu, P., Guo, X., Tang, Y., Yan, Y., Luo, Z., Wang, M., Liang, Q., Wu, P., Zhang, A., Zhou, Z., Chen, Y., Li, Y., Li, J., Shan, J., & Zhou, W. (2023). Gut commensal Parabacteroides distasonis alleviates inflammatory arthritis. Gut, 72(9), 1664-1677. Sun, Y. Y., Li, X. F., Meng, X. M., Huang, C., Zhang, L., & Li, J. (2017). Macrophage Phenotype in Liver Injury and Repair. Scand J Immunol, 85(3), 166-174. Svendsen, P., Graversen, J. H., Etzerodt, A., Hager, H., Røge, R., Grønbæk, H., Christensen, E. I., Møller, H. J., Vilstrup, H., & Moestrup, S. K. (2017). Antibody-Directed Glucocorticoid Targeting to CD163 in M2-type Macrophages Attenuates Fructose-Induced Liver Inflammatory Changes. Mol Ther Methods Clin Dev, 4, 50-61. Toyofuku, M., Nomura, N., & Eberl, L. (2019). Types and origins of bacterial membrane vesicles. Nature Reviews Microbiology, 17(1), 13-24. Toyofuku, M., Schild, S., Kaparakis-Liaskos, M., & Eberl, L. (2023). Composition and functions of bacterial membrane vesicles. Nat Rev Microbiol, 21(7), 415-430. Traber, P. G., & Zomer, E. (2013). Therapy of experimental NASH and fibrosis with galectin inhibitors. PLoS One, 8(12), e83481. Tran, T. T., Yamamoto, Y., Gesta, S., & Kahn, C. R. (2008). Beneficial Effects of Subcutaneous Fat Transplantation on Metabolism. Cell Metabolism, 7(5), 410-420. Tsilingiri, K., Barbosa, T., Penna, G., Caprioli, F., Sonzogni, A., Viale, G., & Rescigno, M. (2012). Probiotic and postbiotic activity in health and disease: comparison on a novel polarised ex-vivo organ culture model. Gut, 61(7), 1007. Vallianou, N. G., Kounatidis, D., Tsilingiris, D., Panagopoulos, F., Christodoulatos, G. S., Evangelopoulos, A., Karampela, I., & Dalamaga, M. (2023). The Role of Next-Generation Probiotics in Obesity and Obesity-Associated Disorders: Current Knowledge and Future Perspectives. Int J Mol Sci, 24(7). van der Heide, D., Weiskirchen, R., & Bansal, R. (2019). Therapeutic Targeting of Hepatic Macrophages for the Treatment of Liver Diseases. Front Immunol, 10, 2852. Vance, D. E. (2008). Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis. Curr Opin Lipidol, 19(3), 229-234. Vilgrain, V., Ronot, M., Abdel-Rehim, M., Zappa, M., d’Assignies, G., Bruno, O., & Vullierme, M. P. (2013). Hepatic steatosis: A major trap in liver imaging. Diagnostic and Interventional Imaging, 94(7), 713-727. Wan, J., Benkdane, M., Teixeira-Clerc, F., Bonnafous, S., Louvet, A., Lafdil, F., Pecker, F., Tran, A., Gual, P., Mallat, A., Lotersztajn, S., & Pavoine, C. (2014). M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology, 59(1), 130-142. Wang, C., Ma, C., Gong, L., Guo, Y., Fu, K., Zhang, Y., Zhou, H., & Li, Y. (2021). Macrophage Polarization and Its Role in Liver Disease. Front Immunol, 12, 803037. Wang, K., Liao, M., Zhou, N., Bao, L., Ma, K., Zheng, Z., Wang, Y., Liu, C., Wang, W., Wang, J., Liu, S. J., & Liu, H. (2019). Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids. Cell Rep, 26(1), 222-235.e225. Wang, Y., Parlevliet, E. T., Geerling, J. J., van der Tuin, S. J., Zhang, H., Bieghs, V., Jawad, A. H., Shiri-Sverdlov, R., Bot, I., de Jager, S. C., Havekes, L. M., Romijn, J. A., Willems van Dijk, K., & Rensen, P. C. (2014). Exendin-4 decreases liver inflammation and atherosclerosis development simultaneously by reducing macrophage infiltration. Br J Pharmacol, 171(3), 723-734. Welsh, J. A., Goberdhan, D. C. I., O'Driscoll, L., Buzas, E. I., Blenkiron, C., Bussolati, B., Cai, H., Di Vizio, D., Driedonks, T. A. P., Erdbrügger, U., Falcon-Perez, J. M., Fu, Q. L., Hill, A. F., Lenassi, M., Lim, S. K., Mahoney, M. G., Mohanty, S., Möller, A., Nieuwland, R., Ochiya, T., Sahoo, S., Torrecilhas, A. C., Zheng, L., Zijlstra, A., Abuelreich, S., Bagabas, R., Bergese, P., Bridges, E. M., Brucale, M., Burger, D., Carney, R. P., Cocucci, E., Crescitelli, R., Hanser, E., Harris, A. L., Haughey, N. J., Hendrix, A., Ivanov, A. R., Jovanovic-Talisman, T., Kruh-Garcia, N. A., Ku'ulei-Lyn Faustino, V., Kyburz, D., Lässer, C., Lennon, K. M., Lötvall, J., Maddox, A. L., Martens-Uzunova, E. S., Mizenko, R. R., Newman, L. A., Ridolfi, A., Rohde, E., Rojalin, T., Rowland, A., Saftics, A., Sandau, U. S., Saugstad, J. A., Shekari, F., Swift, S., Ter-Ovanesyan, D., Tosar, J. P., Useckaite, Z., Valle, F., Varga, Z., van der Pol, E., van Herwijnen, M. J. C., Wauben, M. H. M., Wehman, A. M., Williams, S., Zendrini, A., Zimmerman, A. J., Théry, C., & Witwer, K. W. (2024). Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles, 13(2), e12404. Wen, Y., Lambrecht, J., Ju, C., & Tacke, F. (2021). Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cellular & Molecular Immunology, 18(1), 45-56. Wu, H. M., Ni, X. X., Xu, Q. Y., Wang, Q., Li, X. Y., & Hua, J. (2020). Regulation of lipid-induced macrophage polarization through modulating peroxisome proliferator-activated receptor-gamma activity affects hepatic lipid metabolism via a Toll-like receptor 4/NF-κB signaling pathway. J Gastroenterol Hepatol, 35(11), 1998-2008. Wu, J., Chan, Y. T., Lu, Y., Feng, Z., Yuan, H., Xu, X., Xu, L., Zhang, C., Feng, Y., Tan, H. Y., & Wang, N. (2023). Genipin-activating PPARγ impedes CCR2-mediated macrophage infiltration into postoperative liver to suppress recurrence of hepatocellular carcinoma. Int J Biol Sci, 19(16), 5257-5274. Wu, T. R., Lin, C. S., Chang, C. J., Lin, T. L., Martel, J., Ko, Y. F., Ojcius, D. M., Lu, C. C., Young, J. D., & Lai, H. C. (2019). Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut, 68(2), 248-262. Xie, J., Li, Q., & Nie, S. (2024). Bacterial extracellular vesicles: An emerging postbiotic. Trends in Food Science & Technology, 143, 104275. Xue, Y., Peng, Y., Zhang, L., Ba, Y., Jin, G., & Liu, G. (2024). Effect of different exercise modalities on nonalcoholic fatty liver disease: a systematic review and network meta-analysis. Scientific Reports, 14(1), 6212. Yaghoubfar, R., Behrouzi, A., Zare Banadkoki, E., Ashrafian, F., Lari, A., Vaziri, F., Nojoumi, S. A., Fateh, A., Khatami, S., & Siadat, S. D. (2021). Effect of Akkermansia muciniphila, Faecalibacterium prausnitzii, and Their Extracellular Vesicles on the Serotonin System in Intestinal Epithelial Cells. Probiotics and Antimicrobial Proteins, 13(6), 1546-1556. Yan, L., Wang, J., Cai, X., Liou, Y. C., Shen, H. M., Hao, J., Huang, C., Luo, G., & He, W. (2024). Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (2020), 5(8), e658. Younossi, Z. M., Kalligeros, M., & Henry, L. (2025). Epidemiology of metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol, 31(Suppl), S32-S50. Zeng, X.-F., Varady, K. A., Wang, X.-D., Targher, G., Byrne, C. D., Tayyem, R., Latella, G., Bergheim, I., Valenzuela, R., George, J., Newberry, C., Zheng, J.-S., George, E. S., Spearman, C. W., Kontogianni, M. D., Ristic-Medic, D., Peres, W. A. F., Depboylu, G. Y., Yang, W., Chen, X., Rosqvist, F., Mantzoros, C. S., Valenti, L., Yki-Järvinen, H., Mosca, A., Sookoian, S., Misra, A., Yilmaz, Y., Kim, W., Fouad, Y., Sebastiani, G., Wong, V. W.-S., Åberg, F., Wong, Y. J., Zhang, P., Bermúdez-Silva, F.-J., Ni, Y., Lupsor-Platon, M., Chan, W. K., Méndez-Sánchez, N., de Knegt, R. J., Alam, S., Treeprasertsuk, S., Wang, L., Du, M., Zhang, T., Yu, M.-L., Zhang, H., Qi, X., Liu, X., Pinyopornpanish, K., Fan, Y.-C., Niu, K., Jimenez-Chillaron, J. C., & Zheng, M.-H. (2024). The role of dietary modification in the prevention and management of metabolic dysfunction-associated fatty liver disease: An international multidisciplinary expert consensus. Metabolism, 161, 156028. Zhang, H., Duan, Y., Cai, F., Cao, D., Wang, L., Qiao, Z., Hong, Q., Li, N., Zheng, Y., Su, M., Liu, Z., & Zhu, B. (2022). Next-Generation Probiotics: Microflora Intervention to Human Diseases. Biomed Res Int, 2022, 5633403. Zhao, Q., Dai, M.-Y., Huang, R.-Y., Duan, J.-Y., Zhang, T., Bao, W.-M., Zhang, J.-Y., Gui, S.-Q., Xia, S.-M., Dai, C.-T., Tang, Y.-M., Gonzalez, F. J., & Li, F. (2023). Parabacteroides distasonis ameliorates hepatic fibrosis potentially via modulating intestinal bile acid metabolism and hepatocyte pyroptosis in male mice. Nature Communications, 14(1), 1829. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98170 | - |
| dc.description.abstract | 代謝功能障礙相關脂肪肝病 (Metabolic dysfunction-associated steatotic liver disease, MASLD) 目前被視為最常見的慢性肝病,全球盛行率約達 30%。MASLD通常由不良飲食與缺乏運動引起,脂肪在肝臟內逐漸積,進一步惡化可能導致代 謝 功 能 障 礙 相 關 脂 肪 性 肝 炎 (Metabolic dysfunction-associated steatohepatitis, MASH) 、肝硬化甚至肝癌。由於藥物副作用與生活型態改變的困難,越來越多研究著眼於以飲食介入作為潛在的非藥物預防策略,其中次世代益生菌 (Next generation probiotics, NGPs) 成為備受矚目的候選預防策略。前趨實驗發現,Parabacteroides merdae (P. merdae) 之活菌與巴斯德殺菌型式皆能改善 Gubra-Amylin NASH (GAN) 飲食誘導小鼠之代謝性脂肪肝炎所造成的胰島素阻抗,且活菌形式可避免脂肪組織重量增加。考量到活菌潛在風險與市場接受度,Postbiotics(後生元,如外膜囊泡、巴斯德殺菌形式)逐漸受到重視。本研究進一步探討 P. merdae (DSM19495) 之三種製劑(活菌 (Plive) 、巴斯德殺菌型式 (Ppast) 及其外膜囊泡 (POMV) )對 MASLD 的保護效果。結果顯示,Ppast 組具顯著改善胰島素阻抗能力並針對肝小葉發炎具改善趨勢,同時可調節肝臟巨噬細胞的浸潤與極化;而 Plive 與 POMV 組則無顯著益處,且引起部分個體 ALT、AST 增高,增加安全性疑慮。整體而言,P. merdae 的不同型式對 MASLD 之影響存在差異,巴斯德殺菌型式在安全性與功效上展現較高應用潛力,值得後續深入研究與開發。 | zh_TW |
| dc.description.abstract | Metabolic dysfunction-associated steatotic liver disease (MASLD) is currently the most prevalent chronic liver condition, affecting approximately 30% of the global population. It is primarily caused by poor dietary habits and insufficient physical activity, leading to hepatic fat accumulation and potentially progressing to steatohepatitis (Metabolic dysfunction-associated steatohepatitis, MASH), cirrhosis, or hepatocellular carcinoma. As an alternative to pharmacological treatment, dietary interventions especially the use of next-generation probiotics (NGPs) have gained increasing attention. Our preliminary data indicated that both live and pasteurized forms of Parabacteroides merdae (P. merdae) ameliorated insulin resistance in mice fed a Gubra Amylin NASH (GAN) diet, with the live form also preventing adipose tissue mass gain. Given concerns over the safety and marketability of live bacteria, interest in postbiotics such as outer membrane vesicles (OMVs) and pasteurized form is growing. This study investigated the hepatoprotective effects of three forms of P. merdae DSM19495 preparations, including live form (Plive), pasteurized form (Ppast), and its OMVs (POMV) in a GAN diet-induced MASLD mouse model. Results revealed that the Ppast group significantly improved insulin resistance, potentially improved lobular inflammation, and had the potency to modulate hepatic macrophage infiltration and polarization. In contrast, the Plive and POMV groups showed no significant benefits, with some individuals having elevated plasma ALT and AST levels, raising safety concerns. In conclusion, while the effects of P. merdae on MASLD are form-dependent, the pasteurized form appears to offer a safer and more effective alternative for future applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:11:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-30T16:11:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 II
中文摘要 III 英文摘要 IV 目次 V 圖次 VIII 表次 IX 縮寫表 X 第一章 前言 1 第一節 代謝功能障礙相關脂肪肝病介紹 1 一、代謝功能障礙相關脂肪肝病盛行率 1 二、代謝功能障礙相關脂肪肝病與其疾病進程 1 第二節 代謝性脂肪肝病發病因素與致病機轉 3 一、不良的飲食習慣 3 二、缺乏運動的生活習慣 4 三、胰島素阻抗 4 四、發炎反應與免疫細胞活動 5 第三節 代謝性脂肪肝病之動物誘導模式 8 第四節 改善代謝性脂肪肝病之策略 10 第五節 Parabacteroides merdae與其後生元 12 一、P. merdae介紹 12 二、P. merdae的健康效益 13 三、次世代益生菌的安全、應用及後生元 13 四、外膜囊泡與代謝健康 14 第六節 研究目的 15 第二章 實驗設計、材料與方法 16 第一節 實驗設計 16 一、前趨實驗 16 二、動物實驗設計 17 第二節 材料與儀器設備 18 一、實驗儀器 18 二、動物飼料 19 三、肝臟均質液與相關分析 19 四、西方墨點法 20 五、抗體 21 六、外膜囊泡製備 21 第三節 實驗方法 22 一、Parabacteriodes merdae相關試劑製備 22 二、動物實驗 24 三、肝臟組織病理學分析 26 四、血液生化值測定 27 五、肝臟細胞激素與脂肪分析 28 六、西方墨點法 29 七、統計分析 35 第三章 實驗結果 36 第一節 外膜囊泡製劑流程與表徵呈現 36 第二節 八週的體重變化 36 第三節 八週體重變化率 36 第四節 介入P. merdae相關製劑後的能量攝取 37 第五節 脂肪組織重量 37 第六節 肝臟重量與組織型態特徵 38 第七節 血漿中肝臟功能與受損指標 38 第八節 血漿脂質代謝相關指標 38 第九節 血糖代謝恆定相關指標 39 第十節 肝臟三酸甘油酯與促發炎細胞激素 39 第十一節 肝臟組織學相關數值-NAS 40 第十二節 肝臟組織學相關數值-免疫化學染色 40 第十三節 分子層面分析 41 第四章 討論 42 第一節 P. merdae相關製劑與代謝相關指標 43 第二節 P. merdae相關製劑與發炎相關指標 45 第五章 結論 49 第六章 未來展望 51 第七章 圖表 52 第八章 參考資料 67 第九章 補充資料 81 附錄-Manuscript 84 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 代謝功能障礙相關脂肪肝病 | zh_TW |
| dc.subject | Parabacteroides merdae | zh_TW |
| dc.subject | 後生元 | zh_TW |
| dc.subject | Gubra- Amylin NASH 飲食 | zh_TW |
| dc.subject | 次世代益生菌 | zh_TW |
| dc.subject | postbiotics | en |
| dc.subject | MASLD | en |
| dc.subject | NGPs | en |
| dc.subject | GAN diet | en |
| dc.subject | P. merdae | en |
| dc.title | 探討不同形式之 Parabacteroides merdae 相關製劑在飲食誘導小鼠代謝功能障礙相關脂肪肝病模型之保護作用 | zh_TW |
| dc.title | Exploring the protective effects of different forms of Parabacteroides merdae-related preparations in a diet-induced mouse model of metabolic dysfuction-associated steatotic liver disease | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳明賢;莊曉莉;吳偉愷 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Shiang Wu;Hsiao-Li Chuang;Wei-Kai Wu | en |
| dc.subject.keyword | 代謝功能障礙相關脂肪肝病,Parabacteroides merdae,後生元,Gubra- Amylin NASH 飲食,次世代益生菌, | zh_TW |
| dc.subject.keyword | MASLD,P. merdae,postbiotics,GAN diet,NGPs, | en |
| dc.relation.page | 118 | - |
| dc.identifier.doi | 10.6342/NTU202502112 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-23 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2025-07-31 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 10.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
