Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98007
標題: 二氧化矽顆粒階級結構與表面特性對綠色輪胎動態機械性能的影響
Influence of Silica's Hierarchical Structure and Surface Texture on the Dynamic Mechanical Performance of Green Tires
作者: 戴恆彥
Heng-Yan Dai
指導教授: 戴子安
Chi-An Dai
共同指導教授: 謝之真
Chih-Chen Hsieh
關鍵字: 胎面膠,二氧化矽,矽烷耦合劑,小角度X光散射,動態機械分析儀,潘恩效應,
Tire Tread,Silica,Silane Coupling Agents,Small Angle X-ray Scattering (SAXS),Dynamic Mechanical Properties,Payne Effect,
出版年 : 2025
學位: 碩士
摘要: 本研究使用實驗室級之混煉機,混合二氧化矽和橡膠高分子,並探討其階級結構(hierarchical structure)與表面特性(surface texture)對綠色輪胎機械性質的影響。研究內容包括以下六個部分: (1)分析超高、高和中比表面積二氧化矽之粉末性質; (2)比較不同矽烷耦合劑混煉之胎面膠性能,(3)比較並分析二氧化矽表面性質對胎面膠性能之影響,(4)改變二氧化矽添加量,(5)分析低碳材料二氧化矽胎面膠樣品之性能,及(6)使用Gel network model對SAXS圖譜擬合並分析。我們使用新竹同步輻射研究中心(NSRRC-TPS13A1)之生物小角度X光散射(BioSAXS)進行實驗,從散射圖譜中得知二氧化矽粉末之基本顆粒大小(primary particle size)、碎形維度(fractal dimension)、二氧化矽聚集體大小(cluster size)及圍困橡膠尺寸大小(mesh size)等階級結構。我們使用動態機械分析儀(dynamic mechanical analysis)測量胎面膠樣品的機械性質,包括潘恩效應(Payne effect)、濕地抓地力(wet grip)、滾動阻力(rolling resistance)及剛性(stiffness)。磨耗(abrasion)則是使用耐磨耗滾筒進行量測。除此之外,我們也使用熱裂解氣相層析質譜儀(Pyrolysis GC/MS)分析矽烷耦合劑之相對殘餘量。
實驗結果顯示,比表面積與二氧化矽的原始顆粒大小及其碎形結構密切相關,進而影響其在胎面膠中的分散性與機械性質。於高比表面積系列中,S-SiO₂雖與230G-G具相似的碎形維度,但因原始顆粒較小,其BET值最高;而顆粒最大的E-9100因碎形結構較封閉,BET值介於兩者之間。中比表面積系列中,三種二氧化矽顆粒大小相近,但BET值差異則源自碎形維度變化,其中結構較開放的255EG-CO₂具有最高BET值。胎面膠性質方面,聚集體大小與BET值呈反比,聚集體越小,代表分散越佳,通常伴隨較低的滾動阻力與較高的濕地抓地力,但剛性略為下降。不同二氧化矽在各自最適添加量(超高比表面積:S/N/D分別為12/16.2/10.8 phr;高比表面積:G/E分別為9/12 phr;中比表面積:H/C/EG皆為6.4 phr)下,其聚集體尺寸及動態機械性質亦存在差異,其中S-SiO2於最適添加量下具有較佳性能。
This study utilized a laboratory-scale internal mixer to blend silica with rubber polymers, aiming to investigate how the hierarchical structure and surface texture of silica affect the mechanical properties of green tire tread compounds. The research is composed of six main sections: (1) analysis of the powder properties of ultra-high, high, and medium specific surface area silicas; (2) comparison of tread performance with different silane coupling agents; (3) evaluation of the influence of silica surface characteristics on compound performance; (4) investigation of the effects of varying silica loadings; (5) performance analysis of tread compounds incorporating low-carbon silicas; and (6) application of the gel network model to fit SAXS data. Small-angle X-ray scattering (BioSAXS) was conducted at the NSRRC TPS 13A1 beamtime to determine primary particle size, fractal dimension, cluster size, and rubber mesh size. The mechanical properties of tire tread were measured using dynamic mechanical analysis (DMA), including the Payne effect, wet grip, rolling resistance, and stiffness, while abrasion resistance was evaluated using a DIN abrasion tester. The residual content of silane coupling agents was further analyzed by Pyrolysis GC/MS.

Experimental results show that specific surface area is closely related to the primary particle size and fractal structure of silica, which in turn affects dispersion and mechanical performance in rubber compounds. Among the high specific surface area silicas, although S-SiO₂ and 230G-G share similar fractal dimensions, S-SiO₂ possesses a higher BET surface area due to its smaller primary particles. Conversely, E-9100, with the largest particles and lowest fractal dimension, exhibits a BET value between the two. In the medium specific surface area group, all three silicas have comparable particle sizes, yet BET values differ due to variations in fractal dimension, with 255EG-CO₂ having the highest BET value. Generally, a smaller cluster size—associated with a higher BET value—indicates better dispersion, leading to lower rolling resistance and improved wet grip, but with slightly reduced stiffness. Each silica also shows distinct optimal loading levels (ultra-high specific surface area: 12, 16.2, and 10.8 phr for S, N, and D, respectively; high specific surface area: 9 and 12 phr for G and E; medium specific surface area: 6.4 phr for H, C, and EG), under which the best balance between cluster size and mechanical properties was observed. Specifically, S-SiO2 demonstrated superior performance at their respective optimal loadings.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98007
DOI: 10.6342/NTU202501597
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2030-07-17
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.95 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved