請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97963| 標題: | 海藻酸/二氧化矽奈米複合物水凝膠於氣體感測及分子緩慢釋放 Alginate/silicon dioxide nanocomposite hydrogels for gas sensing and sustained molecule release |
| 作者: | 許又澐 Yu-Yun Hsu |
| 指導教授: | 葉伊純 Yi-Cheun Yeh |
| 關鍵字: | 二氧化矽,鑭系,海藻酸水凝膠,胺類氣體感測,分子釋放, Silica,lanthanide,alginate-based hydrogel,amine vapor sensing,molecule release, |
| 出版年 : | 2025 |
| 學位: | 碩士 |
| 摘要: | 以海藻酸為基材的奈米複合物水凝膠,因其組成成分而展現出多樣的結構和功能。然而,將多功能化奈米粒子整合進海藻酸水凝膠的做法仍鮮少被探討。本研究中,二氧化矽(SiO2)奈米粒子表面以三種配體功能化,分別是水楊醛(SA)、噻吩甲酰三氟丙酮(TTA)及 N,N-雙(羧甲基)-L-賴氨酸(NTA),構建具多重功能的表面。其中,SA 負責為銪離子提供錨定位點,而 TTA 與 NTA 則進一步與銪離子配位,分別增強其光致發光強度和引入胺基官能基團。我們依據表面配體的不同,合成了六種表面含鑭系元素的奈米粒子,並將其摻入由海藻酸二醛(ADA)和以己二酸二肼修飾之海藻酸(AADH)交聯所形成的腙鍵網絡中,其奈米複合物水凝膠展現出增強的發光特性、可調式的機械強度、優異的穩定性,以及氣體感測能力。其中,T1N0 奈米粒子與其乾膠呈現最高的光致發光量子產率(PLQY)分別是12.37% 和 5.86%。另外,透過乾膠感測前後的螢光變化進行線性判別分析(LDA),ADA/AADH/T2N1感測器可分類出苯胺氣體,其偵測極限低至 88 ppb,於環境監測領域有相當潛力。在另一個研究中,將以3-環氧丙氧基丙基三甲氧基矽烷 (GPTS)修飾的二氧化矽奈米粒子導入AADH中,透過環氧基與肼基之開環反應形成高交聯密度的網絡。此系統可有效抑制被動擴散並產生均勻的超音波加熱效應。當局部加熱至45度時,網絡及孔洞更加緻密,進而延緩分子的釋放速率。其製備方式簡易,能即時調控分子釋放速率,極適用於多元生醫應用。整體而言,利用表面官能基修飾的二氧化矽奈米粒子可將海藻酸水凝膠優化成具先進感測與精準控制釋放能力的多功能平台。 Alginate‐based nanocomposite hydrogels offer tunable structural and functional properties dictated by their components; however, the incorporation of multi-functionalized nanoparticles is still rarely explored. Here, silica nanoparticles were co-functionalized with salicylaldehyde (SA), thenoyltrifluoroacetone (TTA), and N, N'-bis(carboxymethyl)-L-lysine (NTA) to create a multi-functional surface. SA serves as an anchoring site for Eu³⁺ ions, while TTA enhances photoluminescence and NTA introduces primary amine groups through additional Eu³⁺ coordination, respectively. Six different lanthanide-containing silica nanoparticles, defined by their surface ligands, were synthesized and incorporated into a hydrazone-crosslinked network of alginate dialdehyde (ADA) and adipic dihydrazide-modified alginate (AADH). The resulting nanocomposite hydrogels exhibit enhanced photoluminescence, tunable mechanical strength, high long-term stability, and vapor-phase sensing capability. Among these, the T1N0 nanoparticles and their corresponding lyophilized hydrogels exhibited the highest photoluminescence quantum yield (PLQY), reaching 12.37% and 5.86%, respectively. Notably, linear discriminant analysis (LDA) of their luminescence profiles enabled the selective detection of aniline vapor, with the ADA/AADH/T2N1 sensor achieving a limit of detection (LOD) as low as 88 ppb, demonstrating their potential for environmental monitoring. In another study, the incorporation of silica nanoparticles functionalized with (3-glycidoxypropyl)trimethoxysilane (SiO2@GPTS) into AADH leads to the formation of a densely crosslinked network by epoxide-hydrazide ring-opening reaction. This network limits passive diffusion and provides a uniform ultrasound‐induced heating. Localized heating to 45℃ further densifies the network, reduces pore size, and prolongs the release. This straightforward approach enables facile manufacturing, making it well-suited for diverse biomedical applications. Overall, this dual-functional design approach highlights a versatile platform for both advanced sensing and precisely controlled biomedical delivery applications. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97963 |
| DOI: | 10.6342/NTU202502000 |
| 全文授權: | 同意授權(限校園內公開) |
| 電子全文公開日期: | 2030-07-17 |
| 顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 9.18 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
