請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98007完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 戴子安 | zh_TW |
| dc.contributor.advisor | Chi-An Dai | en |
| dc.contributor.author | 戴恆彥 | zh_TW |
| dc.contributor.author | Heng-Yan Dai | en |
| dc.date.accessioned | 2025-07-23T16:26:11Z | - |
| dc.date.available | 2025-07-24 | - |
| dc.date.copyright | 2025-07-23 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-09 | - |
| dc.identifier.citation | [1] H.-D.Luginsland and C.Röben, "The development of sulphur-functional silanes as coupling agents in silica-reinforced rubber compounds.Their historical development over several decades," Gummi Fasern Kunststoffe, vol. 68, no. 11, pp. 734-737, 2015.
[2] Ko JY, Prakashan K, Kim JK. New silane coupling agents for silica tire tread compounds. Journal of Elastomers & Plastics. 2012;44(6):549-562. [3] Salkhi Khasraghi S, Shojaei A, Momenilandi M. Enhancing tire tread performance with combined nano and micro-silica particles in styrene butadiene rubber/butadiene rubber compound. Journal of Elastomers & Plastics. 2023;55(8):1213-1235. [4] Woong Kim, Eunho Yu, Gyeongchan Ryu. Silica dispersion and properties of silica filled ESBR/BR/NR ternary blend composites by applying wet masterbatch technology, Polymer Testing, Volume 84, 2020, 106350. [5] I. Ward, Mechanical properties of solid polymers - Second Edition, 1983. [6] M.-J. Wang, "Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates," Rubber Chemistry and Technology, vol. 71, no. 3, pp. 520-589, 1998. [7] A. I. Medalia, "Heat Generation in Elastomer Compounds: Causes and Effects," Rubber Chemistry and Technology, vol. 64, no. 3, pp. 481-492, 1991. [8] H. S. Lee, "Development of a new solution for viscoelastic wave propagation of pavement structures and its use in dynamic backcalculation," Thesis of Civil Enginerring of Michigan State University, 2013. [9] N. Hasheminejad, "Characterizing the Complex Modulusof Asphalt Concrete Using a Scanning LaserDoppler Vibrometer," Materials, vol. 12, no. 3542, 2019. [10] J. Fröhlich, W. Niedermeier and H. Luginsland, "The effect of filler–filler and filler–elastomer interaction on rubber reinforcement," Composites, vol. 36, no. 4, pp. 449-460, 2005. [11] F. Yatusyanagi, N. Suzuki and M. Ito, "Effects of Surface Chemistry of Silica Particles on the Mechanical Properties of Silica Filled Styrene–Butadiene Rubber Systems," Polymer Journal, vol. 34, no. 5, pp. 332-339, 2002. [12] G. Heinrich, M. Kluüppel and T. Vilgis, "Reinforcement Theories," in Physical Properties of Polymers Handbook, pp. 599-608. [13] S. N. Lawandy, S. F. Halim and N. A. Darwish, "Structure aggregation of carbon black in ethylene-propylene diene polymer," eXPRESS Polymer Letters, vol. 3, no. 3, pp. 152-158, 2009. [14] B. Freund and W. Niedermeier, "Molecular interpretation of the Payne-effect and influence of fillers," *Kautschuk Gummi Kunststoffe*, vol. 51, no. 6, pp. 444-449, 1998. [15] D. Lockhorn and M. Klüppel, "Structure–property relationships of silica/silane formulations in natural rubber, isoprene rubber and styrene–butadiene rubber composites," *Journal of Applied Polymer Science*, 2019. [16] A. I. Medalia, "Effective volume of aggregates of carbon black from electron microscopy; application to vehicle absorption and to die swell of filled rubber," Journal of Colloid and Interface Science, vol. 32, no. 1, pp. 115-131, 1970. [17] K. Sahakaro, "Mechanism of reinforcement using nanofillers in rubber nanocomposites," Progress in Rubber Nanocomposites, 2017. [18] N. Vennemann, M. Wu, and M. Heinz, "Thermoelastic properties and relaxation behavior of S-SBR/silica vulcanizates," Rubber World, 2012. [19] P. P. A. Smit, "Glass Transition in Carbon Black Reinforced Rubber," Rubber Chemistry and Technology, vol. 41, no. 5, pp. 1194-1202, 1968. [20] P. Zhang, M. Morris and D. Doshi, "MATERIALS DEVELOPMENT FOR LOWERING ROLLING RESISTANCE OF TIRES," Rubber Chemistry and Technology, vol. 89, no. 1, pp. 79-116, 2016. [21] S. Futamura, "Deformation Index—Concept for Hysteretic Energy-Loss Process," Rubber Chemistry and Technology, vol. 64, no. 1, pp. 57-64, 1991. [22] A. L. Gal, X. Yang and M. Klüppel, "Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis," J. Chem. Phys, vol. 123, no. 1, p. 14704, 2005. [23] G. Heinrich and H. Klüppel, "The role of polymer-filler interphase in reinforcement of elastomers," Kautschuk und Gummi Kunststoffe, vol. 57, no. 9, pp. 452-454, 2004. [24] S. Merabia, P. Sotta and D. R. Long, "A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins effects)," American Chemical Society, vol. 41, no. 21, pp. 8252-8266, 2008. [25] H. Luginsland, "Reactivity of the sulfur chains of the tetrasulfane silane Si69 and the disulfane silane TESPD," Kautschuk Gummi Kunststoffe, 2000. [26] J. Wu, L. Ling, J. Xie, G. Ma, and B. Wang, "Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane: Experimental and theoretical study on the surface interaction," Chemical Physics Letters, 2013. [27] J. t. Brinke, S. Debnath, L. Reuvekamp and J. Noordermeer, "Mechanistic aspects of the role of coupling agents in silica–rubber composites," Composites Science and Technology, pp. 1165-1174, 2003. [28] U. Goerl, A. Hunsche, A. Mueller and H. G. Koban, "Investigations into the Silica/Silane Reaction System," Rubber Chemistry and Technology, vol. 70, no. 4, pp. 608-623, 1997. [29] F. Vilmin, I. Bottero, A. Travert, N. Malicki, F. Gaboriaud, A. Trivella and F. Thibault-Starzyk, "Reactivity of Bis[3-(triethoxysilyl)propyl] Tetrasulfide (TESPT) Silane Coupling Agent over Hydrated Silica: Operando IR." [30] A. Hasse, O. Klockmann, A. Wehmeier, H. Luginsland, “Influence of the amount of diand polysulfane silanes on the crosslinking density of silica filled rubber compounds,”Kautschuk Gummi Kunststoffe, 2002. [31] A. Hasse and H. Luginsland. “Vulcanization behavior of disulfidic and polysulfidic organic silanes.” in IRC Rubber Conference. 2000. [32] Chang, Y.-S., Improvement of Dynamic Property for Green Tires with Organosilanes and Highly Dispersive Silicas. National Taiwan University, 2020. [33] A. T. Brinke, "Silica Reinforced Tyre Rubbers," in Ph.D. thesis University of Twente, 2002. [34] J. Teixeira, "Small-Angle Scattering by Fractal Systems," International Union of Crystallography, pp. 781-785, 1988. [35] O. M. Londoño, P. Tancredi, P. Rivas, D. Muraca, L. M. Socolovsky and M. Knobel, "Small-Angle X-Ray Scattering to Analyze the Morphological Properties of Nanoparticulated Systems," in Handbook of Materials. [36] Pei-Xin, S., Fabrication of Silica-Reinforced Rubbers with Novel Additives:Correlation between Filler Structure and Dynamic Property. National Taiwan University, 2021. [37] D.-Y. Kao, Research on the effects of New Silane Coupling Agents on the Dynamic Performance of Silica-Filled Tread Compound, Taipei, Taiwan: National Taiwan University, 2020. [38] Ren, Y. and X. Zuo, Synchrotron X‐ray and neutron diffraction, total scattering, and small‐angle scattering techniques for rechargeable battery research. Small Methods, 2018. 2(8): p. 1800064. [39] Tsao, C.-S., Theory of X-ray and Neutron Scattering. [40] D. W. SCHAEFER, "Polymers, Fractals, and Ceramic Materials," Science, vol. 243, no. 4894, pp. 1023-1027, 1989. [41] T. Maekawa, "Tire tread and tire". JP Patent US20180327572A1, 8 5 2018. [42] Y. Li, M. J. Wang, T. Zhang, F. Zhang and X. Fu, "Study on Dispersion Morphology of Silica in Rubber," Rubber Chemistry and Technology, vol. 67, no. 4, pp. 639-699, 1994. [43] Chen, S.-H. and J. Teixeira, Structure and fractal dimension of protein-detergent complexes. Physical review letters, 1986. 57(20): p. 2583. [44] Evmenenko, G., et al., SANS study of surfactant ordering in κ-carrageenan/cetylpyridinium chloride complexes. Polymer, 2001. 42(7): p. 2907-2913. [45] Lin, H.-Y., Development of Green Tires for EVs: Investigation of Hierarchical Aggregation Structure of Silica and New Additives for Improving Dynamic Properties. [46] Sapkota, J., Influence of clay modification on curing kinetics of natural rubber nanocomposites. 2011. [47] H.-E. Lin, Non-Equilibrium Dynamic Mixing Process and Dispersant Reactions for High Efficiency Green Tires:, 2018. [48] Z.-H. Zheng, Effect of mixing process on the dynamic mechanical properties of silica-filled rubber system: mixing parameters and the reactivity of silane coupling agent, Taipei, Taiwan: National Taiwan University, 2018. [49] S. Ha, S. Kim and H. Jeong, "Investigation of Reaction Rate of Bis (triethoxysilylpropyl) tetrasulphide in Silica-filled Compound using Pyrolysis-gas Chromatography/mass Spectrometry," Asian Journal of Chemistry, vol. 25, no. 9, pp. 5245-5250, 2013. [50] G. Tian, "Size-dependent adsorption and its application indetermining the number of surfactant moleculeadsorbed on multimodal SiO2particles by2D-DCS," Royal Society of Chemistry, vol. 143, pp. 4630-4637, 2018. [51] Kim, W., Yu, E., Ryu, G., Kim, D., Ryu, C., Seo, Y., & Kim, W. (2020). Silica dispersion and properties of silica filled ESBR/BR/NR ternary blend composites by applying wet masterbatch technology. Polymer Testing, 84, 106350. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98007 | - |
| dc.description.abstract | 本研究使用實驗室級之混煉機,混合二氧化矽和橡膠高分子,並探討其階級結構(hierarchical structure)與表面特性(surface texture)對綠色輪胎機械性質的影響。研究內容包括以下六個部分: (1)分析超高、高和中比表面積二氧化矽之粉末性質; (2)比較不同矽烷耦合劑混煉之胎面膠性能,(3)比較並分析二氧化矽表面性質對胎面膠性能之影響,(4)改變二氧化矽添加量,(5)分析低碳材料二氧化矽胎面膠樣品之性能,及(6)使用Gel network model對SAXS圖譜擬合並分析。我們使用新竹同步輻射研究中心(NSRRC-TPS13A1)之生物小角度X光散射(BioSAXS)進行實驗,從散射圖譜中得知二氧化矽粉末之基本顆粒大小(primary particle size)、碎形維度(fractal dimension)、二氧化矽聚集體大小(cluster size)及圍困橡膠尺寸大小(mesh size)等階級結構。我們使用動態機械分析儀(dynamic mechanical analysis)測量胎面膠樣品的機械性質,包括潘恩效應(Payne effect)、濕地抓地力(wet grip)、滾動阻力(rolling resistance)及剛性(stiffness)。磨耗(abrasion)則是使用耐磨耗滾筒進行量測。除此之外,我們也使用熱裂解氣相層析質譜儀(Pyrolysis GC/MS)分析矽烷耦合劑之相對殘餘量。
實驗結果顯示,比表面積與二氧化矽的原始顆粒大小及其碎形結構密切相關,進而影響其在胎面膠中的分散性與機械性質。於高比表面積系列中,S-SiO₂雖與230G-G具相似的碎形維度,但因原始顆粒較小,其BET值最高;而顆粒最大的E-9100因碎形結構較封閉,BET值介於兩者之間。中比表面積系列中,三種二氧化矽顆粒大小相近,但BET值差異則源自碎形維度變化,其中結構較開放的255EG-CO₂具有最高BET值。胎面膠性質方面,聚集體大小與BET值呈反比,聚集體越小,代表分散越佳,通常伴隨較低的滾動阻力與較高的濕地抓地力,但剛性略為下降。不同二氧化矽在各自最適添加量(超高比表面積:S/N/D分別為12/16.2/10.8 phr;高比表面積:G/E分別為9/12 phr;中比表面積:H/C/EG皆為6.4 phr)下,其聚集體尺寸及動態機械性質亦存在差異,其中S-SiO2於最適添加量下具有較佳性能。 | zh_TW |
| dc.description.abstract | This study utilized a laboratory-scale internal mixer to blend silica with rubber polymers, aiming to investigate how the hierarchical structure and surface texture of silica affect the mechanical properties of green tire tread compounds. The research is composed of six main sections: (1) analysis of the powder properties of ultra-high, high, and medium specific surface area silicas; (2) comparison of tread performance with different silane coupling agents; (3) evaluation of the influence of silica surface characteristics on compound performance; (4) investigation of the effects of varying silica loadings; (5) performance analysis of tread compounds incorporating low-carbon silicas; and (6) application of the gel network model to fit SAXS data. Small-angle X-ray scattering (BioSAXS) was conducted at the NSRRC TPS 13A1 beamtime to determine primary particle size, fractal dimension, cluster size, and rubber mesh size. The mechanical properties of tire tread were measured using dynamic mechanical analysis (DMA), including the Payne effect, wet grip, rolling resistance, and stiffness, while abrasion resistance was evaluated using a DIN abrasion tester. The residual content of silane coupling agents was further analyzed by Pyrolysis GC/MS.
Experimental results show that specific surface area is closely related to the primary particle size and fractal structure of silica, which in turn affects dispersion and mechanical performance in rubber compounds. Among the high specific surface area silicas, although S-SiO₂ and 230G-G share similar fractal dimensions, S-SiO₂ possesses a higher BET surface area due to its smaller primary particles. Conversely, E-9100, with the largest particles and lowest fractal dimension, exhibits a BET value between the two. In the medium specific surface area group, all three silicas have comparable particle sizes, yet BET values differ due to variations in fractal dimension, with 255EG-CO₂ having the highest BET value. Generally, a smaller cluster size—associated with a higher BET value—indicates better dispersion, leading to lower rolling resistance and improved wet grip, but with slightly reduced stiffness. Each silica also shows distinct optimal loading levels (ultra-high specific surface area: 12, 16.2, and 10.8 phr for S, N, and D, respectively; high specific surface area: 9 and 12 phr for G and E; medium specific surface area: 6.4 phr for H, C, and EG), under which the best balance between cluster size and mechanical properties was observed. Specifically, S-SiO2 demonstrated superior performance at their respective optimal loadings. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:26:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-07-23T16:26:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目次 v 圖次 viii 表次 xiii Chapter 1 緒論 1 Chapter 2 文獻回顧 3 2.1 橡膠動態性質理論 3 2.1.1 動態機械性質分析 3 2.1.2 時間溫度等效原理 5 2.2 填料與橡膠的作用力 7 2.2.1 潘恩效應 7 2.2.2 圍困橡膠 8 2.2.3 束縛橡膠 9 2.2.4 玻璃轉移溫度及玻璃態橡膠 10 2.3 矽烷耦合劑在橡膠中的作用 12 2.3.1 矽烷耦合劑與二氧化矽反應 12 2.3.2 矽烷耦合劑與橡膠反應 14 2.4 小角度X光散射原理 16 2.4.1 X光散射理論 16 2.4.2 形狀因子與結構因子 21 2.4.3 碎形結構 23 2.4.4 Gel network model 26 Chapter 3 實驗方法與測量方式 28 3.1 實驗儀器 28 3.2 實驗材料 29 3.3 樣品的製備 31 3.4 實驗儀器及測量方法 32 3.4.1 測量矽烷耦合劑之反應性 32 3.4.2 動態機械性質測量 33 3.4.3 潘恩效應 33 3.4.4 小角度X光散射 33 Chapter 4 實驗結果與討論 36 4.1 二氧化矽性質分析 36 4.1.1 超高比表面積二氧化矽性質分析 36 4.1.2 中比表面積二氧化矽性質分析 38 4.1.3 結果與討論 40 4.2 超高比表面積二氧化矽胎面膠樣品分析 41 4.2.1 實驗設計 41 4.2.2 超高比表面積二氧化矽搭配Si69的反應性及性質分析 41 4.2.3 超高比表面積二氧化矽搭配NXT的反應性及性質分析 49 4.2.4 超高比表面積二氧化矽搭配Si75的反應性及性質分析 56 4.2.5 比較超高比表面積二氧化矽搭配三種矽烷耦合劑的性能 64 4.2.6 結果與討論 68 4.3 探討二氧化矽表面性質對胎面膠性能之影響 69 4.3.1 實驗設計 69 4.3.2 230G-G搭配Si69的反應性及性質分析 69 4.3.3 高比表面積二氧化矽E9100搭配Si69的反應性及性質分析 77 4.3.4 二氧化矽表面性質和胎面膠動態機械性質關係 85 4.3.5 結果與討論 90 4.4 改變二氧化矽添加量 91 4.4.1 實驗設計 91 4.4.2 矽烷耦合劑反應性結果 91 4.4.3 小角度X光散射 92 4.4.4 動態機械性質分析(潘恩效應) 95 4.4.5 動態機械性質分析(濕地抓地力) 97 4.4.6 動態機械性質分析(滾動阻力和剛性) 99 4.4.7 結果與討論 102 4.5 中比表面積二氧化矽搭配Si69的反應性及性質分析 103 4.5.1 實驗設計 103 4.5.2 255EG-RH搭配Si69的反應性及性質分析 103 4.5.3 255EG-CO2搭配Si69的反應性及性質分析 110 4.5.4 255 EG搭配Si69的反應性及性質分析 117 4.5.5 二氧化矽表面性質和胎面膠動態機械性質關係 123 4.5.6 結果與討論 126 Chapter 5 結論 127 附錄 129 參考文獻 140 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 二氧化矽 | zh_TW |
| dc.subject | 潘恩效應 | zh_TW |
| dc.subject | 動態機械分析儀 | zh_TW |
| dc.subject | 小角度X光散射 | zh_TW |
| dc.subject | 矽烷耦合劑 | zh_TW |
| dc.subject | 胎面膠 | zh_TW |
| dc.subject | Dynamic Mechanical Properties | en |
| dc.subject | Small Angle X-ray Scattering (SAXS) | en |
| dc.subject | Silane Coupling Agents | en |
| dc.subject | Silica | en |
| dc.subject | Tire Tread | en |
| dc.subject | Payne Effect | en |
| dc.title | 二氧化矽顆粒階級結構與表面特性對綠色輪胎動態機械性能的影響 | zh_TW |
| dc.title | Influence of Silica's Hierarchical Structure and Surface Texture on the Dynamic Mechanical Performance of Green Tires | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 謝之真 | zh_TW |
| dc.contributor.coadvisor | Chih-Chen Hsieh | en |
| dc.contributor.oralexamcommittee | 楊長謀;趙基揚;曹正熙;邱文英 | zh_TW |
| dc.contributor.oralexamcommittee | CHANG-MOU YANG;Chi-Yang Chao;Cheng-Si Tsao;WEN-YING CHIU | en |
| dc.subject.keyword | 胎面膠,二氧化矽,矽烷耦合劑,小角度X光散射,動態機械分析儀,潘恩效應, | zh_TW |
| dc.subject.keyword | Tire Tread,Silica,Silane Coupling Agents,Small Angle X-ray Scattering (SAXS),Dynamic Mechanical Properties,Payne Effect, | en |
| dc.relation.page | 144 | - |
| dc.identifier.doi | 10.6342/NTU202501597 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2030-07-17 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.95 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
