請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98092完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 彭隆瀚 | zh_TW |
| dc.contributor.advisor | Lung-Han Peng | en |
| dc.contributor.author | 林柏宇 | zh_TW |
| dc.contributor.author | Bo-Yu Lin | en |
| dc.date.accessioned | 2025-07-24T16:09:46Z | - |
| dc.date.available | 2025-07-25 | - |
| dc.date.copyright | 2025-07-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-23 | - |
| dc.identifier.citation | 1 https://www.eetimes.eu/scaling-the-scaling-wall-to-future-compute-systems/
2 Leo Esaki, "New Phenomenon in Narrow Germanium p-n Junctions," Physical Review. 109, 603 (1958). 3 L. L. Chang et al., "Resonant tunneling in semiconductor double barriers," Applied Physics Letters. 24, 593 (1974). 4 Anisha Ramesh et al., "High 5.2 peak-to-valley current ratio in Si/SiGe resonant interband tunnel diodes grown by chemical vapor deposition," Applied Physics Letters. 100, 092104 (2012). 5 Michael Feiginov et al., "Operation of resonant-tunneling diodes with strong back injection from the collector at frequencies up to 1.46 THz," Applied Physics Letters. 104, 243509 (2014). 6 Shaojun Lin et al., "III-nitrides based resonant tunneling diodes," Journal of Physics D: Applied Physics. 53, 253002 (2020). 7 Zhijun Ma et al., "A Room-Temperature Ferroelectric Resonant Tunneling Diode," Advanced Materials. 34, 2205359 (2022). 8 Gabriel Sanchez-Santolino et al., "Resonant electron tunnelling assisted by charged domain walls in multiferroic tunnel junctions," Nature Nanotechnology. 12, 655 (2017). 9 Maolin Zhang et al., "β-Ga2O3-Based Power Devices: A Concise Review," Crystals. 12, 406 (2022). 10 Rustum Roy et al., "Polymorphism of Ga2O3 and the System Ga2O3—H2O," Journal of the American Chemical Society. 74, 719 (1952). 11 S. Sampath Kumar et al., "Structure, Morphology, and Optical Properties of Amorphous and Nanocrystalline Gallium Oxide Thin Films," The Journal of Physical Chemistry C. 117, 4194 (2013). 12 Hsien-Chih Huang et al., "Wet etch, dry etch, and MacEtch of β-Ga2O3: A review of characteristics and mechanism," Journal of Materials Research. 36, 4756 (2021). 13 Yong Han and Junfa Zhu, "ChemInform Abstract: Surface Science Studies on the Zirconia-Based Model Catalysts," Topics in Catalysis. 56, 15 (2013). 14 Huan Liu et al., "Ferroelectric-like behaviors of metal-insulator-metal with amorphous dielectrics," Science China Information Sciences. 66, 200410 (2023). 15 Dae Kyu Lee et al., "Crystallinity-controlled volatility tuning of ZrO2 memristor for physical reservoir computing," InfoMat. 7, e12635 (2025). 16 Fu-Chien Chiu, "A Review on Conduction Mechanisms in Dielectric Films," Advances in Materials Science and Engineering. 7, 578168 (2014). 17 張彥凱, "摻雜氧化鋅之三族氮化物電阻式記憶體," 光電工程學研究所, 國立臺灣大學 (2017). 18 Carsten Funck and Stephan Menzel, "Comprehensive Model of Electron Conduction in Oxide-Based Memristive Devices," ACS Applied Electronic Materials. 3, 3674 (2021). 19 L. Esaki and R. Tsu, "Superlattice and Negative Differential Conductivity in Semiconductors," IBM Journal of Research and Development. 14, 61 (1970). 20 Kwok K. Ng and S.M. Sze, "Tunnel Devices," in Physics of Semiconductor Devices, 2006. 21 Jasprit Singh, "The Tunneling Problem," in Quantum Mechanics, 1996. 22 Yang Deng et al., "Physical vapor deposition technology for coated cutting tools: A review," Ceramics International. 46, 18373 (2020). 23 Fu-Chien Chiu et al., "Electron conduction mechanism and band diagram of sputter-deposited Al∕ZrO2∕Si structure," Journal of Applied Physics. 97, 034506 (2005). 24 Luca Pasquini, "The Effects of Nanostructure on the Hydrogen Sorption Properties of Magnesium-Based Metallic Compounds: A Review," Crystals. 8, 106 (2018). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98092 | - |
| dc.description.abstract | 本研究製作以氧化鋯( ZrO₂)與氧化鎵(Ga₂O₃)為主體之穿隧奈米結構(Tunneling Nanostructure)元件,並於非對稱雙能障量子井結構(Double Barrier Quantum Well, DBQW)中,探討載子穿隧傳輸機制與電性特徵。採用垂直堆疊之多層結構,將氧化鋯、氧化鎵與氧化銦錫(Indium Tin Oxide, ITO)等薄膜組成主體,並以氧化鎵包覆側壁,以有效抑制側向漏電流並提升垂直導電特性。元件製程採用濕蝕刻技術,成功製作最小直徑為5 微米之元件,並於皮安培(pA)電流等級下觀察到階梯狀之穿隧電流特徵。
本研究展示準束縛態能階對齊條件下之穿隧行為;然而於陷阱密度較高之元件中,則觀察到其導電特性主要受到陷阱輔助穿隧(Trap-Assisted Tunneling, TAT)機制影響,與穿隧特性表現存在顯著差異。為深入探討傳輸行為,吾人應用熱發射(Thermionic Emission)理論評估材料介面間之能障高度,並以轉移矩陣法(Transfer Matrix Method, TMM)建立穿透係數模型,模擬其於不同電場條件下之變化,據以進行理論與實驗之對應分析與驗證。 | zh_TW |
| dc.description.abstract | This study presents a tunneling nanostructure device, primarily composed of zirconium oxide (ZrO₂) and gallium oxide (Ga₂O₃), and implemented in an asymmetric double barrier quantum well (DBQW) structure, to analyze carrier tunneling transport mechanisms and electrical characteristics. The device adopts a vertically stacked multilayer architecture comprising ZrO₂, Ga₂O₃, and indium tin oxide (ITO) thin films. Sidewalls passivation with Ga₂O₃ effectively suppresses lateral leakage currents and enhances vertical conduction. Utilizing wet etching techniques, devices with a minimum diameter of 5 μm were successfully fabricated, exhibiting step-like tunneling current features at the picoampere (pA) level.
The observed stepwise current behavior is attributed to tunneling under aligned quasi-bound state conditions. However, in devices with higher trap densities, conduction characteristics were predominantly governed by trap-assisted tunneling (TAT), deviating significantly from ideal tunneling behavior. To further elucidate the transport mechanisms, thermionic emission theory was employed to extract interfacial barrier heights, and a transmission coefficient model was developed using the transfer matrix method (TMM) to simulate field-dependent variations. Theoretical analyses were correlated with experimental results for comprehensive validation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-24T16:09:46Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-24T16:09:46Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目次 III 圖次 V 表次 VIII 第一章 緒論 1 1.1 簡介 1 1.2 研究動機與目的 4 1.3 論文內容概述 5 第二章 氧化鎵/氧化鋯穿隧二極體之理論介紹 7 2.1 氧化鎵與氧化鋯材料特性 7 2.2 薄膜導電電流機制 ( Conduction mechanisms ) 14 2.3 共振穿隧式二極體之理論介紹 18 第三章 雙能障之穿隧奈米結構製作 26 3.1 濺鍍技術 26 3.2 微影製程與濕蝕刻技術 28 3.3 樣品設計 29 3.4 穿隧奈米結構製程流程 31 第四章 穿隧奈米結構元件電性量測與模擬結果 38 4.1 電流電壓量測系統簡介 38 4.2 材料介面能障高度分析 39 4.3 穿隧奈米結構電性分析與穿透係數擬合 48 4.4 電場方向之陷阱輔助穿隧行為分析 56 第五章 結論與未來展望 67 5.1 結論 67 5.2 未來展望 69 參考文獻 72 補充資料 75 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 氧化鋯 | zh_TW |
| dc.subject | 穿隧奈米結構 | zh_TW |
| dc.subject | 氧化鎵 | zh_TW |
| dc.subject | tunneling nanostructure device | en |
| dc.subject | gallium oxide | en |
| dc.subject | zirconium oxide | en |
| dc.title | 氧化鋯與氧化鎵穿隧奈米結構載子傳輸分析 | zh_TW |
| dc.title | Carrier Transport Analyses of ZrOx/GaOx Tunneling Nanostructure | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王維新;李峻霣;葉伯淳 | zh_TW |
| dc.contributor.oralexamcommittee | Way-Seen Wang;Jiun-Yun Li;Po-Chun Yeh | en |
| dc.subject.keyword | 氧化鎵,氧化鋯,穿隧奈米結構, | zh_TW |
| dc.subject.keyword | gallium oxide,zirconium oxide,tunneling nanostructure device, | en |
| dc.relation.page | 78 | - |
| dc.identifier.doi | 10.6342/NTU202501910 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-24 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2025-07-25 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 7.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
