Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 綠色永續材料與精密元件博士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98055
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐善慧zh_TW
dc.contributor.advisorShan-hui Hsuen
dc.contributor.author陳哉羽zh_TW
dc.contributor.authorTsai-Yu Chenen
dc.date.accessioned2025-07-23T16:37:02Z-
dc.date.available2025-07-24-
dc.date.copyright2025-07-23-
dc.date.issued2025-
dc.date.submitted2025-07-17-
dc.identifier.citation1.5. 參考文獻
[1] H. Samadian, H. Maleki, Z. Allahyari, M. Jaymand, Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications, Coord. Chem. Rev. 420 (2020) 213432.
[2] R. Eivazzadeh-Keihan, E.B. Noruzi, S.F. Mehrban, H.A.M. Aliabadi, M. Karimi, A. Mohammadi, A. Maleki, M. Mahdavi, B. Larijani, A.E. Shalan, The latest advances in biomedical applications of chitosan hydrogel as a powerful natural structure with eye-catching biological properties, J. Mater. Sci. 57 (2022) 1-37.
[3] C. Tallian, G. Tegl, L. Quadlbauer, R. Vielnascher, S. Weinberger, R. Cremers, A. Pellis, J.W. Salari, G.M. Guebitz, Lysozyme-responsive spray-dried chitosan particles for early detection of wound infection, ACS Appl. Bio Mater. 2(3) (2019) 1331-1339.
[4] I. Hamed, F. Özogul, J.M. Regenstein, Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review, Trends Food Sci. Technol. 48 (2016) 40-50.
[5] J. Shi, W. Guobao, H. Chen, W. Zhong, X. Qiu, M.M. Xing, Schiff based injectable hydrogel for in situ pH-triggered delivery of doxorubicin for breast tumor treatment, Polym. Chem. 5(21) (2014) 6180-6189.
[6] T.W. Lin, S.h. Hsu, Self‐Healing Hydrogels and Cryogels from Biodegradable Polyurethane Nanoparticle Crosslinked Chitosan, Adv. Sci. 7(3) (2020) 1901388.
[7] J.W. Seo, S.R. Shin, Y.J. Park, H. Bae, Hydrogel production platform with dynamic movement using photo-crosslinkable/temperature reversible chitosan polymer and stereolithography 4D printing technology, Tissue Eng. Regen. Med. 17(4) (2020) 423-431.
[8] R. Antony, T. Arun, S.T.D. Manickam, A review on applications of chitosan-based Schiff bases, Int. J. Biol. Macromol. 129 (2019) 615-633.
[9] C. Feng, Z. Wang, C. Jiang, M. Kong, X. Zhou, Y. Li, X. Cheng, X. Chen, Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: In vitro and in vivo evaluation, Int. J. Pharm. 457(1) (2013) 158-167.
[10] N.M. Alves, J.F. Mano, Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications, Int. J. Biol. Macromol. 43(5) (2008) 401-414.
[11] E.B. Denkbas, R.M. Ottenbrite, Perspectives on: chitosan drug delivery systems based on their geometries, J. Bioact. Compat. Polym. 21(4) (2006) 351-368.
[12] S. Baghaie, M.T. Khorasani, A. Zarrabi, J. Moshtaghian, Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material, J. Biomater. Sci. Polym. Ed. 28(18) (2017) 2220-2241.
[13] H. Hamedi, S. Moradi, S.M. Hudson, A.E. Tonelli, Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review, Carbohydr. Polym. 199 (2018) 445-460.
[14] X. Li, Y. Zhao, D. Li, G. Zhang, S. Long, H. Wang, Hybrid dual crosslinked polyacrylic acid hydrogels with ultrahigh mechanical strength, toughness and self-healing properties via soaking salt solution, Polymer 121 (2017) 55-63.
[15] S. Das, U. Subuddhi, Cyclodextrin mediated controlled release of naproxen from pH-sensitive chitosan/poly (vinyl alcohol) hydrogels for colon targeted delivery, Ind. Eng. Chem. Res. 52(39) (2013) 14192-14200.
[16] B. Ren, X. Chen, S. Du, Y. Ma, H. Chen, G. Yuan, J. Li, D. Xiong, H. Tan, Z. Ling, Injectable polysaccharide hydrogel embedded with hydroxyapatite and calcium carbonate for drug delivery and bone tissue engineering, Int. J. Biol. Macromol. 118 (2018) 1257-1266.
[17] M. Bayindir Bilgic, N.T. Lacin, H. Berber, B. Mansuroglu, In vitro evaluation of alpha-tocopherol loaded carboxymethylcellulose chitosan copolymers as wound dressing materials, Mater. Technol. 34(7) (2019) 386-393.
[18] B. Kim, T. Kim, H. Jeong, Aqueous dispersion of polyurethane anionomers from H12MDI/IPDI, PCL, BD, and DMPA, J. Appl. Polym. Sci. 53(3) (1994) 371-378.
[19] S. Gogoi, N. Karak, Biobased biodegradable waterborne hyperbranched polyurethane as an ecofriendly sustainable material, ACS Sustain. Chem. Eng. 2(12) (2014) 2730-2738.
[20] N.K. Lamba, Polyurethanes in biomedical applications, Routledge 2017.
[21] C. Gao, X. Xu, J. Ni, W. Lin, Q. Zheng, Effects of castor oil, glycol semi‐ester, and polymer concentration on the properties of waterborne polyurethane dispersions, Polym. Eng. Sci. 49(1) (2009) 162-167.
[22] H.-L. Liu, S.A. Dai, K.-Y. Fu, S.-h. Hsu, Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane, Int. J. Nanomedicine (2010) 1017-1028.
[23] S. Sartori, V. Chiono, C. Tonda-Turo, C. Mattu, C. Gianluca, Biomimetic polyurethanes in nano and regenerative medicine, J. Mater. Chem. B 2(32) (2014) 5128-5144.
[24] G.N. Chen, K.N. Chen, Hybridization of aqueous‐based polyurethane with glycidyl methacrylate copolymer, J. Appl. Polym. Sci. 71(6) (1999) 903-913.
[25] G. Tillet, B. Boutevin, B. Ameduri, Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature, Prog. Polym. Sci. 36(2) (2011) 191-217.
[26] E.K. Tan, G.W. Millington, N.J. Levell, Acupuncture in dermatology: an historical perspective, Int. J. Dermatol. 48(6) (2009) 648-652.
[27] J. Wen, X. Chen, Y. Yang, J. Liu, E. Li, J. Liu, Z. Zhou, W. Wu, K. He, Acupuncture medical therapy and its underlying mechanisms: a systematic review, Am. J. Chin. Med. 49(01) (2021) 1-23.
[28] M.I. Johnson, L.S. Claydon, G.P. Herbison, G. Jones, C.A. Paley, Transcutaneous electrical nerve stimulation (TENS) for fibromyalgia in adults, Cochrane Database Syst. Rev. (10) (2017).
[29] S.Y. Seo, K.-B. Lee, J.-S. Shin, J. Lee, M.-R. Kim, I.-H. Ha, Y. Ko, Y.J. Lee, Effectiveness of acupuncture and electroacupuncture for chronic neck pain: a systematic review and meta-analysis, Am. J. Chin. Med. 45(08) (2017) 1573-1595.
[30] S. Liu, Z. Wang, Y. Su, L. Qi, W. Yang, M. Fu, X. Jing, Y. Wang, Q. Ma, A neuroanatomical basis for electroacupuncture to drive the vagal–adrenal axis, Nature 598(7882) (2021) 641-645.
[31] E. Manheimer, S.L. Wieland, K. Cheng, S.M. Li, X. Shen, B.M. Berman, L. Lao, Acupuncture for irritable bowel syndrome: systematic review and meta-analysis, Am. J. Gastroenterol. 107(6) (2012) 835-847.
[32] H. Gao, W. Ding, Effect and mechanism of acupuncture on endogenous and exogenous stem cells in disease treatment: A therapeutic review, Life Sci. 331 (2023) 122031.
2.6. 參考文獻
[1] R. Nunan, K.G. Harding, P. Martin, Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity, Dis. Model Mech. 7 (11) (2014) 1205–1213.
[2] A. Olascoaga, D. Vilar–Compte, A. Poitevin–Chacon, J. Contreras–Ruiz, Wound healing in radiated skin: pathophysiology and treatment options, Int. Wound J. 5 (2) (2008) 246–257.
[3] L.E. Dickinson, S. Gerecht, Engineered biopolymeric scaffolds for chronic wound healing, Front. Physiol. 7 (2016) 341.
[4] G. Zhao, M.L. Usui, S.I. Lippman, G.A. James, P.S. Stewart, P. Fleckman, J.E. Olerud, Biofilms and inflammation in chronic wounds, Adv. Wound Care 2 (7) (2013) 389–399.
[5] S. Dhall, D. C. Do, M. Garcia, J. Kim, S. H. Mirebrahim, J. Lyubovitsky, S. Lonardi, E. A. Nothnagel, N. Schiller, M. Martins-Green, Generating and reversing chronic wounds in diabetic mice by manipulating wound redox parameters. J. Diabetes Res. 2014 (2014) 562625.
[6] L. Shin, D.A. Peterson. Human mesenchymal stem cell grafts enhance normal and impaired wound healing by recruiting existing endogenous tissue stem/progenitor cells. Stem Cells Transl. Med. 2(1) (2013) 33–42.
[7] D.J. Mooney, H. Vandenburgh, Cell delivery mechanisms for tissue repair, Cell stem cell 2 (3) (2008) 205–213.
[8] Y. Wu, L. Chen, P.G. Scott, E.E. Tredget, Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis, Stem cells 25 (10) (2007) 2648–2659.
[9] M. Sasaki, R. Abe, Y. Fujita, S. Ando, D. Inokuma, H. Shimizu, Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type, J. Immunol. 180 (4) (2008) 2581–2587.
[10] C.H. Chen, C.Y. Kuo, Y.J. Wang, J.P. Chen, Dual function of glucosamine in gelatin/hyaluronic acid cryogel to modulate scaffold mechanical properties and to maintain chondrogenic phenotype for cartilage tissue engineering, Int. J. Mol. Sci. 17 (11) (2016) 1957.
[11] H.M. Wang, Y.T. Chou, Z.H. Wen, Z.R. Wang, C.H. Chen, M.L. Ho, Novel biodegradable porous scaffold applied to skin regeneration, PloS one 8 (6) (2013) e56330.
[12] S.G. Priya, A. Gupta, E. Jain, J. Sarkar, A. Damania, P.R. Jagdale, B.P. Chaudhari, K.C. Gupta, A. Kumar, Bilayer cryogel wound dressing and skin regeneration grafts for the treatment of acute skin wounds, ACS Appl Mater. Interfaces 8 (24) (2016) 15145–15159.
[13] R.A. Kamel, J.F. Ong, E. Eriksson, J.P. Junker, E.J. Caterson, Tissue engineering of skin, J. Am. Coll. Surg. 217 (3) (2013) 533–555.
[14] H.T. Liao, K. Shalumon, K.H. Chang, C. Sheu, J.P. Chen, Investigation of synergistic effects of inductive and conductive factors in gelatin-based cryogels for bone tissue engineering, J. Mater. Chem. B 4 (10) (2016) 1827–1841.
[15] K.H. Chang, H.T. Liao, J.P. Chen, Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: In vitro and in vivo studies, Acta Biomater. 9 (11) (2013) 9012–9026.
[16] A. Gupta, S. Bhat, P.R. Jagdale, B.P. Chaudhari, L. Lidgren, K.C. Gupta, A. Kumar, Evaluation of three-dimensional chitosan-agarose-gelatin cryogel scaffold for the repair of subchondral cartilage defects: an in vivo study in a rabbit model, Tissue Eng. Part A 20 (23–24) (2014) 3101–3111.
[17] S.S. Tholpady, R. Llull, R.C. Ogle, J.P. Rubin, J.W. Futrell, A.J. Katz, Adipose tissue: stem cells and beyond, Clin. Plast. Surg. 33 (1) (2006) 55–62.
[18] S.h. Hsu, P.S. Hsieh, Self‐assembled adult adipose‐derived stem cell spheroids combined with biomaterials promote wound healing in a rat skin repair model, Wound Repair Regen. 23 (1) (2015) 57–64.
[19] P.J. Amos, S.K. Kapur, P.C. Stapor, H. Shang, S. Bekiranov, M. Khurgel, G.T. Rodeheaver, S.M. Peirce, A.J. Katz, Human adipose–derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery, Tissue Eng. Part A 16 (5) (2010) 1595–1606.
[20] Y. Zeng, L. Zhu, Q. Han, W. Liu, X. Mao, Y. Li, N. Yu, S. Feng, Q. Fu, X. Wang, Preformed gelatin microcryogels as injectable cell carriers for enhanced skin wound healing, Acta Biomater. 25 (2015) 291–303.
[21] C.H. Chen, C.Y. Kuo, J.P. Chen, Effect of cyclic dynamic compressive loading on chondrocytes and adipose–derived stem cells co–cultured in highly elastic cryogel scaffolds, Int. J. Mol. Sci. 19 (2) (2018) 370.
[22] E.K. Tan, G.W. Millington, N.J. Levell, Acupuncture in dermatology: an historical perspective, Int. J. Dermatol. 48 (6) (2009) 648–652.
[23] J.S. Han, Acupuncture analgesia: areas of consensus and controversy, Pain. 152 (3) (2011) S41–S48.
[24] S. Ding, S. Hong, C. Wang, Y. Guo, Z. Wang, Y. Xu, Acupuncture modulates the neuro-endocrine-immune network, QJM. 107 (5) (2013) 341–345.
[25] H. MacPherson, R. Hammerschlag, Acupuncture and the emerging evidence base: contrived controversy and rational debate, J. Acupunct. Meridian Stud. 5 (4) (2012) 141–147.
[26] V. Napadow, A. Ahn, J. Longhurst, L. Lao, E. Stener-Victorin, R. Harris, H.M. Langevin, The status and future of acupuncture mechanism research, J. Altern. Complement Med. 14 (7) (2008) 861–869.
[27] J. Lee, J.Y. Park, S. Min, Y. Chae, H. Lee, Y. Lim, H.J. Park, Wound healing effect of acupuncture through activating angiogenesis in mice, Orient. Pharm. Exp. Med. 14 (2) (2014) 93–101.
[28] S.I. Park, Y.Y. Sunwoo, Y.J. Jung, W.C. Chang, M.S. Park, Y.A. Chung, L.S. Maeng, Y.M. Han, H.S. Shin, J. Lee, Therapeutic effects of acupuncture through enhancement of functional angiogenesis and granulogenesis in rat wound healing, Evid. Based Complement Alternat. Med. 2012 (2012) 464586.
[29] L. Liu, Q. Yu, K. Hu, B. Wang, Y. Zhang, Y. Xu, S. Fu, X. Yu, H. Huang, Electro-acupuncture promotes endogenous multipotential mesenchymal stem cell mobilization into the peripheral blood, Cell Physiol. Biochem. 38 (4) (2016) 1605–1617.
[30] T.E. Salazar, M.R. Richardson, E. Beli, M.S. Ripsch, J. George, Y. Kim, Y. Duan, L. Moldovan, Y. Yan, A. Bhatwadekar, Electroacupuncture promotes central nervous system‐dependent release of mesenchymal stem cells, Stem Cells 35 (5) (2017) 1303–1315.
[31] K.T. Huang, Y.L. Fang, P.S. Hsieh, C.C. Li, N.T. Dai, C.J.J.B.s. Huang, Non-sticky and antimicrobial zwitterionic nanocomposite dressings for infected chronic wounds, Biomater. Sci. 5 (6) (2017) 1072–1081.
[32] T.W. Lin, S.h. Hsu, Self‐Healing Hydrogels and cryogels from biodegradable polyurethane nanoparticle crosslinked chitosan, Adv. Sci. 7(3) (2019) 1901388.
[33] H.M. Wang, Y.T. Chou, Z.H. Wen, C.Z. Wang, C.H. Chen, M.L. Ho, Novel biodegradable porous scaffold applied to skin regeneration, PLoS One 8 (6) (2013) e56330.
[34] C. Zhao, J. Zhao, X. Li, J. Wu, S. Chen, Q. Chen, Q. Wang, X. Gong, L. Li, J. Zheng, Probing structure–antifouling activity relationships of polyacrylamides and polyacrylates, Biomaterials 34 (20) (2013) 4714–4724.
[35] R.C. Goy, D.d. Britto, O.B. Assis, A review of the antimicrobial activity of chitosan, Polímeros 19 (3) (2009) 241–247.
[36] C.C. Login, I. Bâldea, B. Tiperciuc, D. Benedec, D.C. Vodnar, N. Decea, Ş. Suciu, A Novel Thiazolyl Schiff Base: Antibacterial and antifungal effects and in vitro oxidative stress modulation on human endothelial cells, Oxid. Med. Cell. Longev. 2019 (2019) 1607903.
[37] M.E. Bernardo, W.E. Fibbe, Mesenchymal stromal cells: sensors and switchers of inflammation, Cell stem cell 13 (4) (2013) 392–402.
[38] A.I. Caplan, D. Correa, The MSC: an injury drugstore, Cell stem cell 9 (1) (2011) 11–15.
[39] A.A. Peyvandi, N.A. Roozbahany, H. Peyvandi, H.A. Abbaszadeh, N. Majdinasab, M. Faridan, S. Niknazar, Critical role of SDF–1/CXCR4 signaling pathway in stem cell homing in the deafened rat cochlea after acoustic trauma, Neural Regen. Res. 13 (1) (2018) 154.
[40] A. Kortesidis, A. Zannettino, S. Isenmann, S. Shi, T. Lapidot, S. Gronthos, Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells, Blood 105 (10) (2005) 3793–3801.
[41] M. Gutiérrez–Fernández, L. Otero–Ortega, J. Ramos–Cejudo, B. Rodríguez–Frutos, B. Fuentes, E. Díez–Tejedor, Adipose tissue-derived mesenchymal stem cells as a strategy to improve recovery after stroke, Expert. Opin. Biol. Ther. 15 (6) (2015) 873–881.
[42] A.M. Altman, N. Matthias, Y. Yan, Y.H. Song, X. Bai, E.S. Chiu, D.P. Slakey, E.U. Alt, Dermal matrix as a carrier for in vivo delivery of human adipose-derived stem cells, Biomaterials 29 (10) (2008) 1431–1442.
[43] Y.R. Kim, S.M. Ahn, M.E. Pak, H.J. Lee, D.H. Jung, Y.I. Shin, H.K. Shin, B.T. Choi, Potential benefits of mesenchymal stem cells and electroacupuncture on the trophic factors associated with neurogenesis in mice with ischemic stroke, Sci. Rep. 8 (1) (2018) 1–13.
[44] Z. Liu, Y. Ding, Y.S. Zeng, A new combined therapeutic strategy of governor vessel electro-acupuncture and adult stem cell transplantation promotes the recovery of injured spinal cord, Curr. Med. Chem. 18 (33) (2011) 5165–5171.
[45] L. Xia, Q. Meng, J. Xi, Q. Han, J. Cheng, J. Shen, Y. Xia, L. Shi, The synergistic effect of electroacupuncture and bone mesenchymal stem cell transplantation on repairing thin endometrial injury in rats, Stem Cell Res. Ther. 10 (1) (2019) 244.
[46] J.A. Lee, H.J. Jeong, H.J. Park, S. Jeon, S.U. Hong, Acupuncture accelerates wound healing in burn-injured mice, Burns 37 (1) (2011) 117–125.
[47] M. Cherubino, J.P. Rubin, N. Miljkovic, A. Kelmendi–Doko, K.G. Marra, Adipose-derived stem cells for wound healing applications, Ann. Plast. Surg. 66 (2) (2011) 210–215.
[48] K. Tamama, S.S. Kerpedjieva, Acceleration of wound healing by multiple growth factors and cytokines secreted from multipotential stromal cells/mesenchymal stem cells, Adv. Wound Care 1 (4) (2012) 177–182.
[49] I. Pastar, O. Stojadinovic, N.C. Yin, H. Ramirez, A.G. Nusbaum, A. Sawaya, S.B. Patel, L. Khalid, R.R. Isseroff, M. Tomic–Canic, Epithelialization in wound healing: a comprehensive review, Adv Wound Care 3 (7) (2014) 445–464.
[50] C.L. Garcin, D.M. Ansell, D.J. Headon, R. Paus, M.J. Hardman, Hair follicle bulge stem cells appear dispensable for the acute phase of wound re‐epithelialization, Stem cells 34 (5) (2016) 1377–1385.
[51] G. Eke, N. Mangir, N. Hasirci, S. MacNeil, V. Hasirci, Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering, Biomaterials 129 (2017) 188–198.
[52] J.R. García, M. Quirós, W.M. Han, M.N. O'Leary, G.N. Cox, A. Nusrat, A.J. García, IFN-γ-tethered hydrogels enhance mesenchymal stem cell-based immunomodulation and promote tissue repair, Biomaterials 220 (2019) 119403.
[53] Y.I. Shen, H. Cho, A.E. Papa, J.A. Burke, X.Y. Chan, E.J. Duh, S. Gerecht, Engineered human vascularized constructs accelerate diabetic wound healing, Biomaterials 102 (2016) 107–119.
[54] L.A. DiPietro, Angiogenesis and wound repair: when enough is enough. J. Leukoc. Biol. 100(5) (2016) 979-984
[55] R.G. Frykberg, J. Banks, Challenges in the treatment of chronic wounds, Adv. Wound Care 4 (9) (2015) 560–582.
[56] M. Tsuchiya, E.F. Sato, M. Inoue, A. Asada, Acupuncture enhances generation of nitric oxide and increases local circulation, Anesth. Analg. 104 (2) (2007) 301–307.
[57] S. Takayama, M. Watanabe, H. Kusuyama, S. Nagase, T. Seki, T. Nakazawa, N. Yaegashi, Evaluation of the effects of acupuncture on blood flow in humans with ultrasound color Doppler imaging, Evid. Based Complement Alternat. Med. 2012 (2012) 513638.
[58] X. Li, M. Chen, S. Maharjan, J. Cui, L. Lu, X. Gong, Evaluating surgical delay using infrared thermography in an island pedicled perforator flap rat model, J. Reconstr. Microsurg. 33 (07) (2017) 518–525.
[59] E. Bertran, L. Caja, E. Navarro, P. Sancho, J. Mainez, M.M. Murillo, A. Vinyals, À. Fabra, I. Fabregat, Role of CXCR4/SDF-1α in the migratory phenotype of hepatoma cells that have undergone epithelial-mesenchymal transition in response to the transforming growth factor-β, Cell Signal. 21 (11) (2009) 1595–1606.
[60] N. Fortunel, J. Hatzfeld, L. Aoustin, P. Batard, K. Ducos, M.N. Monier, A. Charpentier, A. Hatzfeld, Specific dose-response effects of TGF-β 1 on developmentally distinct hematopoietic stem/progenitor cells from human umbilical cord blood, Hematol. J. 1(2) (2000) 126–135.
[61] G. Ferrari, G. Pintucci, G. Seghezzi, K. Hyman, A.C. Galloway, P. Mignatti, VEGF, a prosurvival factor, acts in concert with TGF-β1 to induce endothelial cell apoptosis, Proc. Natl. Acad. Sci. U. S. A. 103 (46) (2006) 17260–17265.
[62] Y.f. Feng, F. Yuan, H. Guo, W.z. Wu, TGF-β1 enhances SDF-1-induced migration and tube formation of choroid-retinal endothelial cells by up-regulating CXCR4 and CXCR7 expression, Mol. Cell. Biochem. 397 (1–2) (2014) 131–138.
[63] B.J. Faler, R.A. Macsata, D. Plummer, L. Mishra, A.N. Sidawy, Transforming growth factor-beta and wound healing, Perspect. Vasc. Surg. Endovasc. Ther. 18 (1) (2006) 55–62.
[64] G.J. Kotwal, S. Chien, Macrophage differentiation in normal and accelerated wound healing, Results Probl. Cell Differ. 62 (2017) 353–364.
[65] D.P. Vasconcelos, A.C. Fonseca, M. Costa, I.F. Amaral, M.A. Barbosa, A.P. Águas, J.N. Barbosa, Macrophage polarization following chitosan implantation, Biomaterials 34 (38) (2013) 9952–9959.
[66] Y.J. Huang, K.C. Hung, S.h. Hsu, Modulation of macrophage phenotype by biodegradable polyurethane nanoparticles: possible relation between macrophage polarization and immune response of nanoparticles, ACS Appl. Mater. Interfaces 10 (23) (2018) 19436-19448.
3.6. 參考文獻
[1] B.J. Huang, J.C. Hu, K.A. Athanasiou, Cell-based tissue engineering strategies used in the clinical repair of articular cartilage, Biomaterials 98 (2016) 1-22.
[2] M. Rupp, L. Klute, S. Baertl, N. Walter, G.-K. Mannala, L. Frank, C. Pfeifer, V. Alt, M. Kerschbaum, The clinical use of bone graft substitutes in orthopedic surgery in Germany—A 10-years survey from 2008 to 2018 of 1,090,167 surgical interventions, J. Biomed. Mater. Res. B Appl. Biomater. 110(2) (2022) 350-357.
[3] L. Zhou, V.O. Gjvm, J. Malda, M.J. Stoddart, Y. Lai, R.G. Richards, K. Ki-wai Ho, L. Qin, Innovative tissue-engineered strategies for osteochondral defect repair and regeneration: current progress and challenges, Adv. Healthc. Mater. 9(23) (2020) 2001008.
[4] N.R. Fuggle, C. Cooper, R.O.C. Oreffo, A.J. Price, J.F. Kaux, E. Maheu, M. Cutolo, G. Honvo, P.G. Conaghan, F. Berenbaum, J. Branco, M.L. Brandi, B. Cortet, N. Veronese, A.A. Kurth, R. Matijevic, R. Roth, J.P. Pelletier, J. Martel-Pelletier, M. Vlaskovska, T. Thomas, W.F. Lems, N. Al-Daghri, O. Bruyère, R. Rizzoli, J.A. Kanis, J.Y. Reginster, Alternative and complementary therapies in osteoarthritis and cartilage repair, Aging Clin. Exp. Res. 32(4) (2020) 547-560.
[5] J.G. Lin, P. Kotha, Y.H. Chen, Understandings of acupuncture application and mechanisms, Am. J. Transl. Res. 14(3) (2022) 1469-1481.
[6] L. Xia, Q. Meng, J. Xi, Q. Han, J. Cheng, J. Shen, Y. Xia, L. Shi, The synergistic effect of electroacupuncture and bone mesenchymal stem cell transplantation on repairing thin endometrial injury in rats, Stem Cell Res. Ther. 10(1) (2019) 244.
[7] H. Allam, N.H. Mohammed, The role of scalp acupuncture for relieving the chronic pain of degenerative osteoarthritis: a pilot study of egyptian women, Med. Acupunct. 25(3) (2013) 216-220.
[8] X. Shi, W. Yu, T. Wang, O. Battulga, C. Wang, Q. Shu, X. Yang, C. Liu, C. Guo, Electroacupuncture alleviates cartilage degradation: Improvement in cartilage biomechanics via pain relief and potentiation of muscle function in a rabbit model of knee osteoarthritis, Biomed. Pharmacother. 123 (2020) 109724.
[9] T.C. Pan, Y.H. Tsai, W.C. Chen, Y.L. Hsieh, The effects of laser acupuncture on the modulation of cartilage extracellular matrix macromolecules in rats with adjuvant-induced arthritis, PLoS One 14(3) (2019) e0211341.
[10] T.E. Salazar, M.R. Richardson, E. Beli, M.S. Ripsch, J. George, Y. Kim, Y. Duan, L. Moldovan, Y. Yan, A. Bhatwadekar, V. Jadhav, J.A. Smith, S. McGorray, A.L. Bertone, D.O. Traktuev, K.L. March, L.M. Colon-Perez, K.G. Avin, E. Sims, J.A. Mund, J. Case, X. Deng, M.S. Kim, B. McDavitt, M.E. Boulton, J. Thinschmidt, S. Li Calzi, S.D. Fitz, R.K. Fuchs, S.J. Warden, T. McKinley, A. Shekhar, M. Febo, P.L. Johnson, L.J. Chang, Z. Gao, M.G. Kolonin, S. Lai, J. Ma, X. Dong, F.A. White, H. Xie, M.C. Yoder, M.B. Grant, Electroacupuncture promotes central nervous system-dependent release of mesenchymal stem cells, Stem Cells 35(5) (2017) 1303-1315.
[11] J.W. Liu, Y.L. Wu, W. Wei, Y.L. Zhang, D. Liu, X.X. Ma, C. Li, Y.Y. Ma, Effect of warm acupuncture combined with bone marrow mesenchymal stem cells transplantation on cartilage tissue in rabbit knee osteoarthritis, Evid. Based Complement. Alternat. Med. 2021 (2021) 5523726.
[12] C.Y. Fu, W.T. Chuang, S.H. Hsu, A biodegradable chitosan-polyurethane cryogel with switchable shape memory, ACS Appl. Mater. Interfaces 13(8) (2021) 9702-9713.
[13] A. Memic, T. Colombani, L.J. Eggermont, M. Rezaeeyazdi, J. Steingold, Z.J. Rogers, K.J. Navare, H.S. Mohammed, S.A. Bencherif, Latest advances in cryogel technology for biomedical applications, Adv. Therap. 2(4) (2019) 1800114.
[14] L. Gu, J. Zhang, L. Li, Z. Du, Q. Cai, X. Yang, Hydroxyapatite nanowire composited gelatin cryogel with improved mechanical properties and cell migration for bone regeneration, Biomedical Materials 14(4) (2019) 045001.
[15] L.J. Eggermont, Z.J. Rogers, T. Colombani, A. Memic, S.A. Bencherif, Injectable cryogels for biomedical applications, Trends Biotechnol. 38(4) (2020) 418-431.
[16] R. Chen, J.S. Pye, J. Li, C.B. Little, J.J. Li, Multiphasic scaffolds for the repair of osteochondral defects: Outcomes of preclinical studies, Bioact. Mater. 27 (2023) 505-545.
[17] X.-Y. Wu, J. Yang, F.-H. Wu, W.-B. Cao, T. Zhou, Z.-Y. Wang, C.-X. Tu, Z.-R. Gou, L. Zhang, C.-Y. Gao, A macroporous cryogel with enhanced mechanical properties for osteochondral regeneration in vivo, Chin. J. Polym. Sci. 41(1) (2023) 40-50.
[18] S.S. Lee, J.H. Kim, J. Jeong, S.H.L. Kim, R.H. Koh, I. Kim, S. Bae, H. Lee, N.S. Hwang, Sequential growth factor releasing double cryogel system for enhanced bone regeneration, Biomaterials 257 (2020) 120223.
[19] W. Wei, H. Dai, Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges, Bioact. Mater. 6(12) (2021) 4830-4855.
[20] K. Tzavlaki, A. Moustakas, TGF-β signaling, Biomolecules 10(3) (2020) 487.
[21] K.B. Seims, N.K. Hunt, L.W. Chow, Strategies to control or mimic growth factor activity for bone, cartilage, and osteochondral tissue engineering, Bioconjugate Chemistry 32(5) (2021) 861-878.
[22] H.A. Rather, J.F. Varghese, B. Dhimmar, U.C.S. Yadav, R. Vasita, Polycaprolactone-collagen nanofibers loaded with dexamethasone and simvastatin as an osteoinductive and immunocompatible scaffold for bone regeneration applications, Biomater. Biosyst. 8 (2022) 100064.
[23] Y. Chen, N. Kawazoe, G. Chen, Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering, Acta Biomater. 67 (2018) 341-353.
[24] C.-T. Hsieh, S.-h. Hsu, Double-network polyurethane-gelatin hydrogel with tunable modulus for high-resolution 3d bioprinting, ACS Appl. Mater. Interfaces 11(36) (2019) 32746-32757.
[25] K.-C. Hung, C.-S. Tseng, L.-G. Dai, S.-h. Hsu, Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering, Biomaterials 83 (2016) 156-168.
[26] X. Niu, N. Li, Z. Du, X. Li, Integrated gradient tissue-engineered osteochondral scaffolds: Challenges, current efforts and future perspectives, Bioact. Mater. 20 (2023) 574-597.
[27] X.-Y. Xu, X. Li, J. Wang, X.-T. He, H.-H. Sun, F.-M. Chen, Concise review: periodontal tissue regeneration using stem cells: strategies and translational considerations, Stem Cells Transl. Med. 8(4) (2019) 392-403.
[28] H. Jia, J. He, L. Zhao, C.-C. Hsu, X. Zhao, Y. Du, L. Han, Z. Cui, X. Shi, H. Ye, Combination of stem cell therapy and acupuncture to treat ischemic stroke: a prospective review, Stem cell res. ther. 13(1) (2022) 87.
[29] Z. Yang, H. Li, Z. Yuan, L. Fu, S. Jiang, C. Gao, F. Wang, K. Zha, G. Tian, Z. Sun, B. Huang, F. Wei, F. Cao, X. Sui, J. Peng, S. Lu, W. Guo, S. Liu, Q. Guo, Endogenous cell recruitment strategy for articular cartilage regeneration, Acta Biomater. 114 (2020) 31-52.
[30] Y.T. Wen, N.T. Dai, S.H. Hsu, Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering, Acta Biomater. 88 (2019) 301-313.
[31] J. Radhakrishnan, A. Manigandan, P. Chinnaswamy, A. Subramanian, S. Sethuraman, Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration, Biomaterials 162 (2018) 82-98.
[32] Z. Qiao, M. Lian, Y. Han, B. Sun, X. Zhang, W. Jiang, H. Li, Y. Hao, K. Dai, Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration, Biomaterials 266 (2021) 120385.
[33] W.S. Vanden Berg-Foels, In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment, Tissue Eng. Part B Rev. 20(1) (2014) 28-39.
[34] F.M. Chen, L.A. Wu, M. Zhang, R. Zhang, H.H. Sun, Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives, Biomaterials 32(12) (2011) 3189-209.
[35] W. Wang, X. Wang, Y. Wang, C. Tong, Clinical study of autologous cartilage transplantation based on nano-hydroxyapatite in the treatment of talar osteochondral injury, J. Nanosci. Nanotechnol. 21(2) (2021) 1250-1258.
[36] M.J. Gupte, W.B. Swanson, J. Hu, X. Jin, H. Ma, Z. Zhang, Z. Liu, K. Feng, G. Feng, G. Xiao, N. Hatch, Y. Mishina, P.X. Ma, Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization, Acta Biomater 82 (2018) 1-11.
[37] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26(27) (2005) 5474-91.
[38] H. Zhou, R. Chen, J. Wang, J. Lu, T. Yu, X. Wu, S. Xu, Z. Li, C. Jie, R. Cao, Y. Yang, Y. Li, D. Meng, Biphasic fish collagen scaffold for osteochondral regeneration, Materials & Design 195 (2020) 108947.
[39] T.W. Lin, S.H. Hsu, Self-healing hydrogels and cryogels from biodegradable polyurethane nanoparticle crosslinked chitosan, Adv. Sci. (Weinh) 7(3) (2020) 1901388.
[40] Y. Sun, Y. You, W. Jiang, B. Wang, Q. Wu, K. Dai, 3D bioprinting dual-factor releasing and gradient-structured constructs ready to implant for anisotropic cartilage regeneration, Sci. Adv. 6(37) (2020).
[41] S. Zhang, B. Hu, W. Liu, P. Wang, X. Lv, S. Chen, H. Liu, Z. Shao, Articular cartilage regeneration: The role of endogenous mesenchymal stem/progenitor cell recruitment and migration, Semin. Arthritis Rheum. 50(2) (2020) 198-208.
[42] Y. Chen, T. Wu, S. Huang, C.W. Suen, X. Cheng, J. Li, H. Hou, G. She, H. Zhang, H. Wang, X. Zheng, Z. Zha, Sustained release SDF-1α/TGF-β1-loaded silk fibroin-porous gelatin scaffold promotes cartilage repair, ACS Appl. Mater. Interfaces 11(16) (2019) 14608-14618.
[43] T. Wang, W. Kang, L. Du, S. Ge, Rho-kinase inhibitor Y-27632 facilitates the proliferation, migration and pluripotency of human periodontal ligament stem cells, J. Cell Mol. Med. 21(11) (2017) 3100-3112.
[44] S. Mohamed-Ahmed, I. Fristad, S.A. Lie, S. Suliman, K. Mustafa, H. Vindenes, S.B. Idris, Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison, Stem Cell Res. Ther. 9(1) (2018) 1-15.
[45] R. Dorati, A. DeTrizio, T. Modena, B. Conti, F. Benazzo, G. Gastaldi, I. Genta, Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy, Pharmaceuticals (Basel) 10(4) (2017).
[46] H. Wang, B. Pang, Y. Li, D. Zhu, T. Pang, Y. Liu, Dexamethasone has variable effects on mesenchymal stromal cells, Cytotherapy 14(4) (2012) 423-30.
[47] G. Huang, L. Wang, S. Wang, Y. Han, J. Wu, Q. Zhang, F. Xu, T.J. Lu, Engineering three-dimensional cell mechanical microenvironment with hydrogels, Biofabrication 4(4) (2012) 042001.
[48] C.J. Little, N.K. Bawolin, X. Chen, Mechanical properties of natural cartilage and tissue-engineered constructs, Tissue Eng. Part B Rev. 17(4) (2011) 213-27.
[49] Y.M. Yang, W. Hu, X.D. Wang, X.S. Gu, The controlling biodegradation of chitosan fibers by N-acetylation in vitro and in vivo, J. Mater. Sci. Mater. Med. 18(11) (2007) 2117-21.
[50] C.J. Bettinger, Biodegradable elastomers for tissue engineering and cell-biomaterial interactions, Macromol. Biosci. 11(4) (2011) 467-82.
[51] L. Deng, L. Zhou, Y. Zhu, G. Fan, H. Tang, Y. Zheng, X. Gao, K. Guo, P. Zhou, C. Yang, Electroacupuncture enhance therapeutic efficacy of mesenchymal stem cells transplantation in rats with intracerebral hemorrhage, Stem Cell Rev. Rep. 18(2) (2022) 570-584.
[52] S. Wise, A. Lorenc, Anatomical and clinical characteristics of scalp acupuncture systems: a scoping review and synthesis, J. Acupunct. Meridian Stud. 16(5) (2023) 159-175.
[53] F. Pei, L. Ma, J. Jing, J. Feng, Y. Yuan, T. Guo, X. Han, T.-V. Ho, J. Lei, J. He, Sensory nerve niche regulates mesenchymal stem cell homeostasis via FGF/mTOR/autophagy axis, Nat. Commun. 14(1) (2023) 344.
[54] A.A. Russo, S.R. Bittner, S.M. Perkins, J.S. Seely, B.M. London, A.H. Lara, A. Miri, N.J. Marshall, A. Kohn, T.M. Jessell, L.F. Abbott, J.P. Cunningham, M.M. Churchland, Motor cortex embeds muscle-like commands in an untangled population response, Neuron 97(4) (2018) 953-966.e8.
[55] E.R. Oby, M.Y. Byron, A path to understanding how motor cortex influences muscle activity, Neuron 95(3) (2017) 476-478.
[56] W.W. Teka, K.C. Hamade, W.H. Barnett, T. Kim, S.N. Markin, I.A. Rybak, Y.I. Molkov, From the motor cortex to the movement and back again, PLoS One 12(6) (2017) e0179288.
[57] M. da Graca-Tarragó, M. Lech, L.D.M. Angoleri, D.S. Santos, A. Deitos, A.P. Brietzke, I.L. Torres, F. Fregni, W. Caumo, Intramuscular electrical stimulus potentiates motor cortex modulation effects on pain and descending inhibitory systems in knee osteoarthritis: a randomized, factorial, sham-controlled study, J. Pain Res. 12 (2019) 209-221.
[58] E. Bertran, L. Caja, E. Navarro, P. Sancho, J. Mainez, M.M. Murillo, A. Vinyals, A. Fabra, I. Fabregat, Role of CXCR4/SDF-1 alpha in the migratory phenotype of hepatoma cells that have undergone epithelial-mesenchymal transition in response to the transforming growth factor-beta, Cell Signal 21(11) (2009) 1595-606.
[59] Y.F. Feng, F. Yuan, H. Guo, W.Z. Wu, TGF-β1 enhances SDF-1-induced migration and tube formation of choroid-retinal endothelial cells by up-regulating CXCR4 and CXCR7 expression, Mol. Cell. Biochem. 397(1-2) (2014) 131-8.
4.6. 參考文獻
[1] Q. Li, X. Shao, X. Dai, Q. Guo, B. Yuan, Y. Liu, W. Jiang, Recent trends in the development of hydrogel therapeutics for the treatment of central nervous system disorders, NPG Asia Mater. 14(1) (2022) 14.
[2] B.R. Bloem, M.S. Okun, C. Klein, Parkinson's disease, The Lancet 397(10291) (2021) 2284-2303.
[3] L.V. Kalia, A.E. Lang, Parkinson's disease, The Lancet 386(9996) (2015) 896-912.
[4] A. Singleton, M. Farrer, J. Johnson, A. Singleton, S. Hague, J. Kachergus, M. Hulihan, T. Peuralinna, A. Dutra, R. Nussbaum, α-Synuclein locus triplication causes Parkinson's disease, Science 302(5646) (2003) 841-841.
[5] C.S. Lozano, J. Tam, A.M. Lozano, The changing landscape of surgery for Parkinson's Disease, Mov. Disord. 33(1) (2018) 36-47.
[6] W. Oertel, J.B. Schulz, Current and experimental treatments of Parkinson disease: A guide for neuroscientists, J. Neurochem. 139(S1) (2016) 325-337.
[7] S. Surendran, S. Rajasankar, Parkinson’s disease: oxidative stress and therapeutic approaches, Neurol. Sci. 31(5) (2010) 531-540.
[8] L.-H.N. Lee, C.-S. Huang, H.-H. Chuang, H.-J. Lai, C.-K. Yang, Y.-C. Yang, C.-C. Kuo, An electrophysiological perspective on Parkinson’s disease: symptomatic pathogenesis and therapeutic approaches, J. Biomed. Sci. 28(1) (2021) 85.
[9] Q. Li, C. Wu, X. Wang, Z. Li, X. Hao, L. Zhao, M. Li, M. Zhu, Effect of acupuncture for non-motor symptoms in patients with Parkinson’s disease: A systematic review and meta-analysis, Front. Aging Neurosci. 14 (2022) 995850.
[10] T.I. Huang, C.L. Hsieh, Effects of acupuncture on oxidative stress amelioration via nrf2/are-related pathways in Alzheimer and Parkinson diseases, Evid. Based Complement. Alternat. Med. 2021 (2021) 6624976.
[11] T.E. Salazar, M.R. Richardson, E. Beli, M.S. Ripsch, J. George, Y. Kim, Y. Duan, L. Moldovan, Y. Yan, A. Bhatwadekar, V. Jadhav, J.A. Smith, S. McGorray, A.L. Bertone, D.O. Traktuev, K.L. March, L.M. Colon-Perez, K.G. Avin, E. Sims, J.A. Mund, J. Case, X. Deng, M.S. Kim, B. McDavitt, M.E. Boulton, J. Thinschmidt, S. Li Calzi, S.D. Fitz, R.K. Fuchs, S.J. Warden, T. McKinley, A. Shekhar, M. Febo, P.L. Johnson, L.J. Chang, Z. Gao, M.G. Kolonin, S. Lai, J. Ma, X. Dong, F.A. White, H. Xie, M.C. Yoder, M.B. Grant, Electroacupuncture promotes central nervous system-dependent release of mesenchymal stem cells, Stem Cells 35(5) (2017) 1303-1315.
[12] L. Liu, Q. Yu, K. Hu, B. Wang, Y. Zhang, Y. Xu, S. Fu, X. Yu, H. Huang, Electro-acupuncture promotes endogenous multipotential mesenchymal stem cell mobilization into the peripheral blood, Cell. Physiol. Biochem. 38(4) (2016) 1605-1617.
[13] H. Huang, H.S. Sharma, L. Chen, H. Saberi, G. Mao, 2018 yearbook of neurorestoratology, J. Neurorestoratol. 7(1) (2019) 8-17.
[14] T.Y. Chen, T.K. Wen, N.T. Dai, S.-h. Hsu, Cryogel/hydrogel biomaterials and acupuncture combined to promote diabetic skin wound healing through immunomodulation, Biomaterials 269 (2021) 120608.
[15] S. Mirzaei, K. Kulkarni, K. Zhou, P.J. Crack, M.-I. Aguilar, D.I. Finkelstein, J.S. Forsythe, Biomaterial strategies for restorative therapies in Parkinson’s disease, ACS Chem. Neurosci. 12(22) (2021) 4224-4235.
[16] R. Del Campo-Montoya, M.-R. Luquin, E. Puerta, E. Garbayo, M.J. Blanco-Prieto, Hydrogels for brain repair: application to Parkinson’s disease, Expert Opin. Drug Delivery 19(11) (2022) 1521-1537.
[17] J.T.W. Wang, A.C. Rodrigo, A.K. Patterson, K. Hawkins, M.M. Aly, J. Sun, K.T. Al Jamal, D.K. Smith, Enhanced delivery of neuroactive drugs via nasal delivery with a self‐healing supramolecular gel, Adv. Sci. 8(14) (2021) 2101058.
[18] Z. Deng, H. Wang, P.X. Ma, B. Guo, Self-healing conductive hydrogels: preparation, properties and applications, Nanoscale 12(3) (2020) 1224-1246.
[19] Y. Ren, X. Zhao, X. Liang, P.X. Ma, B. Guo, Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease, Int. J. Bio. Macromol. 105 (2017) 1079-1087.
[20] J. Xu, C.H. Tai, T.Y. Chen, S.-h. Hsu, An anti-inflammatory electroconductive hydrogel with self-healing property for the treatment of Parkinson’s disease, Chem. Eng. J. 446 (2022) 137180.
[21] S. Tang, A. Wang, X. Yan, L. Chu, X. Yang, Y. Song, K. Sun, X. Yu, R. Liu, Z. Wu, Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease, Drug Delivery 26(1) (2019) 700-707.
[22] T.-Y. Wang, K.F. Bruggeman, J.A. Kauhausen, A.L. Rodriguez, D.R. Nisbet, C.L. Parish, Functionalized composite scaffolds improve the engraftment of transplanted dopaminergic progenitors in a mouse model of Parkinson's disease, Biomaterials 74 (2016) 89-98.
[23] L.R. Doblado, C. Martínez-Ramos, M.M. Pradas, Biomaterials for neural tissue engineering, Front. Nanotechnol. 3 (2021) 643507.
[24] H. Honarkar, Waterborne polyurethanes: A review, J. Disper. Sci. Technol. 39(4) (2018) 507-516.
[25] T.W. Lin, S.-h. Hsu, Self‐Healing Hydrogels and cryogels from biodegradable polyurethane nanoparticle crosslinked chitosan, Adv. Sci. 7(3) (2020) 1901388.
[26] M.I. Anik, N. Mahmud, A. Al Masud, M. Hasan, Gold nanoparticles (GNPs) in biomedical and clinical applications: A review, Nano Select 3(4) (2022) 792-828.
[27] J. Xu, T.Y. Chen, C.H. Tai, S.-h. Hsu, Bioactive self-healing hydrogel based on tannic acid modified gold nano-crosslinker as an injectable brain implant for treating Parkinson’s disease, Biomater. Res. 27(1) (2023) 1-24.
[28] N. Nguyen, Z.-H. Lin, S.R. Barman, C. Korupalli, J.-Y. Cheng, N.-X. Song, Y. Chang, F.-L. Mi, H.-L. Song, H.-W. Sung, Engineering an integrated electroactive dressing to accelerate wound healing and monitor noninvasively progress of healing, Nano Energy 99 (2022) 107393.
[29] Y. Gao, Y. Cheng, J. Chen, D. Lin, C. Liu, L.-K. Zhang, L. Yin, R. Yang, Y.-Q. Guan, NIR-assisted mgo-based polydopamine nanoparticles for targeted treatment of parkinson's disease through the blood–brain barrier, Adv. Healthcare Mater. 11(23) (2022) 2201655.
[30] K. Yang, J.S. Lee, J. Kim, Y.B. Lee, H. Shin, S.H. Um, J.B. Kim, K.I. Park, H. Lee, S.-W. Cho, Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering, Biomaterials 33(29) (2012) 6952-6964.
[31] T.Y. Chen, N.T. Dai, T.K. Wen, S.-h. Hsu, An Acellular, Self‐healed trilayer cryogel for osteochondral regeneration in rabbits, Adv. Healthcare Mater. 13(31) (2024) e2400462.
[32] J.H. Ryu, P.B. Messersmith, H. Lee, Polydopamine surface chemistry: a decade of discovery, ACS Appl. Mater. Interfaces 10(9) (2018) 7523-7540.
[33] A. Benazzouz, D.M. Gao, Z.G. Ni, B. Piallat, R. Bouali-Benazzouz, A.-L. Benabid, Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat, Neuroscience 99(2) (2000) 289-295.
[34] G. Paxinos, C.R. Watson, P.C. Emson, AChE-stained horizontal sections of the rat brain in stereotaxic coordinates, J. Neurosci. Methods 3(2) (1980) 129-49.
[35] F.C. Church, Treatment options for motor and non-motor symptoms of parkinson's disease, Biomolecules 11(4) (2021) 612.
[36] N. Saini, N. Singh, N. Kaur, S. Garg, M. Kaur, A. Kumar, M. Verma, K. Singh, H.S. Sohal, Motor and non-motor symptoms, drugs, and their mode of action in Parkinson’s disease (PD): a review, Med. Chem. Res. 33(4) (2024) 580-599.
[37] G. Tejeda, A.J. Ciciriello, C.M. Dumont, Biomaterial strategies to bolster neural stem cell-mediated repair of the central nervous system, Cells Tissues Organs 211(6) (2022) 655-669.
[38] B. Martinez, P.V. Peplow, Biomaterial and tissue-engineering strategies for the treatment of brain neurodegeneration, Neural Regen. Res. 17(10) (2022) 2108-2116.
[39] L.N. Zamproni, M. Mundim, M.A. Porcionatto, Neurorepair and regeneration of the brain: a decade of bioscaffolds and engineered microtissue, Front. Cell Dev. Biol. 9 (2021) 649891.
[40] M. Desgres, P. Menasché, Clinical translation of pluripotent stem cell therapies: challenges and considerations, Cell Stem Cell 25(5) (2019) 594-606.
[41] A.K. Gaharwar, I. Singh, A. Khademhosseini, Engineered biomaterials for in situ tissue regeneration, Nat. Rev. Mater. 5(9) (2020) 686-705.
[42] I. Safina, M.C. Embree, Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration, Acta Biomater. 143 (2022) 26-38.
[43] J. Xu, T.Y. Chen, C.H. Tai, S.-h. Hsu, Bioactive self-healing hydrogel based on tannic acid modified gold nano-crosslinker as an injectable brain implant for treating Parkinson's disease, Biomater. Res. 27(1) (2023) 8.
[44] S.H. Lin, A.P.H. Huang, S.-h. Hsu, Injectable, micellar chitosan self‐healing hydrogel for asynchronous dual‐drug delivery to treat stroke rats, Adv. Funct. Mater. 33(45) (2023) 2303853.
[45] Y. Liu, Y.H. Hsu, A.P.H. Huang, S.-h. Hsu, Semi-interpenetrating polymer network of hyaluronan and chitosan self-healing hydrogels for central nervous system repair, ACS Appl. Mater. Interfaces 12(36) (2020) 40108-40120.
[46] S. Budday, T.C. Ovaert, G.A. Holzapfel, P. Steinmann, E. Kuhl, Fifty shades of brain: a review on the mechanical testing and modeling of brain tissue, Arch. Comput. Methods Eng. 27 (2020) 1187-1230.
[47] Y. Liu, S.-h. Hsu, Biomaterials and neural regeneration, Neural Regener. Res. 15(7) (2020) 1243-1244.
[48] B.S. Eftekhari, M. Eskandari, P.A. Janmey, A. Samadikuchaksaraei, M. Gholipourmalekabadi, Surface topography and electrical signaling: single and synergistic effects on neural differentiation of stem cells, Adv. Funct. Mater. 30(25) (2020) 1907792.
[49] Z. Liu, X. Wan, Z.L. Wang, L. Li, Electroactive Biomaterials and systems for cell fate determination and tissue regeneration: design and applications, Adv. Mater. 33(32) (2021) e2007429.
[50] T. Marques-Almeida, S. Lanceros-Mendez, C. Ribeiro, State of the art and current challenges on electroactive biomaterials and strategies for neural tissue regeneration, Adv. Healthcare Mater. 13(1) (2024) e2301494.
[51] M.L. Alfieri, T. Weil, D.Y.W. Ng, V. Ball, Polydopamine at biological interfaces, Adv. Colloid Interface Sci. 305 (2022) 102689.
[52] N. Orishchin, C.C. Crane, M. Brownell, T. Wang, S. Jenkins, M. Zou, A. Nair, J. Chen, Rapid deposition of uniform polydopamine coatings on nanoparticle surfaces with controllable thickness, Langmuir 33(24) (2017) 6046-6053.
[53] J. Xue, Y. Liu, M.A. Darabi, G. Tu, L. Huang, L. Ying, B. Xiao, Y. Wu, M. Xing, L. Zhang, L. Zhang, An injectable conductive Gelatin-PANI hydrogel system serves as a promising carrier to deliver BMSCs for Parkinson's disease treatment, Mater. Sci. Eng. C Mater. Biol. Appl. 100 (2019) 584-597.
[54] Y.-M. Li, Y. Ji, Y.-X. Meng, Y.-J. Kim, H. Lee, A.G. Kurian, J.-H. Park, J.-Y. Yoon, J.C. Knowles, Y. Choi, Y.-S. Kim, B.-E. Yoon, R.K. Singh, H.-H. Lee, H.-W. Kim, J.-H. Lee, Neural Tissue-Like, not Supraphysiological, Electrical conductivity stimulates neuronal lineage specification through calcium signaling and epigenetic modification, Adv. Sci. 11(35) (2024) 2400586.
[55] M. Farokhi, F. Mottaghitalab, M.R. Saeb, S. Shojaei, N.K. Zarrin, S. Thomas, S. Ramakrishna, Conductive biomaterials as substrates for neural stem cells differentiation towards neuronal lineage cells, Macromolecular Bioscience 21(1) (2021) 2000123.
[56] S.P. Choudhury, S. Bano, S. Sen, K. Suchal, S. Kumar, F. Nikolajeff, S.K. Dey, V. Sharma, Altered neural cell junctions and ion-channels leading to disrupted neuron communication in Parkinson's disease, NPJ Parkinsons Dis. 8(1) (2022) 66.
[57] Z.-F. Xu, S.-H. Hong, S.-J. Wang, X. Zhao, Y.-Y. Liu, S.-S. Ding, Y. Xu, K. Zhang, N.-N. Yu, Z.-X. Lu, Neuroendocrine-immune regulating mechanisms for the anti-inflammatory and analgesic actions of acupuncture, World J. Tradit. Chin. Med. 6(4) (2020) 384-392.
[58] T. Oz, A. Kaushik, M. Kujawska, Neural stem cells for Parkinson's disease management: Challenges, nanobased support, and prospects, World J. Stem Cells 15(7) (2023) 687-700.
[59] J. Lim, S. Zhang, J.-M. Heo, M.C. Dickwella Widanage, A. Ramamoorthy, J. Kim, Polydopamine adhesion: catechol, amine, dihydroxyindole, and aggregation dynamics, ACS Appl. Mater. Interfaces 16(24) (2024) 31864-31872.
[60] Y.-J. Ren, H. Zhang, H. Huang, X.-M. Wang, Z.-Y. Zhou, F.-Z. Cui, Y.-H. An, In vitro behavior of neural stem cells in response to different chemical functional groups, Biomaterials 30(6) (2009) 1036-1044.
[61] M. Jiang, X. Zhuge, Y. Yang, X. Gu, F. Ding, The promotion of peripheral nerve regeneration by chitooligosaccharides in the rat nerve crush injury model, Neurosci. Lett. 454(3) (2009) 239-243.
[62] Y. Yang, K. Wang, X. Gu, K.W. Leong, Biophysical regulation of cell behavior—cross talk between substrate stiffness and nanotopography, Engineering 3(1) (2017) 36-54.
[63] K. Saha, A.J. Keung, E.F. Irwin, Y. Li, L. Little, D.V. Schaffer, K.E. Healy, Substrate modulus directs neural stem cell behavior, Biophys. J. 95(9) (2008) 4426-4438.
[64] Y. Liang, S. Li, Y. Li, M. Li, X. Sun, J. An, Q. Xu, Z. Chen, Y. Wang, Impact of hydrogel stiffness on the induced neural stem cells modulation, Ann. Transl. Med. 9(24) (2021) 1784.
[65] M.F.D. Santos, C. Roxo, S. Solá, Oxidative-signaling in neural stem cell-mediated plasticity: implications for neurodegenerative diseases, Antioxidants (Basel) 10(7) (2021) 1088.
[66] K. Elkhoury, M. Morsink, L. Sanchez-Gonzalez, C. Kahn, A. Tamayol, E. Arab-Tehrany, Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications, Bioact. Mater. 6(11) (2021) 3904-3923.
[67] H. Gao, W. Ding, Effect and mechanism of acupuncture on endogenous and exogenous stem cells in disease treatment: A therapeutic review, Life Sci. 331 (2023) 122031.
[68] F. Martorana, M. Foti, A. Virtuoso, D. Gaglio, F. Aprea, T. Latronico, R. Rossano, P. Riccio, M. Papa, L. Alberghina, A.M. Colangelo, Differential modulation of nf-κb in neurons and astrocytes underlies neuroprotection and antigliosis activity of natural antioxidant molecules, Oxid. Med. Cell. Longev. 2019 (2019) 8056904.
[69] S. Chatterjee, P.C. Sil, ROS-influenced regulatory cross-talk with wnt signaling pathway during perinatal development, Front. Mol. Biosci. 9 (2022).
[70] H.K. Shin, S.-W. Lee, B.T. Choi, Modulation of neurogenesis via neurotrophic factors in acupuncture treatments for neurological diseases, Biochem. Pharmacol. 141 (2017) 132-142.
[71] J.Y. Shin, D.Y. Kim, J. Lee, Y.J. Shin, Y.S. Kim, P.H. Lee, Priming mesenchymal stem cells with α-synuclein enhances neuroprotective properties through induction of autophagy in Parkinsonian models, Stem Cell. Res. Ther. 13(1) (2022) 483.
[72] A. Andrzejewska, S. Dabrowska, B. Lukomska, M. Janowski, Mesenchymal stem cells for neurological disorders, Adv. Sci. 8(7) (2021) 2002944.
[73] Y.-Y. Wang, Y. Wang, H.-F. Jiang, J.-H. Liu, J. Jia, K. Wang, F. Zhao, M.-H. Luo, M.-M. Luo, X.-M. Wang, Impaired glutamatergic projection from the motor cortex to the subthalamic nucleus in 6-hydroxydopamine-lesioned hemi-parkinsonian rats, Exp. Neurol. 300 (2018) 135-148.
[74] J.T. Xu, Y. Qian, W. Wang, X.X. Chen, Y. Li, Y. Li, Z.Y. Yang, X.B. Song, D. Lu, X.L. Deng, Effect of stromal cell-derived factor-1/CXCR4 axis in neural stem cell transplantation for Parkinson's disease, Neural. Regen. Res. 15(1) (2020) 112-119.
[75] K. Guo, X. Yao, W. Wu, Z. Yu, Z. Li, Z. Ma, D. Liu, HIF-1α/SDF-1/CXCR4 axis reduces neuronal apoptosis via enhancing the bone marrow-derived mesenchymal stromal cell migration in rats with traumatic brain injury, Exp. Mol. Pathol. 114 (2020) 104416.
[76] F. Caraci, G. Battaglia, V. Bruno, P. Bosco, V. Carbonaro, M.L. Giuffrida, F. Drago, M.A. Sortino, F. Nicoletti, A. Copani, TGF-β1 pathway as a new target for neuroprotection in Alzheimer's disease, CNS Neurosci. Ther. 17(4) (2011) 237-49.
[77] C.P. Hunt, V. Penna, C.W. Gantner, N. Moriarty, Y. Wang, S. Franks, C.M. Ermine, I.R. de Luzy, C. Pavan, B.M. Long, Tissue programmed hydrogels functionalized with GDNF improve human neural grafts in Parkinson's disease, Adv. Funct. Mater. 31(47) (2021) 2105301.
[78] S. Talebian, M. Mehrali, N. Taebnia, C.P. Pennisi, F.B. Kadumudi, J. Foroughi, M. Hasany, M. Nikkhah, M. Akbari, G. Orive, Self‐healing hydrogels: the next paradigm shift in tissue engineering?, Adv. Sci. 6(16) (2019) 1801664.
[79] D.A. Pinotsis, G. Fridman, E.K. Miller, Cytoelectric coupling: Electric fields sculpt neural activity and “tune” the brain’s infrastructure, Prog. Neurobiol. 226 (2023) 102465.
[80] S.J. Cho, K.-H. Choi, M.J. Kim, O.S. Kwon, S.Y. Kang, S.Y. Seo, Y. Ryu, Biopotential changes of acupuncture points by acupuncture stimulation, Integr. Med. Res. 11(3) (2022) 100871.
[81] S. Hickman, S. Izzy, P. Sen, L. Morsett, J. El Khoury, Microglia in neurodegeneration, Nat. neurosci. 21(10) (2018) 1359-1369.
[82] S. Isik, B. Yeman Kiyak, R. Akbayir, R. Seyhali, T. Arpaci, Microglia mediated neuroinflammation in Parkinson’s disease, Cells 12(7) (2023) 1012.
[83] Y.J. Huang, K.C. Hung, H.S. Hung, S.-h. Hsu, Modulation of macrophage phenotype by biodegradable polyurethane nanoparticles: possible relation between macrophage polarization and immune response of nanoparticles, ACS Appl. Mater. Interfaces 10(23) (2018) 19436-19448.
[84] W. Ma, X. Zhang, Y. Liu, L. Fan, J. Gan, W. Liu, Y. Zhao, L. Sun, Polydopamine decorated microneedles with Fe‐MSC‐derived nanovesicles encapsulation for wound healing, Adv. Sci. 9(13) (2022) 2103317.
[85] M.Y. Noh, S.M. Lim, K.-W. Oh, K.-A. Cho, J. Park, K.-S. Kim, S.-J. Lee, M.-S. Kwon, S.H. Kim, Mesenchymal stem cells modulate the functional properties of microglia via tgf-β secretion, Stem Cells Transl. Med. 5(11) (2016) 1538-1549.
[89] R.P. Ureshino, A.L. Ramírez, Linking aging and animal models to neurodegeneration: the striatum, substantia nigra, and Parkinson’s disease, Assessments, Treatments and Modeling in Aging and Neurological Disease, Elsevier2021, pp. 539-552.
[87] I.C. Wee, A. Arulsamy, F. Corrigan, L. Collins-Praino, Long-term impact of diffuse traumatic brain injury on neuroinflammation and catecholaminergic signaling: potential relevance for parkinson’s disease risk, Molecules 29(7) (2024) 1470.
[88] A. Dovonou, C. Bolduc, V. Soto Linan, C. Gora, M.R. Peralta Iii, M. Lévesque, Animal models of Parkinson's disease: bridging the gap between disease hallmarks and research questions, Transl. Neurodegener. 12(1) (2023) 36.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98055-
dc.description.abstract隨著全球人口老化速度加劇,與老年化相關的慢性退化性疾病已成為威脅人類健康的重大挑戰。發炎老化為一種隨著年齡增長,逐漸累積的低度慢性發炎現象,導致免疫系統功能退化,不僅削弱個體對病原的防禦能力,亦與慢性發炎、組織修復障礙及自體免疫失衡密切相關。近年研究指出,免疫老化與多種退化性疾病的病理機轉密切相關,包括糖尿病慢性傷口、骨關節炎與軟硬骨結構退化,以及神經系統退化如帕金森氏症等疾病。這些疾病不僅導致患者生活品質嚴重下降,也造成龐大的社會醫療負擔,已成為全球公共衛生與再生醫療領域亟待突破的關鍵議題。因此,本論文致力於開發一種結合新型生醫材料與現代針灸的跨領域治療策略,應用於三種與免疫老化密切相關的退化性疾病:糖尿病慢性傷口、軟硬骨缺損及帕金森氏症。本研究之材料研發以創新設計為核心,特別著重於開發具生物可降解性、自癒合能力與導電特性的智慧型水凝膠系統,並經由不同製程與功能性設計,針對不同疾病需求進行材料特性的最佳化。本研究所開發之幾丁聚醣-聚胺酯水凝膠,以聚胺酯奈米交聯劑為架構核心,透過動態席夫鹼鍵結與幾丁聚醣形成高穩定性三維網絡,展現優異的機械強度與自癒合特性,並具促進幹細胞增生、遷移、分化及組織重建等生物活性。本研究進一步將幾丁聚醣-聚胺酯水凝膠應用於多種疾病模型中,並結合針灸進行治療,期望透過生醫材料與針灸治療的協同作用,達成免疫調節、幹細胞活化動員與組織再生之多重目標。第一部分探討幾丁聚醣-聚胺酯水凝膠/冷凍凝膠在糖尿病慢性傷口癒合中的應用,發現其不僅具備與幹細胞良好的交互作用與抗菌性,搭配針灸後可顯著上調血清中促再生因子(如基質細胞衍生因子-1與轉化生長因子-β1),抑制慢性發炎反應並促進皮膚組織再生。組織染色與分子標誌分析結果顯示,傷口區域有較佳的血管新生與膠原蛋白沉積,傷口癒合速率亦明顯優於對照組。第二部份則開發三層結構的冷凍凝膠作為藥物載體,應用於兔膝關節軟硬骨缺損模型。該材料透過交聯程度差異與冷凍製程的調整製備不同孔洞大小的三層網絡結構,並搭載不同藥物使其具備分層導引幹細胞定向分化之功能,上層負載Y27632促進軟骨分化,中層提供細胞遷移通道,下層負載地塞米松誘導成骨分化,成功引導脂肪間質幹細胞朝軟骨與骨組織定向分化,並有效重建關節結構與功能。此外,搭配腦部對應區域針灸治療後,可進一步活化動員體內幹細胞遷移至患處與幾丁聚醣-聚胺酯水凝膠進行交互作用調節微環境進而達到軟硬骨組織修復。第三部份聚焦於神經退化疾病,開發了一種新型導電聚多巴胺塗佈包覆聚胺酯奈米粒子作為交聯劑,該交聯劑可透過動態席夫鹼鍵結,與水溶性乙二醇幾丁聚醣交聯形成具導電性、可注射性與自癒合能力的生物活性水凝膠,並將此幾丁聚醣-聚胺酯導電水凝膠應用於帕金森氏症大鼠模型,證實該材料具抗氧化、促分化與調控神經微環境之能力。幾丁聚醣-聚胺酯導電水凝膠可有效清除自由基,減緩神經發炎反應,並透過導電特性改善多巴胺神經元訊號傳導。經頭皮針灸輔助治療後,神經幹細胞功能顯著提升,並可改善帕金森氏症大鼠的行為表現與神經電生理異常。組織切片結果顯示,在黑質緻密部與紋狀體中,酪胺酸羥化酶陽性神經元密度明顯恢復,並且M2型小膠質細胞比例大幅上升,呈現有利於神經修復的免疫環境。綜上所述,相較於傳統生醫材料,本研究所提出之幾丁聚醣-聚胺酯水凝膠以水相合成方式製備,具有高適配性與臨床應用潛力,為再生醫學材料領域開創全新可能。本研究更進一步地整合材料科學、生醫工程與現代醫學,提出一種具備高度臨床轉譯潛力的再生醫療策略。幾丁聚醣-聚胺酯水凝膠結合針灸所展現之免疫調節、幹細胞動員及組織再生功能,為未來應用於退化性疾病及神經損傷治療提供新契機,並為中西醫融合與智慧材料臨床應用開啟嶄新篇章。zh_TW
dc.description.abstractAs the global population continues to age at an accelerating pace, age-related chronic degenerative diseases have emerged as major challenges to human health. Inflammaging, a progressive low-grade systemic inflammation associated with aging, leads to immune system decline, thereby impairing host defense mechanisms and contributing to chronic inflammation, impaired tissue repair, and immune dysregulation. Recent studies have demonstrated that inflammaging is a key pathological driver of various degenerative conditions, including chronic diabetic wounds, osteoarthritis and osteochondral degradation, and neurodegenerative disorders such as Parkinson’s disease. These diseases not only severely diminish patient quality of life but also impose heavy burdens on global healthcare systems, making them urgent targets in public health and regenerative medicine. In response, this study proposes an interdisciplinary therapeutic strategy combining innovative biomaterials with modern acupuncture to address three representative degenerative diseases associated with immune aging: chronic diabetic wounds, osteochondral defects, and Parkinson’s disease. Central to this approach is the development of smart, biodegradable, self-healing, and conductive hydrogels, tailored through optimized fabrication and functional modification to meet disease-specific therapeutic demands. The proposed chitosan–polyurethane hydrogel, constructed using polyurethane-based nanocrosslinkers and dynamic Schiff base bonding with glycol chitosan, forms a stable 3D network with good mechanical properties, self-healing ability, and key biological activities such as promoting stem cell proliferation, migration, differentiation, and tissue regeneration. This hydrogel system was further evaluated across disease models in combination with acupuncture, aiming to synergistically regulate immune responses, mobilize endogenous stem cells, and restore tissue function. In the first part of the study, the chitosan–polyurethane hydrogel and its cryogel form were applied to chronic diabetic wounds. The hydrogel demonstrated robust antibacterial properties and favorable stem cell interactions. When combined with acupuncture, it significantly increased serum levels of regenerative cytokines (e.g., stromal cell-derived factor 1 and transforming growth factor beta), suppressed chronic inflammation, and enhanced skin regeneration. Histological and molecular analyses revealed improved angiogenesis, collagen deposition, and accelerated wound closure compared to controls. In the second part, a three-layer cryogel scaffold was developed as a drug carrier for osteochondral defect repair in a rabbit knee model. By tuning crosslinking densities and cryo-gelation processes, a hierarchical porous structure was created. The top layer delivered Y27632 to promote chondrogenesis, the middle layer provided a conduit for cell migration, and the bottom layer released dexamethasone to induce osteogenesis. This design successfully directed adipose-derived stem cells toward layer-specific differentiation, effectively regenerating both cartilage and subchondral bone. In combination with acupuncture targeting brain-associated regions, enhanced stem cell mobilization and microenvironment modulation further promoted osteochondral repair. The third part focused on neurodegeneration, specifically Parkinson’s disease. A conductive hydrogel system was developed using polydopamine-coated polyurethane nanoparticles as dynamic crosslinkers, forming an injectable, self-healing, and conductive hydrogel via Schiff base bonding with water-soluble glycol chitosan. In a rat model of Parkinson’s disease, this conductive chitosan–polyurethane hydrogel exhibited antioxidant, anti-inflammatory, and neuromodulatory effects. It effectively scavenged reactive oxygen species, reduced neuroinflammation, and enhanced dopaminergic signaling. Combined with scalp acupuncture, the treatment significantly improved neural stem cell activity, motor performance, and electrophysiological outcomes. Histological analysis showed restoration of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNpc) and striatum, along with increased polarization of M2-type microglia, indicating a neuroprotective immune environment. In summary, the chitosan–polyurethane hydrogel developed in this study offers high adaptability and strong potential for clinical application in regenerative medicine. By integrating materials science, biomedical engineering, and modern medical practice, this research presents a clinically translatable regenerative therapy. The synergistic combination of intelligent hydrogel systems and acupuncture demonstrates potent capabilities in immune modulation, stem cell mobilization, and tissue regeneration, opening new avenues for treating degenerative diseases and advancing the integration of traditional Chinese medicine with modern biomedical innovation.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:37:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-23T16:37:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
口試委員審定書 I
誌謝 II
中文摘要 III
英文摘要 V
目次 VIII
圖次 XI
表次 XIII
第一章 緒論 1
1.1. 幾丁聚醣衍生物水凝膠之特性與生醫工程之應用 1
1.2. 水性生物可降解聚胺酯之特性與生醫工程之應用 2
1.3. 針灸之免疫調節機制與應用 3
1.4. 研究背景與動機 4
1.5. 參考文獻 5
第二章 10
結合冷凍凝膠/水凝膠生醫材料與針灸治療透過免疫調節促進糖尿病慢性傷口癒合 10
2.1. 前言 11
2.2. 材料與方法 12
2.2.1. 雙官能聚胺酯奈米粒子(DFPU)之合成與幾丁聚醣-聚胺酯水凝膠與冷凍凝膠之性質評估 12
2.2.2. 抗菌活性測試 14
2.2.3. 大鼠脂肪來源成體幹細胞(ADAS)之分離、培養與特性鑑定 14
2.2.4. 細胞活性與增生評估 14
2.2.5. ADAS 趨化遷移之體外評估 15
2.2.6. 動物實驗 15
2.2.7. 組織學與免疫組織化學分析 16
2.2.8. 免疫螢光染色分析 16
2.2.9. 酵素連結免疫吸附分析(ELISA) 17
2.2.10. 統計分析 17
2.3. 研究結果 17
2.3.1. 幾丁聚醣-聚胺酯水凝膠與冷凍凝膠之物化特性 17
2.3.2. 冷凍凝膠與水凝膠之抗菌活性與對 ADAS 的體外評估 18
2.3.3. 針灸對糖尿病慢性傷口大鼠之血糖與表皮體溫影響 18
2.3.4. 傷口癒合評估 19
2.3.5. 組織學分析與免疫螢光染色 19
2.3.6. 血清與傷口組織中補體與細胞激素表現 21
2.4. 討論 21
2.5. 結論 25
2.6. 參考文獻 26
第三章 50
無細胞自癒合三層結構之冷凍凝膠應用於兔子軟硬骨再生 50
3.1. 前言 51
3.2. 材料與方法 52
3.2.1. 水性雙官能聚胺酯奈米粒子(DFPU)分散液的合成與物化特性 52
3.2.2. 藥物負載三層水凝膠與冷凍凝膠(Y/DEX-TC)的製備與物化性質 53
3.2.3. 三層冷凍凝膠的體外水解與酵素降解評估及藥物釋放評估 55
3.2.4. 兔脂肪來源之間質幹細胞(RbADSCs)的分離、培養與特性鑑定 55
3.2.5. RbADSCs的遷移行為分析 56
3.2.6. 細胞增殖、骨與軟骨分化能力與染色分析 56
3.2.7. 兔子膝關節軟硬骨缺損模型實驗 57
3.2.8. 組織學與免疫組織化學分析(IHC) 58
3.2.9. 酵素連結免疫吸附分析(ELISA)分析 58
3.2.10. 統計分析 58
3.3. 研究結果 59
3.3.1. DFPU奈米粒子交聯劑的合成與特性分析 59
3.3.2. 載藥三層水凝膠及冷凍凝膠之特性 59
3.3.3. RbADSCs向載藥三層冷凍凝膠之體外遷移與載藥三層冷凍凝膠之藥物釋放行為 61
3.3.4. RbADSCs 在載藥三層冷凍凝膠中的體外增殖與軟硬骨分化 61
3.3.5. 體內軟硬骨組織的再生評估 62
3.3.6. 組織學分析 63
3.3.7. 再生軟硬骨組織中巨噬細胞的免疫螢光染色分析 64
3.3.8. 兔子血清與關節滑液中SDF-1與TGF-β1的蛋白表現 65
3.4. 討論 66
3.5. 結論 70
3.6. 參考文獻 70
第四章 95
基於聚多巴胺塗佈聚胺酯奈米交聯劑之可生物降解導電型自癒合水凝膠應用於帕金森氏症 95
4.1. 前言 96
4.2. 材料與方法 97
4.2.1. 雙官能水性聚胺酯(DFPU)作為奈米交聯劑的合成方法 97
4.2.2. 殼核型具導電性聚多巴胺塗佈包覆聚胺酯奈米粒子(PUD)奈米交聯劑之合成 98
4.2.3. 以 DFPU或PUD奈米交聯劑製備幾丁聚醣水凝膠 (CPU凝膠或CPUD凝膠) 98
4.2.4. 奈米交聯劑(DFPU與PUD)及自癒合水凝膠(CPUD凝膠與對照組CPU 凝膠)之特性分析 99
4.2.5. 自癒合水凝膠對神經幹細胞(NSCs)體外細胞活性、增殖與分化的影響 101
4.2.6. 抗氧化特性 102
4.2.7. 巨噬細胞體外發炎反應測試 103
4.2.8. 帕金森氏症(PD)動物實驗 103
4.2.9. 行為測試與電生理分析 105
4.2.10. 蘇木精-伊紅(H&E)與免疫組織化學染色分析 105
4.2.11. 統計分析 106
4.3. 研究結果 106
4.3.1. DFPU與PUD奈米顆粒的合成與特性分析 106
4.3.2. DFPU 與 PUD 交聯幾丁聚醣水凝膠(CPU 凝膠與 CPUD 凝膠)的製備與特性分析 108
4.3.3. CPUD 凝膠與 CPU 凝膠的流變特性與可注射性分析 109
4.3.4. NSCs體外細胞實驗 110
4.3.5. CPUD 凝膠與 CPU 凝膠的抗氧化與抗發炎能力 111
4.3.6. PD大鼠血清中 SDF-1 與 TGF-β1 的表現 112
4.3.7. PD大鼠的行為測試與電生理分析 113
4.3.8. 組織學與免疫組織化學分析 114
4.4. 討論 116
4.5. 結論 120
4.6. 參考文獻 121
第五章 總結論 156
第六章 著作 158
-
dc.language.isozh_TW-
dc.subject水性生物可降解聚胺酯zh_TW
dc.subject帕金森氏症zh_TW
dc.subject軟硬骨修復zh_TW
dc.subject慢性傷口癒合zh_TW
dc.subject免疫調節zh_TW
dc.subject組織工程zh_TW
dc.subject針灸zh_TW
dc.subject自癒合水凝膠zh_TW
dc.subject幾丁聚醣zh_TW
dc.subjectParkinson’s diseaseen
dc.subjectchitosanen
dc.subjectwaterborne biodegradable polyurethaneen
dc.subjectself-healing hydrogelen
dc.subjectacupunctureen
dc.subjecttissue engineeringen
dc.subjectimmunomodulationen
dc.subjectchronic wound healingen
dc.subjectosteochondral regenerationen
dc.title幾丁聚醣-聚胺酯功能性水凝膠結合針灸於退化性疾病之神經與組織再生應用zh_TW
dc.titleDevelopment of chitosan–polyurethane functional hydrogel combined with acupuncture in neural and tissue regeneration for degenerative diseasesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee游佳欣;張瑞芝;戴春暉;溫崇凱zh_TW
dc.contributor.oralexamcommitteeJiashing Yu;Jui-Chih Chang;Chun-Hwei Tai;Tsung-Kai Wenen
dc.subject.keyword幾丁聚醣,水性生物可降解聚胺酯,自癒合水凝膠,針灸,組織工程,免疫調節,慢性傷口癒合,軟硬骨修復,帕金森氏症,zh_TW
dc.subject.keywordchitosan,waterborne biodegradable polyurethane,self-healing hydrogel,acupuncture,tissue engineering,immunomodulation,chronic wound healing,osteochondral regeneration,Parkinson’s disease,en
dc.relation.page210-
dc.identifier.doi10.6342/NTU202501848-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-19-
dc.contributor.author-college工學院-
dc.contributor.author-dept綠色永續材料與精密元件博士學位學程-
dc.date.embargo-lift2030-07-14-
顯示於系所單位:綠色永續材料與精密元件博士學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-07-14
62.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved