Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 綠色永續材料與精密元件博士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98055
標題: 幾丁聚醣-聚胺酯功能性水凝膠結合針灸於退化性疾病之神經與組織再生應用
Development of chitosan–polyurethane functional hydrogel combined with acupuncture in neural and tissue regeneration for degenerative diseases
作者: 陳哉羽
Tsai-Yu Chen
指導教授: 徐善慧
Shan-hui Hsu
關鍵字: 幾丁聚醣,水性生物可降解聚胺酯,自癒合水凝膠,針灸,組織工程,免疫調節,慢性傷口癒合,軟硬骨修復,帕金森氏症,
chitosan,waterborne biodegradable polyurethane,self-healing hydrogel,acupuncture,tissue engineering,immunomodulation,chronic wound healing,osteochondral regeneration,Parkinson’s disease,
出版年 : 2025
學位: 博士
摘要: 隨著全球人口老化速度加劇,與老年化相關的慢性退化性疾病已成為威脅人類健康的重大挑戰。發炎老化為一種隨著年齡增長,逐漸累積的低度慢性發炎現象,導致免疫系統功能退化,不僅削弱個體對病原的防禦能力,亦與慢性發炎、組織修復障礙及自體免疫失衡密切相關。近年研究指出,免疫老化與多種退化性疾病的病理機轉密切相關,包括糖尿病慢性傷口、骨關節炎與軟硬骨結構退化,以及神經系統退化如帕金森氏症等疾病。這些疾病不僅導致患者生活品質嚴重下降,也造成龐大的社會醫療負擔,已成為全球公共衛生與再生醫療領域亟待突破的關鍵議題。因此,本論文致力於開發一種結合新型生醫材料與現代針灸的跨領域治療策略,應用於三種與免疫老化密切相關的退化性疾病:糖尿病慢性傷口、軟硬骨缺損及帕金森氏症。本研究之材料研發以創新設計為核心,特別著重於開發具生物可降解性、自癒合能力與導電特性的智慧型水凝膠系統,並經由不同製程與功能性設計,針對不同疾病需求進行材料特性的最佳化。本研究所開發之幾丁聚醣-聚胺酯水凝膠,以聚胺酯奈米交聯劑為架構核心,透過動態席夫鹼鍵結與幾丁聚醣形成高穩定性三維網絡,展現優異的機械強度與自癒合特性,並具促進幹細胞增生、遷移、分化及組織重建等生物活性。本研究進一步將幾丁聚醣-聚胺酯水凝膠應用於多種疾病模型中,並結合針灸進行治療,期望透過生醫材料與針灸治療的協同作用,達成免疫調節、幹細胞活化動員與組織再生之多重目標。第一部分探討幾丁聚醣-聚胺酯水凝膠/冷凍凝膠在糖尿病慢性傷口癒合中的應用,發現其不僅具備與幹細胞良好的交互作用與抗菌性,搭配針灸後可顯著上調血清中促再生因子(如基質細胞衍生因子-1與轉化生長因子-β1),抑制慢性發炎反應並促進皮膚組織再生。組織染色與分子標誌分析結果顯示,傷口區域有較佳的血管新生與膠原蛋白沉積,傷口癒合速率亦明顯優於對照組。第二部份則開發三層結構的冷凍凝膠作為藥物載體,應用於兔膝關節軟硬骨缺損模型。該材料透過交聯程度差異與冷凍製程的調整製備不同孔洞大小的三層網絡結構,並搭載不同藥物使其具備分層導引幹細胞定向分化之功能,上層負載Y27632促進軟骨分化,中層提供細胞遷移通道,下層負載地塞米松誘導成骨分化,成功引導脂肪間質幹細胞朝軟骨與骨組織定向分化,並有效重建關節結構與功能。此外,搭配腦部對應區域針灸治療後,可進一步活化動員體內幹細胞遷移至患處與幾丁聚醣-聚胺酯水凝膠進行交互作用調節微環境進而達到軟硬骨組織修復。第三部份聚焦於神經退化疾病,開發了一種新型導電聚多巴胺塗佈包覆聚胺酯奈米粒子作為交聯劑,該交聯劑可透過動態席夫鹼鍵結,與水溶性乙二醇幾丁聚醣交聯形成具導電性、可注射性與自癒合能力的生物活性水凝膠,並將此幾丁聚醣-聚胺酯導電水凝膠應用於帕金森氏症大鼠模型,證實該材料具抗氧化、促分化與調控神經微環境之能力。幾丁聚醣-聚胺酯導電水凝膠可有效清除自由基,減緩神經發炎反應,並透過導電特性改善多巴胺神經元訊號傳導。經頭皮針灸輔助治療後,神經幹細胞功能顯著提升,並可改善帕金森氏症大鼠的行為表現與神經電生理異常。組織切片結果顯示,在黑質緻密部與紋狀體中,酪胺酸羥化酶陽性神經元密度明顯恢復,並且M2型小膠質細胞比例大幅上升,呈現有利於神經修復的免疫環境。綜上所述,相較於傳統生醫材料,本研究所提出之幾丁聚醣-聚胺酯水凝膠以水相合成方式製備,具有高適配性與臨床應用潛力,為再生醫學材料領域開創全新可能。本研究更進一步地整合材料科學、生醫工程與現代醫學,提出一種具備高度臨床轉譯潛力的再生醫療策略。幾丁聚醣-聚胺酯水凝膠結合針灸所展現之免疫調節、幹細胞動員及組織再生功能,為未來應用於退化性疾病及神經損傷治療提供新契機,並為中西醫融合與智慧材料臨床應用開啟嶄新篇章。
As the global population continues to age at an accelerating pace, age-related chronic degenerative diseases have emerged as major challenges to human health. Inflammaging, a progressive low-grade systemic inflammation associated with aging, leads to immune system decline, thereby impairing host defense mechanisms and contributing to chronic inflammation, impaired tissue repair, and immune dysregulation. Recent studies have demonstrated that inflammaging is a key pathological driver of various degenerative conditions, including chronic diabetic wounds, osteoarthritis and osteochondral degradation, and neurodegenerative disorders such as Parkinson’s disease. These diseases not only severely diminish patient quality of life but also impose heavy burdens on global healthcare systems, making them urgent targets in public health and regenerative medicine. In response, this study proposes an interdisciplinary therapeutic strategy combining innovative biomaterials with modern acupuncture to address three representative degenerative diseases associated with immune aging: chronic diabetic wounds, osteochondral defects, and Parkinson’s disease. Central to this approach is the development of smart, biodegradable, self-healing, and conductive hydrogels, tailored through optimized fabrication and functional modification to meet disease-specific therapeutic demands. The proposed chitosan–polyurethane hydrogel, constructed using polyurethane-based nanocrosslinkers and dynamic Schiff base bonding with glycol chitosan, forms a stable 3D network with good mechanical properties, self-healing ability, and key biological activities such as promoting stem cell proliferation, migration, differentiation, and tissue regeneration. This hydrogel system was further evaluated across disease models in combination with acupuncture, aiming to synergistically regulate immune responses, mobilize endogenous stem cells, and restore tissue function. In the first part of the study, the chitosan–polyurethane hydrogel and its cryogel form were applied to chronic diabetic wounds. The hydrogel demonstrated robust antibacterial properties and favorable stem cell interactions. When combined with acupuncture, it significantly increased serum levels of regenerative cytokines (e.g., stromal cell-derived factor 1 and transforming growth factor beta), suppressed chronic inflammation, and enhanced skin regeneration. Histological and molecular analyses revealed improved angiogenesis, collagen deposition, and accelerated wound closure compared to controls. In the second part, a three-layer cryogel scaffold was developed as a drug carrier for osteochondral defect repair in a rabbit knee model. By tuning crosslinking densities and cryo-gelation processes, a hierarchical porous structure was created. The top layer delivered Y27632 to promote chondrogenesis, the middle layer provided a conduit for cell migration, and the bottom layer released dexamethasone to induce osteogenesis. This design successfully directed adipose-derived stem cells toward layer-specific differentiation, effectively regenerating both cartilage and subchondral bone. In combination with acupuncture targeting brain-associated regions, enhanced stem cell mobilization and microenvironment modulation further promoted osteochondral repair. The third part focused on neurodegeneration, specifically Parkinson’s disease. A conductive hydrogel system was developed using polydopamine-coated polyurethane nanoparticles as dynamic crosslinkers, forming an injectable, self-healing, and conductive hydrogel via Schiff base bonding with water-soluble glycol chitosan. In a rat model of Parkinson’s disease, this conductive chitosan–polyurethane hydrogel exhibited antioxidant, anti-inflammatory, and neuromodulatory effects. It effectively scavenged reactive oxygen species, reduced neuroinflammation, and enhanced dopaminergic signaling. Combined with scalp acupuncture, the treatment significantly improved neural stem cell activity, motor performance, and electrophysiological outcomes. Histological analysis showed restoration of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNpc) and striatum, along with increased polarization of M2-type microglia, indicating a neuroprotective immune environment. In summary, the chitosan–polyurethane hydrogel developed in this study offers high adaptability and strong potential for clinical application in regenerative medicine. By integrating materials science, biomedical engineering, and modern medical practice, this research presents a clinically translatable regenerative therapy. The synergistic combination of intelligent hydrogel systems and acupuncture demonstrates potent capabilities in immune modulation, stem cell mobilization, and tissue regeneration, opening new avenues for treating degenerative diseases and advancing the integration of traditional Chinese medicine with modern biomedical innovation.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98055
DOI: 10.6342/NTU202501848
全文授權: 同意授權(全球公開)
電子全文公開日期: 2030-07-14
顯示於系所單位:綠色永續材料與精密元件博士學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-07-14
62.52 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved