Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97963
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉伊純zh_TW
dc.contributor.advisorYi-Cheun Yehen
dc.contributor.author許又澐zh_TW
dc.contributor.authorYu-Yun Hsuen
dc.date.accessioned2025-07-23T16:15:59Z-
dc.date.available2025-09-09-
dc.date.copyright2025-07-23-
dc.date.issued2025-
dc.date.submitted2025-07-17-
dc.identifier.citation1. Guo, X.; Wang, Y.; Qin, Y.; Shen, P.; Peng, Q., Structures, properties and application of alginic acid: A review. Int. J. Biol. Macromol. 2020, 162, 618-628.
2. Raus, R. A.; Nawawi, W. M. F. W.; Nasaruddin, R. R., Alginate and alginate composites for biomedical applications. Asian J. Pharm. Sci. 2021, 16 (3), 280-306.
3. Zhang, M.; Zhao, X., Alginate hydrogel dressings for advanced wound management. Int. J. Biol. Macromol. 2020, 162, 1414-1428.
4. Li, M.; Li, H.; Li, X.; Zhu, H.; Xu, Z.; Liu, L.; Ma, J.; Zhang, M., A bioinspired alginate-gum arabic hydrogel with micro-/nanoscale structures for controlled drug release in chronic wound healing. ACS Appl. Mater. Interfaces 2017, 9 (27), 22160-22175.
5. Meng, L.; Liu, D.; Liu, E.; Ding, S.; Li, W., Polyacrylamide/sodium alginate-based carbon nanocomposite conductive hydrogels for wearable flexible devices. New J. Chem. 2025.
6. Li, Y.; Xu, T.; Tu, Z.; Dai, W.; Xue, Y.; Tang, C.; Gao, W.; Mao, C.; Lei, B.; Lin, C., Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair. Theranostics 2020, 10 (11), 4929-4943.
7. Onbas, R.; Yesil‐Celiktas, O., Synthesis of alginate‐silica hybrid hydrogel for biocatalytic conversion by β‐glucosidase in microreactor. Eng. Life Sci. 2019, 19 (1), 37-46.
8. Zhanbassynova, A.; Mukasheva, F.; Abilev, M.; Berillo, D.; Trifonov, A.; Akilbekova, D., Impact of Hydroxyapatite on Gelatin/Oxidized Alginate 3D-Printed Cryogel Scaffolds. Gels 2024, 10 (6), 406.
9. Tong, Y. L.; Yang, K.; Wei, W.; Gao, L. T.; Li, P. C.; Zhao, X. Y.; Chen,
52
Y. M.; Li, J.; Li, H.; Miyatake, H., A novel red fluorescent and dynamic nanocomposite hydrogel based on chitosan and alginate doped with inclusion complex of carbon dots. Carbohydr. Polym. 2024, 342, 122203.
10. Zhuang, Y.; Yu, F.; Chen, H.; Zheng, J.; Ma, J.; Chen, J., Alginate/graphene double-network nanocomposite hydrogel beads with low-swelling, enhanced mechanical properties, and enhanced adsorption capacity. J. Mater. Chem. A 2016, 4 (28), 10885-10892.
11. Gunatilake, U. B.; Garcia-Rey, S.; Ojeda, E.; Basabe-Desmonts, L.; Benito-Lopez, F., TiO2 nanotubes alginate hydrogel scaffold for rapid sensing of sweat biomarkers: lactate and glucose. ACS Appl. Mater. Interfaces. 2021, 13 (31), 37734-37745.
12. Bora, A.; Karak, N., Biobased nanocomposite hydrogels derived from renewable resources for biomedical applications. J. MACROMOL. SCI. A. 2024, 61 (11), 845-862.
13. Uysal, E.; Ates, S.; Safaltin, S.; Dikmetas, D. N.; Devecioglu, D.; Guler, F. K.; Gurmen, S., Synthesis of calcium, copper and iron alginate hydrogels doped with Ag nanoparticles produced by chemical reduction method. Mater. Chem. Phys. 2022, 281, 125843.
14. Anspach, A.; Bider, F.; Völkl, A. R.; Klupp Taylor, R. N.; Boccaccini, A. R., Incorporating silica nanoparticles with silver patches into alginate-based bioinks for 3D bioprinting. MRS Commun. 2024, 14 (6), 1460-1466.
15. Hernández-González, A. C.; Téllez-Jurado, L.; Rodríguez-Lorenzo, L. M., Preparation of covalently bonded silica-alginate hybrid hydrogels by SCHIFF base and sol-gel reactions. Carbohydr. Polym. 2021, 267, 118186.
16. Maji, K.; Dasgupta, S.; Bhaskar, R.; Gupta, M. K., Photo-crosslinked alginate nano-hydroxyapatite paste for bone tissue engineering. Biomed. Mater. 2020, 15 (5), 055019.
53
17. Emami, Z.; Ehsani, M.; Zandi, M.; Daemi, H.; Ghanian, M.-H.; Foudazi, R., Modified hydroxyapatite nanoparticles reinforced nanocomposite hydrogels based on gelatin/oxidized alginate via Schiff base reaction. Carbohydr. Polym. Technol. Appl. 2021, 2, 100056.
18. Sen, P.; Bhattacharya, P.; Mukherjee, G.; Ganguly, J.; Marik, B.; Thapliyal, D.; Verma, S.; Verros, G. D.; Chauhan, M. S.; Arya, R. K., Advancements in Doping Strategies for Enhanced Photocatalysts and Adsorbents in Environmental Remediation. Technologies 2023, 11 (5), 144.
19. Wang, J.; Li, K.; Yuan, H., Preparation of Ag-Metal organic frameworks-loaded Sodium Alginate Hydrogel for the treatment of periodontitis. Sci. Rep. 2025, 15 (1), 800.
20. Thoniyot, P.; Tan, M. J.; Karim, A. A.; Young, D. J.; Loh, X. J., Nanoparticle–hydrogel composites: Concept, design, and applications of these promising, multi‐functional materials. Adv. Sci. 2015, 2 (1-2), 1400010.
21. Zhang, M.; Choi, W.; Kim, M.; Choi, J.; Zang, X.; Ren, Y.; Chen, H.; Tsukruk, V.; Peng, J.; Liu, Y., Recent Advances in Environmentally Friendly Dual‐crosslinking Polymer Networks. Angew. Chem. Int. Ed. 2024, 63 (24), e202318035.
22. Choi, C.; Kim, S.; Cha, C., Dual-functional alginate crosslinker: Independent control of crosslinking density and cell adhesive properties of hydrogels via separate conjugation pathways. Carbohydr. Polym. 2021, 252, 117128.
23. Tahir, I.; Floreani, R., Dual-crosslinked alginate-based hydrogels with tunable mechanical properties for cultured meat. Foods 2022, 11 (18), 2829.
24. Ramachandran, R.; Jung, D.; Spokoyny, A. M., Cross-linking dots on metal oxides. NPG Asia Mater. 2019, 11 (1), 19.
25. Bao, G.; Wen, S.; Lin, G.; Yuan, J.; Lin, J.; Wong, K.-L.; Bünzli, J.-C. G.; Jin, D., Learning from lanthanide complexes: The development of dye-lanthanide
54
nanoparticles and their biomedical applications. Coord. Chem. Rev. 2021, 429, 213642.
26. Trupp, L.; Marchi, M. C.; Barja, B. C., Lanthanide–based luminescent hybrid silica materials prepared by sol-gel methodologies: a review. J. Sol-Gel Sci. Technol. 2022, 102 (1), 63-85.
27. Mutti, A.; Santos, J.; Cavalcante, D.; Gomes, A.; Job, A.; Teixeira, G.; Pires, A.; Lima, S., Design of a red-emitter hybrid material for bioimaging: europium complexes grafted on silica particles. Mater. Today Chem. 2019, 14, 100204.
28. Armelao, L.; Quici, S.; Barigelletti, F.; Accorsi, G.; Bottaro, G.; Cavazzini, M.; Tondello, E., Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials. Coord. Chem. Rev. 2010, 254 (5-6), 487-505.
29. Tomina, V. V.; Stolyarchuk, N. V.; Katelnikovas, A.; Misevicius, M.; Kanuchova, M.; Kareiva, A.; Beganskienė, A.; Melnyk, I. V., Preparation and luminescence properties of europium (III)-loaded aminosilica spherical particles. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 608, 125552.
30. Lou, C.; Yang, C.; Zheng, W.; Liu, X.; Zhang, J., Atomic layer deposition of ZnO on SnO2 nanospheres for enhanced formaldehyde detection. Sens. Actuators B: Chem. 2021, 329, 129218.
31. Xie, S.; Dai, T.; Li, F.; Liu, F.; Xu, Q.; Zhu, A.; Zhang, X., Shape memory luminescent cellulose/chitosan hydrogel for high sensitive detection of formaldehyde. Int. J. Biol. Macromol. 2023, 233, 123570.
32. Green, K. N.; Viswanathan, S.; Rojas-Quijano, F. A.; Kovacs, Z.; Sherry, A. D., Europium (III) DOTA-derivatives having ketone donor pendant arms display dramatically slower water exchange. Inorg. Chem. 2011, 50 (5), 1648-1655.
33. Saita, S.; Kawasaki, H., Origin of the fluorescence in silica-based nanoparticles synthesized from aminosilane coupling agents. J. Lumin. 2021, 232, 117849.
55
34. Thor, W.; Kai, H.-Y.; Yeung, Y.-H.; Wu, Y.; Cheung, T.-L.; Tam, L. K.; Zhang, Y.; Charbonnière, L. J.; Tanner, P. A.; Wong, K.-L., Unearthing the Real-Time Excited State Dynamics from Antenna to Rare Earth Ions Using Ultrafast Transient Absorption. JACS Au 2024, 4 (10), 3813-3822.
35. Morais, A. F.; Silva, I. G.; Lima, B. c. C.; Garcia, F. A.; Mustafa, D., Coordination of Eu3+ activators in ZnAlEu layered double hydroxides intercalated by isophthalate and nitrilotriacetate. ACS Omega. 2020, 5 (37), 23778-23785.
36. Steemers, F. J.; Verboom, W.; Reinhoudt, D. N.; van der Tol, E. B.; Verhoeven, J. W., New sensitizer-modified calix [4] arenes enabling near-UV excitation of complexed luminescent lanthanide ions. J. Am. Chem. Soc. 1995, 117 (37), 9408-9414.
37. Ju, G.; Hu, Y.; Chen, L.; Wang, X.; Mu, Z., Concentration quenching of persistent luminescence. Phys. B: Condens. Matter. 2013, 415, 1-4.
38. Johnson, N. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H.; Almutairi, A., Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139 (8), 3275-3282.
39. Azariah, A. N.; Hameed, A. H.; Thenappan, T.; Noel, M.; Ravi, G., Crystal growth and characterization of 4-nitro-4′-methoxy benzylidene aniline (NMOBA). Mater. Chem. Phys. 2004, 88 (1), 90-96.
40. Ikemoto, Y.; Harada, Y.; Tanaka, M.; Nishimura, S.-n.; Murakami, D.; Kurahashi, N.; Moriwaki, T.; Yamazoe, K.; Washizu, H.; Ishii, Y., Infrared spectra and hydrogen-bond configurations of water molecules at the interface of water-insoluble polymers under humidified conditions. J. Phys. Chem. B. 2022, 126 (22), 4143-4151.
41. Li, G.; Zhang, X.; Huang, J.; Li, T.; Yang, S.; Wang, Y.; Jiang, J.; Xia, B.; Chen, M.; Dong, W., Hydrazone bond enhance the mechanical properties, heating resistance, and water resistance of imine-based thermosets. Chem. Eng. J. 2022, 435,
56
134766.
42. Zhang, P.; Wu, T.; Cao, H.; Zhang, J.; James, T. D.; Sun, X., Fluorometric detection of volatile amines using an indanonalkene platform. Org. Chem. Front. 2023, 10 (6), 1393-1398.
43. Song, X.; Xu, Q.; Zhang, T.; Song, B.; Li, C.; Cao, B., Room-temperature, high selectivity and low-ppm-level triethylamine sensor assembled with Au decahedrons-decorated porous α-Fe2O3 nanorods directly grown on flat substrate. Sens. Actuators B: Chem. 2018, 268, 170-181.
44. Turesky, R. J.; Le Marchand, L., Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: lessons learned from aromatic amines. Chem. Res. Toxicol. 2011, 24 (8), 1169-1214.
45. Moura, P. C.; Raposo, M.; Vassilenko, V., Breath volatile organic compounds (VOCs) as biomarkers for the diagnosis of pathological conditions: A review. Biomed. J. 2023, 46 (4), 100623.
46. Kurian, A.; Lee, S. T.; Unnikrishnan, K.; George, D. S.; Nampoori, V.; Vallabhan, C., Studies on two-photon absorption of aniline using thermal lens effect. J. Nonlinear Opt. Phys. Mater. 2003, 12 (01), 75-80.
47. Tsvirko, M.; Mandowska, E.; Biernacka, M.; Tkaczyk, S.; Mandowski, A., Luminescence properties of chitosan doped with europium complex. J. Lumin. 2013, 143, 128-131.
48. Chen, J.; Yi, F.-Y.; Yu, H.; Jiao, S.; Pang, G.; Sun, Z.-M., Fast response and highly selective sensing of amine vapors using a luminescent coordination polymer. Chem. Commun. 2014, 50 (72), 10506-10509.
49. Wang, Y.-Y.; Song, L.; Tang, S.-Y.; Dai, Z.-Q.; Guo, J.-Y.; Shen, H.-Y.; Chai, W.-X., Highly sensitive and selective gas sensing of methylamine and aniline with
57
a new ternary europium complex material. Mater. Today Commun. 2022, 32, 104054.
50. Wang, L.; Ran, X.; Tang, H.; Cao, D., Recent advances on reaction-based amine fluorescent probes. Dyes Pigm. 2021, 194, 109634.
51. Shehayeb, E. O.; Assoud, A.; Au, V. K.-M., Aldehyde-based triphenylethylene organic crystals for aniline vapour detection. CrystEngComm 2025.
52. Zhao, Y.-J.; Miao, K.; Zhu, Z.; Fan, L.-J., Fluorescence quenching of a conjugated polymer by synergistic amine-carboxylic acid and π–π interactions for selective detection of aromatic amines in aqueous solution. ACS Sens. 2017, 2 (6), 842-847.
53. Li, W.; Zhang, J.; Fan, L.; Zhao, Y.; Sun, C.; Li, W.; Chang, Z., Construction of a novel Eu-MOF material based on different detection mechanisms and its application in sensing pollutants aniline, F-and Hg2+. Spectrochim. Acta - A: Mol. Biomol. Spectrosc. 2024, 314, 124223.
54. Topal, E.; Gece, G., Untangling the inhibition effects of aliphatic amines on silver corrosion: a computational study. Chem. J. Mold. 2017, 12 (2), 64-70.
55. Al-Harbi, L. M., Crystallization kinetics of melt-blended low-density phthalic anhydride with a low-Tg tin-phosphate. Open J. Polym. Chem. 2014, 4 (3), 38-46.
56. Meot-Ner, M.; Nelsen, S. F.; Willi, M. F.; Frigo, T. B., Special effects of an unusually large neutral to radical cation geometry change. Adiabatic ionization energies and proton affinities of alkylhydrazines. J. Am. Chem. Soc. 1984, 106 (24), 7384-7389.
57. Xue, P.; Xu, Q.; Gong, P.; Qian, C.; Ren, A.; Zhang, Y.; Lu, R., Fibrous film of a two-component organogel as a sensor to detect and discriminate organic amines. Chem. Commun. 2013, 49 (52), 5838-5840.
58. Conradie, J., DFT study of UV–vis-properties of thiophene-containing Cu (β-diketonato) 2–Application for DSSC. J. Mol. Graph. Model. 2023, 121, 108459.
58
59. Li, L.; Zou, J.-Y.; You, S.-Y.; Cui, H.-M.; Zeng, G.-P.; Cui, J.-Z., Tuning the luminescence of two 3d–4f metal–organic frameworks for the fast response and highly selective detection of aniline. Dalton Trans. 2017, 46 (47), 16432-16438.
60. Song, J.-F.; Wen, H.-F.; Luo, J.-J.; Jia, Y.-Y.; Zhang, X.-Y.; Su, L.-J.; Zhou, R.-S., Five isomorphic lanthanide metal-organic frameworks constructed from 5-(3-carboxy-phenyl)-pyridine-2-carboxylic acid and oxalate: synthesis, crystal structures and selective fluorescence sensing for aniline. J. Solid State Chem. 2019, 269, 43-50.
61. Gu, D.; Yang, W.; Lin, D.; Qin, X.; Yang, Y.; Wang, F.; Pan, Q.; Su, Z., Water-stable lanthanide-based metal–organic gel for the detection of organic amines and white-light emission. J. Mater. Chem. C 2020, 8 (39), 13648-13654.
62. Liu, X.; Du, L.; Li, R.; Ma, N.; You, M.; Feng, X., Different effects in the selective detection of aniline and Fe 3+ by lanthanide-based coordination polymers containing multiple reactive sites. CrystEngComm 2020, 22 (16), 2837-2844.
63. Shi, Y.; Wang, W.-M.; Tang, G.-P.; Zhang, Y.-X.; Li, M.; Wu, Z.-L., Robust lanthanide metal–organic frameworks with highly sensitive sensing of aniline and slow magnetization relaxation behaviors. Polyhedron 2018, 153, 122-127.
64. Liu, M.; Li, H.; Bai, L.; Zheng, K.; Zhao, Z.; Chen, Z.; Ng, S. W.; Ding, L.; Zeng, C., Real-time and visual sensing devices based on pH-control assembled lanthanide-barium nano-cluster. J. Hazard. Mater. 2021, 413, 125291.
1. Roy, A.; Manna, K.; Pal, S., Recent advances in various stimuli-responsive hydrogels: From synthetic designs to emerging healthcare applications. Mater. Chem. Front. 2022, 6 (17), 2338-2385.
2. Hill, L. K.; Meleties, M.; Katyal, P.; Xie, X.; Delgado-Fukushima, E.; Jihad, T.; Liu, C.-F.; O’Neill, S.; Tu, R. S.; Renfrew, P. D., Thermoresponsive protein-engineered coiled-coil hydrogel for sustained small molecule release. Biomacromolecules 2019, 20 (9), 3340-3351.
3. Escañuela-Copado, A.; López-Molina, J.; Kanduč, M.; Jódar-Reyes, A. B.; Tirado-Miranda, M.; Bastos-González, D.; Peula-García, J. M.; Adroher-Benítez, I.; Moncho-Jordá, A., Diffusion and Interaction Effects On Molecular Release Kinetics From Collapsed Microgels. ACS Appl. Polym. Mater. 2024, 6 (15), 8905-8917.
4. Nelson, D. M.; Ma, Z.; Leeson, C. E.; Wagner, W. R., Extended and sequential delivery of protein from injectable thermoresponsive hydrogels. J. Biomed. Mater. Res. A. 2012, 100 (3), 776-785.
5. Hu, C.-C.; Chiu, Y.-C.; Chaw, J.-R.; Chen, C.-F.; Liu, H.-W., Thermo-responsive hydrogel as an anti-VEGF drug delivery system to inhibit retinal angiogenesis in Rex rabbits. Technol. Health Care 2019, 27 (1_suppl), 153-163.
6. Cao, M.; Wang, Y.; Hu, X.; Gong, H.; Li, R.; Cox, H.; Zhang, J.; Waigh, T. A.; Xu, H.; Lu, J. R., Reversible thermoresponsive peptide–PNIPAM hydrogels for controlled drug delivery. Biomacromolecules 2019, 20 (9), 3601-3610.
7. Liu, X.; Li, M.; Zhang, H.; Chen, L.; Fu, S., An injectable thermo-responsive hydrogel based cellulose-brush derivative for the sustained release of doxorubicin. Cellulose 2021, 28, 1587-1597.
8. Liu, M.; Song, X.; Wen, Y.; Zhu, J.-L.; Li, J., Injectable thermoresponsive
72
hydrogel formed by alginate-g-poly (N-isopropylacrylamide) that releases doxorubicin-encapsulated micelles as a smart drug delivery system. ACS Appl. Mater. Interfaces. 2017, 9 (41), 35673-35682.
9. Putney, S. D.; Burke, P. A., Improving protein therapeutics with sustained-release formulations. Nat. Biotechnol. 1998, 16 (2), 153-157.
10. Adepu, S.; Ramakrishna, S., Controlled drug delivery systems: current status and future directions. Molecules 2021, 26 (19), 5905.
11. Seo, B.-B.; Kwon, Y.; Kim, J.; Hong, K. H.; Kim, S.-E.; Song, H.-R.; Kim, Y.-M.; Song, S.-C., Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis. Bioact. Mater. 2022, 7, 14-25.
12. Chen, Y.-Y.; Wu, H.-C.; Sun, J.-S.; Dong, G.-C.; Wang, T.-W., Injectable and thermoresponsive self-assembled nanocomposite hydrogel for long-term anticancer drug delivery. Langmuir 2013, 29 (11), 3721-3729.
13. Gao, C.; Liu, M.; Chen, J.; Chen, C., pH-and Temperature-responsive P (DMAEMA-GMA)-alginate semi-IPN hydrogels formed by radical and ring-opening polymerization for aminophylline release. J. Biomater. Sci. Polym. Ed. 2012, 23 (8), 1039-1054.
14. Khan, B.; Arbab, A.; Khan, S.; Fatima, H.; Bibi, I.; Chowdhry, N. P.; Ansari, A. Q.; Ursani, A. A.; Kumar, S.; Hussain, J., Recent progress in thermosensitive hydrogels and their applications in drug delivery area. MedComm - Biomater. Appl. 2023, 2 (3), e55.
15. Espinoza, M. I. M.; Gül, S.; Mugnaini, L.; Cellesi, F., Oligo (ethylene glycol) Methacrylate Copolymer-Modified Liposomes for Temperature-Responsive Drug Delivery System. Molecules 2024, 29 (23), 5511.
16. Jeong, J.-O.; Kim, M.; Kim, S.; Lee, K. K.; Choi, H., Advanced Hydrogel
73
Systems for Local Anesthetic Delivery: Toward Prolonged and Targeted Pain Relief. Gels 2025, 11 (2), 131.
17. Thananukul, K.; Kaewsaneha, C.; Opaprakasit, P.; Zine, N.; Elaissari, A., Biodegradable porous micro/nanoparticles with thermoresponsive gatekeepers for effective loading and precise delivery of active compounds at the body temperature. Sci. Rep. 2022, 12 (1), 10906.
18. Toyoshima, Y.; Kawamura, A.; Takashima, Y.; Miyata, T., Design of molecularly imprinted hydrogels with thermoresponsive drug binding sites. J. Mater. Chem. B 2022, 10 (35), 6644-6654.
19. Koshy, S. T.; Desai, R. M.; Joly, P.; Li, J.; Bagrodia, R. K.; Lewin, S. A.; Joshi, N. S.; Mooney, D. J., Click-crosslinked injectable gelatin hydrogels. Adv. Healthc. Mater. 2016, 5 (5), 541.
20. Mandal, T.; Panu, K., Epoxide ring opening under mild conditions using phenol, amine, and alcohols. J. Synth. Chem. 2024, 3 (1), 13-23.
21. Moser, B. R.; Cermak, S. C.; Doll, K. M.; Kenar, J. A.; Sharma, B. K., A review of fatty epoxide ring opening reactions: Chemistry, recent advances, and applications. J. Am. Oil Chem.' Soc. 2022, 99 (10), 801-842.
22. Wang, Z.; Cui, Y.-T.; Xu, Z.-B.; Qu, J., Hot water-promoted ring-opening of epoxides and aziridines by water and other nucleopliles. J. Org. Chem. 2008, 73 (6), 2270-2274.
23. Mokbel, H.; Dumur, F.; Lalevée, J., On demand NIR activated photopolyaddition reactions. Polym. Chem. 2020, 11 (26), 4250-4259.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97963-
dc.description.abstract以海藻酸為基材的奈米複合物水凝膠,因其組成成分而展現出多樣的結構和功能。然而,將多功能化奈米粒子整合進海藻酸水凝膠的做法仍鮮少被探討。本研究中,二氧化矽(SiO2)奈米粒子表面以三種配體功能化,分別是水楊醛(SA)、噻吩甲酰三氟丙酮(TTA)及 N,N-雙(羧甲基)-L-賴氨酸(NTA),構建具多重功能的表面。其中,SA 負責為銪離子提供錨定位點,而 TTA 與 NTA 則進一步與銪離子配位,分別增強其光致發光強度和引入胺基官能基團。我們依據表面配體的不同,合成了六種表面含鑭系元素的奈米粒子,並將其摻入由海藻酸二醛(ADA)和以己二酸二肼修飾之海藻酸(AADH)交聯所形成的腙鍵網絡中,其奈米複合物水凝膠展現出增強的發光特性、可調式的機械強度、優異的穩定性,以及氣體感測能力。其中,T1N0 奈米粒子與其乾膠呈現最高的光致發光量子產率(PLQY)分別是12.37% 和 5.86%。另外,透過乾膠感測前後的螢光變化進行線性判別分析(LDA),ADA/AADH/T2N1感測器可分類出苯胺氣體,其偵測極限低至 88 ppb,於環境監測領域有相當潛力。在另一個研究中,將以3-環氧丙氧基丙基三甲氧基矽烷 (GPTS)修飾的二氧化矽奈米粒子導入AADH中,透過環氧基與肼基之開環反應形成高交聯密度的網絡。此系統可有效抑制被動擴散並產生均勻的超音波加熱效應。當局部加熱至45度時,網絡及孔洞更加緻密,進而延緩分子的釋放速率。其製備方式簡易,能即時調控分子釋放速率,極適用於多元生醫應用。整體而言,利用表面官能基修飾的二氧化矽奈米粒子可將海藻酸水凝膠優化成具先進感測與精準控制釋放能力的多功能平台。zh_TW
dc.description.abstractAlginate‐based nanocomposite hydrogels offer tunable structural and functional properties dictated by their components; however, the incorporation of multi-functionalized nanoparticles is still rarely explored. Here, silica nanoparticles were co-functionalized with salicylaldehyde (SA), thenoyltrifluoroacetone (TTA), and N, N'-bis(carboxymethyl)-L-lysine (NTA) to create a multi-functional surface. SA serves as an anchoring site for Eu³⁺ ions, while TTA enhances photoluminescence and NTA introduces primary amine groups through additional Eu³⁺ coordination, respectively. Six different lanthanide-containing silica nanoparticles, defined by their surface ligands, were synthesized and incorporated into a hydrazone-crosslinked network of alginate dialdehyde (ADA) and adipic dihydrazide-modified alginate (AADH). The resulting nanocomposite hydrogels exhibit enhanced photoluminescence, tunable mechanical strength, high long-term stability, and vapor-phase sensing capability. Among these, the T1N0 nanoparticles and their corresponding lyophilized hydrogels exhibited the highest photoluminescence quantum yield (PLQY), reaching 12.37% and 5.86%, respectively. Notably, linear discriminant analysis (LDA) of their luminescence profiles enabled the selective detection of aniline vapor, with the ADA/AADH/T2N1 sensor achieving a limit of detection (LOD) as low as 88 ppb, demonstrating their potential for environmental monitoring. In another study, the incorporation of silica nanoparticles functionalized with (3-glycidoxypropyl)trimethoxysilane (SiO2@GPTS) into AADH leads to the formation of a densely crosslinked network by epoxide-hydrazide ring-opening reaction. This network limits passive diffusion and provides a uniform ultrasound‐induced heating. Localized heating to 45℃ further densifies the network, reduces pore size, and prolongs the release. This straightforward approach enables facile manufacturing, making it well-suited for diverse biomedical applications. Overall, this dual-functional design approach highlights a versatile platform for both advanced sensing and precisely controlled biomedical delivery applications.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-23T16:15:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-23T16:15:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
Contents v
List of figures viii
List of tables xiv
Project 1 1
1.1 Introduction 2
1.2 Experimental section 8
1.2.1 Materials 8
1.2.2 Characterization techniques 9
1.2.3 Synthesis of alginate dialdehyde (ADA) 10
1.2.4 Synthesis of alginate modified with adipic dihydrazide (AADH) 10
1.2.5 Synthesis of SiO2@APTES-SA-Eu/Ligands 11
1.2.5.1 SiO2@APTES 11
1.2.5.2 SiO2@APTES-SA 11
1.2.5.3 SiO2@APTES-SA-Eu (T0N0) 11
1.2.5.4 SiO2@APTES-SA-Eu/Ligands nanoparticles 12
1.2.6 Preparation of ADA/AADH/SiO2@APTES-SA-Eu/Ligands hydrogels 12
1.2.7 Pore size analysis of hydrogels 12
1.2.8 Rheological characterization of hydrogels 13
1.2.9 Compression test of hydrogels 13
1.2.10 Swelling ratio and water content of hydrogels 13
1.2.11 Degradation rate of hydrogels 14
1.2.12 Luminescence characterizations of hydrogels 14
1.2.13 Gas sensing of hydrogels 15
1.2.14 Statistical analysis 16
1.3 Results and discussion 16
1.3.1 Characterizations of ADA and AADH 16
1.3.2 Characterizations SiO2@APTES-SA-Eu/Ligands 19
1.3.3 Characterizations of ADA/AADH/SiO2@APTES-SA-Eu/Ligands hydrogels 30
1.3.4 Microstructures of hydrogels 33
1.3.5 Volatile amine gas sensing 39
1.4 Conclusion 49
1.5 Reference 51
Project 2 59
2.1 Introduction 60
2.2 Experimental section 64
2.2.1 Materials 64
2.2.2 Characterization techniques 64
2.2.3 Synthesis of SiO2@GPTS 65
2.2.4 Preparation of AADH/SiO2@GPTS hydrogels 65
2.3 Results and discussion 65
2.3.1 Characterization of SiO2@GPTS 65
2.3.2 Characterization of AADH/SiO2@GPTS hydrogels 67
2.4 Conclusion 70
2.5 Reference 71
-
dc.language.isoen-
dc.subject二氧化矽zh_TW
dc.subject鑭系zh_TW
dc.subject海藻酸水凝膠zh_TW
dc.subject胺類氣體感測zh_TW
dc.subject分子釋放zh_TW
dc.subjectmolecule releaseen
dc.subjectSilicaen
dc.subjectlanthanideen
dc.subjectalginate-based hydrogelen
dc.subjectamine vapor sensingen
dc.title海藻酸/二氧化矽奈米複合物水凝膠於氣體感測及分子緩慢釋放zh_TW
dc.titleAlginate/silicon dioxide nanocomposite hydrogels for gas sensing and sustained molecule releaseen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林柏亨;吳仁彰;王如邦zh_TW
dc.contributor.oralexamcommitteePo-Heng Lin;Ren-Jang Wu;Reu-Ben Wangen
dc.subject.keyword二氧化矽,鑭系,海藻酸水凝膠,胺類氣體感測,分子釋放,zh_TW
dc.subject.keywordSilica,lanthanide,alginate-based hydrogel,amine vapor sensing,molecule release,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202502000-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-18-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
dc.date.embargo-lift2030-07-17-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
9.18 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved