Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98147
標題: 腦電圖於預測疑似腦炎患者自體抗體之可行性: 先導機器學習研究
Evaluating Electroencephalography for Predicting Autoantibody in Suspected Encephalitis: A Pilot Machine-Learning Study
作者: 鄭章佑
Chang-Yu Cheng
指導教授: 陳志宏
Jyh-Horng Chen
關鍵字: 腦波,機器學習,自體免疫腦炎,副腫瘤腦炎,自體免疫腦炎抗體,
electroencephalography,machine learning,autoimmune encephalitis,paraneoplastic encephalitis,autoimmune encephalitis antibodies,
出版年 : 2025
學位: 碩士
摘要: 自體免疫腦炎與副腫瘤腦炎是不常見但對患者有重要影響的疾病。其診斷之黃金標準為腦脊髓液或血清之抗體檢測,但檢查費時且價格並不便宜。因此,目前已有學者開發數種臨床量表評估抗體陽性機率,如APE2 score等等,惟這些量表均沒有腦波資訊。若能透過常規腦電圖(electroencephalography, EEG)篩選抗體陽性個案,預期可加速臨床決策。本前導初步研究以回溯性病例為基礎,收集 2017 年至 2022 年間臺大醫院疑似自體免疫腦炎病人 46 例(其中 12例抗體陽性),評估單次靜息態 EEG 結合機器學習預測抗體陽性的可行性。
整體而言,本研究顯示陰性結果,發現以腦電圖單一模態之機器學習分類效能並不統計顯著優於隨機猜測。這顯示以自體免疫腦炎之單一腦電圖,以常見的特徵擷取與傳統機器學習分析方式的框架下,可能沒有明顯可以泛化(generalize)之特異發現。本研究結果有助釐清腦波在自體免疫腦炎診斷流程中的定位,可能為輔助性而非主要診斷性的角色,並提供後續腦波於免疫腦炎的研究比較基準。
Autoimmune encephalitis and paraneoplastic encephalitis are uncommon yet clinically significant diseases. The diagnostic gold-standard is cerebrospinal-fluid autoantibody or serum antibody testing, a procedure that is time-consuming and costly. Several scoring systems—such as the APE2 score—have been proposed to estimate antibody positivity, but they do not incorporate electroencephalography (EEG) findings. If routine EEG could help identify antibody-positive patients, clinical decision-making might be accelerated.
46 patients who were admitted to National Taiwan University Hospital between 2017 and 2022 for suspected autoimmune encephalitis (AE). Among them, 12 were antibody-positive, making the prevalence 28%. The aim is to examine whether single resting state EEG, analyzed with machine-learning classifiers, could predict antibody status.
Overall, this pilot study demonstrates that machine learning models trained with EEG-only data do not perform better than random guessing significantly. These findings may hint that using common feature extraction methods and conventional machine learning algorithms, there may be no apparently generalizable discriminative features in one-time routine EEG. These negative findings suggest that the role of EEG in patients with suspected antibody-related encephalitis may not be directly diagnostic, but supportive. This study also provides a reference baseline for future research on EEG and immune encephalitis.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98147
DOI: 10.6342/NTU202502042
全文授權: 同意授權(全球公開)
電子全文公開日期: 2025-07-31
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf2.7 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved