Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98147
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志宏zh_TW
dc.contributor.advisorJyh-Horng Chenen
dc.contributor.author鄭章佑zh_TW
dc.contributor.authorChang-Yu Chengen
dc.date.accessioned2025-07-30T16:06:38Z-
dc.date.available2025-07-31-
dc.date.copyright2025-07-30-
dc.date.issued2025-
dc.date.submitted2025-07-21-
dc.identifier.citation1. Graus F, Titulaer MJ, Balu R, Benseler S, Bien CG, Cellucci T, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016;15(4):391-404.
2. Darnell RB, Posner JB. Paraneoplastic syndromes involving the nervous system. New England Journal of Medicine. 2003;349(16):1543-54.
3. Segal Y, Rotschild O, Mina Y, Maayan Eshed G, Levinson T, Paran Y, et al. Epidemiology of autoimmune encephalitis and comparison to infectious causes-Experience from a tertiary center. Ann Clin Transl Neurol. 2024;11(9):2337-49.
4. Shah S, Flanagan EP, Paul P, Smith CY, Bryant SC, Devine MF, et al. Population-Based Epidemiology Study of Paraneoplastic Neurologic Syndromes. Neurol Neuroimmunol Neuroinflamm. 2022;9(2).
5. Dalmau J, Graus F. Diagnostic criteria for autoimmune encephalitis: utility and pitfalls for antibody-negative disease. Lancet Neurol. 2023;22(6):529-40.
6. Lancaster E. Autoantibody Encephalitis: Presentation, Diagnosis, and Management. J Clin Neurol. 2022;18(4):373-90.
7. Vogrig A, Muniz-Castrillo S, Desestret V, Joubert B, Honnorat J. Pathophysiology of paraneoplastic and autoimmune encephalitis: genes, infections, and checkpoint inhibitors. Ther Adv Neurol Disord. 2020;13:1756286420932797.
8. Saraya AW, Worachotsueptrakun K, Vutipongsatorn K, Sonpee C, Hemachudha T. Differences and diversity of autoimmune encephalitis in 77 cases from a single tertiary care center. BMC Neurol. 2019;19(1):273.
9. Dubey D, Kothapalli N, McKeon A, Flanagan EP, Lennon VA, Klein CJ, et al. Predictors of neural-specific autoantibodies and immunotherapy response in patients with cognitive dysfunction. Journal of neuroimmunology. 2018;323:62-72.
10. Abboud H, Probasco JC, Irani S, Ances B, Benavides DR, Bradshaw M, et al. Autoimmune encephalitis: proposed best practice recommendations for diagnosis and acute management. J Neurol Neurosurg Psychiatry. 2021;92(7):757-68.
11. Li Y, Tymchuk S, Barry J, Muppidi S, Le S. Antibody Prevalence in Epilepsy before Surgery (APES) in drug-resistant focal epilepsy. Epilepsia. 2021;62(3):720-8.
12. Dubey D, Singh J, Britton JW, Pittock SJ, Flanagan EP, Lennon VA, et al. Predictive models in the diagnosis and treatment of autoimmune epilepsy. Epilepsia. 2017;58(7):1181-9.
13. Chang YC, Nouri MN, Mirsattari S, Burneo JG, Budhram A. “Obvious” indications for Neural antibody testing in Epilepsy or Seizures: The ONES checklist. Epilepsia. 2022;63(7):1658-70.
14. Kandel ER, Koester J, Mack S, Siegelbaum S. Principles of neural science. Sixth edition. ed. New York: McGraw Hill; 2021. l, 1646 pages p.
15. Greenfield LJ, Jr., Geyer JD, Carney PR. Reading EEGs : a practical approach. Place of publication not identified: LWW; 2012.
16. Blum AS, Rutkove SB. The clinical neurophysiology primer. Totowa, N.J: Humana Press; 2010. x, 526 pages : illustrations (some color) p.
17. Mostile G, Terranova R, Carlentini G, Contrafatto F, Terravecchia C, Donzuso G, et al. Differentiating neurodegenerative diseases based on EEG complexity. Sci Rep. 2024;14(1):24365.
18. Tomasello L, Carlucci L, Lagana A, Galletta S, Marinelli CV, Raffaele M, et al. Neuropsychological Evaluation and Quantitative EEG in Patients with Frontotemporal Dementia, Alzheimer's Disease, and Mild Cognitive Impairment. Brain Sci. 2023;13(6).
19. Davey Z, Gupta PB, Li DR, Nayak RU, Govindarajan P. Rapid Response EEG: Current State and Future Directions. Curr Neurol Neurosci Rep. 2022;22(12):839-46.
20. Foldvary-Schaefer N, Grigg-Damberger MM. Identifying Interictal and Ictal Epileptic Activity in Polysomnograms. Sleep Medicine Clinics. 2012;7(1):39-58.
21. Daly DD, Pedley TA. Current practice of clinical electroencephalography. 2nd ed. New York: Raven Press; 1990. p. p.
22. Parvizi J, Spencer DC. A Practical Approach to Stereo EEG: Oxford University Press; 2021. 320 p.
23. Schmitt SE, Pargeon K, Frechette ES, Hirsch LJ, Dalmau J, Friedman D. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology. 2012;79(11):1094-100.
24. Parwani J, Ortiz JF, Alli A, Lalwani A, Ruxmohan S, Tamton H, et al. Understanding Seizures and Prognosis of the Extreme Delta Brush Pattern in Anti-N-Methyl-D-Aspartate (NMDA) Receptor Encephalitis: A Systematic Review. Cureus. 2021;13(9):e18154.
25. Simabukuro MM, Silva GDD, Castro LHM, Lucato LT. A critical review and update on autoimmune encephalitis: understanding the alphabet soup. Arq Neuropsiquiatr. 2022;80(5 Suppl 1):143-58.
26. Acharya JN, Hani A, Cheek J, Thirumala P, Tsuchida TN. American Clinical Neurophysiology Society Guideline 2: Guidelines for Standard Electrode Position Nomenclature. J Clin Neurophysiol. 2016;33(4):308-11.
27. Pedroni A, Bahreini A, Langer N. Automagic: Standardized preprocessing of big EEG data. Neuroimage. 2019;200:460-73.
28. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9-21.
29. Bigdely-Shamlo N, Mullen T, Kothe C, Su KM, Robbins KA. The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Front Neuroinform. 2015;9:16.
30. Pion-Tonachini L, Kreutz-Delgado K, Makeig S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. Neuroimage. 2019;198:181-97.
31. Salazar A, Vergara L. Independent component analysis (ICA) : algorithms, applications and ambiguities. New York: Nova Science Publisher's; 2018. viii, 334 pages p.
32. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array programming with NumPy. Nature. 2020;585(7825):357-62.
33. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261-72.
34. Lee GR, Yamamoto R, Shou W, Kettimuthu R, Brigham E. PyWavelets: A Python package for wavelet analysis. Journal of Open Source Software. 2019;4(36):1237.
35. Guimarães LSA. Unraveling the Brain: A Quantitative Study of EEG Classification Techniques: Universidade de São Paulo; 2020.
36. Hjorth B. EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol. 1970;29(3):306-10.
37. Merletti R, Lo Conte LR, De Luca CJ. A continuous wavelet based technique for the analysis of electromyography signals. Medical & Biological Engineering & Computing. 1999;37(5):512-9.
38. Schäfer P, Leser U, editors. Multivariate Time Series Classification with WEASEL+MUSE. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '17); 2017: ACM.
39. Schäfer P, editor SFA: A Symbolic Fourier Approximation and Index for Similarity Search in High Dimensional Datasets. Proceedings of the 15th IEEE International Conference on Data Mining (ICDM); 2015: IEEE.
40. Abu-Mostafa YS, Magdon-Ismail M, Lin H-T. Learning from Data: A Short Course. New York: AMLBook; 2012.
41. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825–30.
42. Müller AC. Introduction to Machine learning with scikit-learn Cross Validation and Grid Search 2020 [Available from: https://amueller.github.io/ml-training-intro/slides/03-cross-validation-grid-search.html.
43. Kumar A. Python – Nested Cross Validation for Algorithm Selection 2020 [Available from: https://vitalflux.com/python-nested-cross-validation-algorithm-selection/.
44. Fawaz HI, Forestier G, Weber J, Idoumghar L, Muller P-A. InceptionTime: Finding AlexNet for Time Series Classification. Data Mining and Knowledge Discovery. 2020;34(6):1936–62.
45. Breiman L. Random Forests. Machine Learning. 2001;45(1):5–32.
46. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning : data mining, inference, and prediction. 2nd ed. New York, NY: Springer; 2009. xxii, 745 p. p.
47. Louppe G. Understanding Random Forests: From Theory to Practice [Ph.D. Thesis]. Liège, Belgium: University of Liège; 2014.
48. Chen T, Guestrin C, editors. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '16); 2016: ACM.
49. Ali ZH, Burhan AM. Hybrid machine learning approach for construction cost estimation: an evaluation of extreme gradient boosting model. Asian Journal of Civil Engineering. 2023;24:2427–42.
50. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research. 2002;16:321-57.
51. Obuchowski NA, Lieber ML, Wians FH. Sample Size Formulas For Estimating Areas Under the Receiver Operating Characteristic Curves With Precision and Assurance. Statistics in Medicine. 2004;23(9):1225-41.
52. Zhang Y, Shi X, Fan Z, Tu E, Wu D, Leng X, et al. Machine learning for the early prediction of long-term cognitive outcome in autoimmune encephalitis. J Psychosom Res. 2025;190:112051.
53. Musigmann M, Spiekers C, Stake J, Akkurt BH, Mora NGN, Sartoretti T, et al. Detection of antibodies in suspected autoimmune encephalitis diseases using machine learning. Sci Rep. 2025;15(1):10998.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98147-
dc.description.abstract自體免疫腦炎與副腫瘤腦炎是不常見但對患者有重要影響的疾病。其診斷之黃金標準為腦脊髓液或血清之抗體檢測,但檢查費時且價格並不便宜。因此,目前已有學者開發數種臨床量表評估抗體陽性機率,如APE2 score等等,惟這些量表均沒有腦波資訊。若能透過常規腦電圖(electroencephalography, EEG)篩選抗體陽性個案,預期可加速臨床決策。本前導初步研究以回溯性病例為基礎,收集 2017 年至 2022 年間臺大醫院疑似自體免疫腦炎病人 46 例(其中 12例抗體陽性),評估單次靜息態 EEG 結合機器學習預測抗體陽性的可行性。
整體而言,本研究顯示陰性結果,發現以腦電圖單一模態之機器學習分類效能並不統計顯著優於隨機猜測。這顯示以自體免疫腦炎之單一腦電圖,以常見的特徵擷取與傳統機器學習分析方式的框架下,可能沒有明顯可以泛化(generalize)之特異發現。本研究結果有助釐清腦波在自體免疫腦炎診斷流程中的定位,可能為輔助性而非主要診斷性的角色,並提供後續腦波於免疫腦炎的研究比較基準。
zh_TW
dc.description.abstractAutoimmune encephalitis and paraneoplastic encephalitis are uncommon yet clinically significant diseases. The diagnostic gold-standard is cerebrospinal-fluid autoantibody or serum antibody testing, a procedure that is time-consuming and costly. Several scoring systems—such as the APE2 score—have been proposed to estimate antibody positivity, but they do not incorporate electroencephalography (EEG) findings. If routine EEG could help identify antibody-positive patients, clinical decision-making might be accelerated.
46 patients who were admitted to National Taiwan University Hospital between 2017 and 2022 for suspected autoimmune encephalitis (AE). Among them, 12 were antibody-positive, making the prevalence 28%. The aim is to examine whether single resting state EEG, analyzed with machine-learning classifiers, could predict antibody status.
Overall, this pilot study demonstrates that machine learning models trained with EEG-only data do not perform better than random guessing significantly. These findings may hint that using common feature extraction methods and conventional machine learning algorithms, there may be no apparently generalizable discriminative features in one-time routine EEG. These negative findings suggest that the role of EEG in patients with suspected antibody-related encephalitis may not be directly diagnostic, but supportive. This study also provides a reference baseline for future research on EEG and immune encephalitis.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-30T16:06:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-30T16:06:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目次 iv
圖次 vi
表次 vii
Chapter 1 Introduction 1
1.1 自體抗體腦炎 1
1.2 自體抗體腦炎臨床預測分數 2
1.3 神經電訊號及腦波簡介(14) 5
1.4 腦波於自體抗體腦炎之角色,暨研究目的 9
Chapter 2 Materials and Methods 11
2.1 病患來源及檢查項目 11
2.2 腦波前處理方法 12
2.2.1 Automagic automatic pipeline 12
2.2.2 Minimalistic pre-processing 15
2.3 腦波特徵擷取方法 16
2.3.1 傳統腦波特徵擷取方法 16
2.3.2 WEASEL-MUSE 19
2.4 機器學習框架 21
2.4.1 Binary classification supervised machine learning problem 22
2.4.2 Learning and Regularization 24
2.4.3 Cross validation and nested cross validation 25
2.5 機器學習方法 27
2.5.1 L2-regularized logistic regression (LR) 28
2.5.2 Random forest (RF) 29
2.5.3 Support vector machine (SVM) 31
2.5.4 Gradient boosting decision tree (GBDT) 34
2.5.5 機器學習特殊參數選取與超參數調整 35
2.6 敘述統計 36
2.7 統計檢定力分析 36
Chapter 3 Results 37
3.1 病患特性 37
3.2 模型訓練結果 38
3.2.1 Automagic preprocessing 38
3.2.2 Minimalistic preprocessing 43
Chapter 4 Discussion 49
4.1 結論 49
4.2 研究限制 50
4.3 未來展望 50
參考文獻 52
-
dc.language.isozh_TW-
dc.subject機器學習zh_TW
dc.subject副腫瘤腦炎zh_TW
dc.subject自體免疫腦炎抗體zh_TW
dc.subject腦波zh_TW
dc.subject自體免疫腦炎zh_TW
dc.subjectelectroencephalographyen
dc.subjectautoimmune encephalitisen
dc.subjectmachine learningen
dc.subjectautoimmune encephalitis antibodiesen
dc.subjectparaneoplastic encephalitisen
dc.title腦電圖於預測疑似腦炎患者自體抗體之可行性: 先導機器學習研究zh_TW
dc.titleEvaluating Electroencephalography for Predicting Autoantibody in Suspected Encephalitis: A Pilot Machine-Learning Studyen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭鐘金;魏安祺;饒敦;蘇真真zh_TW
dc.contributor.oralexamcommitteeChung-Chin Kuo;An-Chi Wei;Tun Jao;Jen-Jen Suen
dc.subject.keyword腦波,機器學習,自體免疫腦炎,副腫瘤腦炎,自體免疫腦炎抗體,zh_TW
dc.subject.keywordelectroencephalography,machine learning,autoimmune encephalitis,paraneoplastic encephalitis,autoimmune encephalitis antibodies,en
dc.relation.page57-
dc.identifier.doi10.6342/NTU202502042-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-22-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
dc.date.embargo-lift2025-07-31-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf2.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved