Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97545
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor白奇峰zh_TW
dc.contributor.advisorChi-Feng Paien
dc.contributor.author洪翊文zh_TW
dc.contributor.authorYi-Wen Hungen
dc.date.accessioned2025-07-02T16:23:52Z-
dc.date.available2025-07-03-
dc.date.copyright2025-07-02-
dc.date.issued2025-
dc.date.submitted2025-06-05-
dc.identifier.citation[1] A. Khvalkovskiy et al., "Basic principles of STT-MRAM cell operation in memory arrays," J. Phys. D: Appl. Phys., vol. 46, no. 7, p. 074001, 2013.
[2] C. Chappert, A. Fert, and F. N. Van Dau, "The emergence of spin electronics in data storage," Nature materials, vol. 6, no. 11, pp. 813-823, 2007.
[3] D. D. Tang and C.-F. Pai, MAGNETIC MEMORY TECHNOLOGY: Spin-transfer-torque Mram and Beyond. John Wiley & Sons, 2020.
[4] J. Lenz and S. Edelstein, "Magnetic sensors and their applications," IEEE Sens. J., vol. 6, no. 3, pp. 631-649, 2006, doi: 10.1109/jsen.2006.874493.
[5] J. Torrejon et al., "Neuromorphic computing with nanoscale spintronic oscillators," Nature, vol. 547, no. 7664, pp. 428-431, 2017.
[6] W. Sucksmith and J. E. Thompson, "The magnetic anisotropy of cobalt," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 225, no. 1162, pp. 362-375, 1954.
[7] M. Johnson, P. Bloemen, F. Den Broeder, and J. De Vries, "Magnetic anisotropy in metallic multilayers," Rep. Prog. Phys., vol. 59, no. 11, p. 1409, 1996.
[8] J. Cui, T. W. Shield, and R. D. James, "Phase transformation and magnetic anisotropy of an iron–palladium ferromagnetic shape-memory alloy," Acta Mater., vol. 52, no. 1, pp. 35-47, 2004, doi: 10.1016/j.actamat.2003.08.024.
[9] S. Oyarzun, A. Tamion, F. Tournus, V. Dupuis, and M. Hillenkamp, "Size effects in the magnetic anisotropy of embedded cobalt nanoparticles: from shape to surface," Sci Rep, vol. 5, p. 14749, Oct 6 2015, doi: 10.1038/srep14749.
[10] D. Sander, "The correlation between mechanical stress and magnetic anisotropy inultrathin films," Rep. Prog. Phys., vol. 62, no. 5, p. 809, 1999.
[11] L. Varga, Z. Gercsi, G. Kovács, A. Kákay, and F. Mazaleyrat, "Stress-induced magnetic anisotropy in nanocrystalline alloys," J. Magn. Magn. Mater., vol. 254, pp. 477-479, 2003.
[12] B. Hofmann and H. Kronmüller, "Stress-induced magnetic anisotropy in nanocrystalline FeCuNbSiB alloy," J. Magn. Magn. Mater., vol. 152, no. 1-2, pp. 91-98, 1996.
[13] W. H. Meiklejohn and C. P. Bean, "New Magnetic Anisotropy," Phys. Rev., vol. 105, no. 3, pp. 904-913, 1957, doi: 10.1103/PhysRev.105.904.
[14] Z. Liang, X.-y. Sun, C.-y. Xu, R.-s. Gao, R.-g. Xu, and L.-c. Qin, "Magnetic anisotropy in Fe-25Cr-12Co-1Si alloy induced by external magnetic field," Transactions of Nonferrous Metals Society of China, vol. 17, no. 2, pp. 346-350, 2007.
[15] J. Hu and R. Wu, "Control of the magnetism and magnetic anisotropy of a single-molecule magnet with an electric field," Phys. Rev. Lett., vol. 110, no. 9, p. 097202, Mar 1 2013, doi: 10.1103/PhysRevLett.110.097202.
[16] S. J. Gamble et al., "Electric field induced magnetic anisotropy in a ferromagnet," Phys. Rev. Lett., vol. 102, no. 21, p. 217201, May 29 2009, doi: 10.1103/PhysRevLett.102.217201.
[17] R. Prozorov and V. G. Kogan, "Effective Demagnetizing Factors of Diamagnetic Samples of Various Shapes," Physical Review Applied, vol. 10, no. 1, 2018, doi: 10.1103/PhysRevApplied.10.014030.
[18] D. X. Chen, E. Pardo, and A. Sanchez, "Demagnetizing factors for rectangular prisms," IEEE Trans. Magn., vol. 41, no. 6, pp. 2077-2088, 2005, doi: 10.1109/tmag.2005.847634.
[19] S. Piramanayagam, "Perpendicular recording media for hard disk drives," J. Appl. Phys., vol. 102, no. 1, 2007.
[20] B. Tudu and A. Tiwari, "Recent developments in perpendicular magnetic anisotropy thin films for data storage applications," Vacuum, vol. 146, pp. 329-341, 2017.
[21] B. Dieny and M. Chshiev, "Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications," Rev. Mod. Phys., vol. 89, no. 2, 2017, doi: 10.1103/RevModPhys.89.025008.
[22] W. Meiklejohn, "Exchange anisotropy—A review," J. Appl. Phys., vol. 33, no. 3, pp. 1328-1335, 1962.
[23] C. Daboo et al., "Anisotropy and orientational dependence of magnetization reversal processes in epitaxial ferromagnetic thin films," Phys Rev B Condens Matter, vol. 51, no. 22, pp. 15964-15973, Jun 1 1995, doi: 10.1103/physrevb.51.15964.
[24] M. Sagawa et al., "Dependence of coercivity on the anisotropy field in the Nd2Fe14B-type sintered magnets," J. Appl. Phys., vol. 61, no. 8, pp. 3559-3561, 1987, doi: 10.1063/1.338725.
[25] K. Bukharia, P. Karmakar, D. Kumar, V. R. Reddy, and A. Gupta, "Evolution of magnetic anisotropy in cobalt film on nanopatterned silicon substrate studied in situ using MOKE," J. Magn. Magn. Mater., vol. 497, 2020, doi: 10.1016/j.jmmm.2019.165934.
[26] M. Igarashi, T. Kambe, K. Yoshida, Y. Hosoe, and Y. Sugita, "A method of measuring anisotropy field of polycrystalline thin-film media," J. Appl. Phys., vol. 85, no. 8, pp. 4720-4722, 1999, doi: 10.1063/1.370459.
[27] A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, "Perspectives on oblique angle deposition of thin films: From fundamentals to devices," Prog. Mater Sci., vol. 76, pp. 59-153, 2016, doi: 10.1016/j.pmatsci.2015.06.003.
[28] L. Merryweather and A. T. Hindmarch, "Analysis of Magnetization Dynamics in NiFe Thin Films with Growth-Induced Magnetic Anisotropies," Magnetochemistry, vol. 10, no. 10, 2024, doi: 10.3390/magnetochemistry10100080.
[29] S. Sun Lee, T.-S. Ju, K.-W. Moon, and S. Yang, "Perpendicular magnetic anisotropy tilting for spin–orbit torque-induced field-free switching of magnetization," J. Magn. Magn. Mater., vol. 589, 2024, doi: 10.1016/j.jmmm.2023.171567.
[30] Y.-H. Huang, J.-H. Han, W.-B. Liao, C.-Y. Hu, Y.-T. Liu, and C.-F. Pai, "Tailoring interlayer chiral exchange by azimuthal symmetry engineering," Nano Lett., vol. 24, no. 2, pp. 649-656, 2024.
[31] R. Conley et al., "Wedged multilayer Laue lens," Rev. Sci. Instrum., vol. 79, no. 5, p. 053104, May 2008, doi: 10.1063/1.2924209.
[32] J. S. Cooper, G. Zhang, and P. J. McGinn, "Plasma sputtering system for deposition of thin film combinatorial libraries," Rev. Sci. Instrum., vol. 76, no. 6, 2005.
[33] R. A. Rao, D. Lavric, T. K. Nath, C. B. Eom, L. Wu, and F. Tsui, "Effects of film thickness and lattice mismatch on strain states and magnetic properties of La0.8Ca0.2MnO3 thin films," J. Appl. Phys., vol. 85, no. 8, pp. 4794-4796, 1999, doi: 10.1063/1.370484.
[34] O. Thomas, Q. Shen, P. Schieffer, N. Tournerie, and B. Lepine, "Interplay between anisotropic strain relaxation and uniaxial interface magnetic anisotropy in epitaxial Fe films on (001) GaAs," Phys. Rev. Lett., vol. 90, no. 1, p. 017205, Jan 10 2003, doi: 10.1103/PhysRevLett.90.017205.
[35] T. J. Vink, W. Walrave, J. L. C. Daams, A. G. Dirks, M. A. J. Somers, and K. J. A. van den Aker, "Stress, strain, and microstructure in thin tungsten films deposited by dc magnetron sputtering," J. Appl. Phys., vol. 74, no. 2, pp. 988-995, 1993, doi: 10.1063/1.354842.
[36] Y. Hoshi, E. Suzuki, and M. Naoe, "Uniaxial magnetic anisotropy of iron thin films deposited by oblique incidence of deposition particles," J. Appl. Phys., vol. 79, no. 8, pp. 4945-4947, 1996, doi: 10.1063/1.361597.
[37] Y. Park, E. E. Fullerton, and S. D. Bader, "Growth-induced uniaxial in-plane magnetic anisotropy for ultrathin Fe deposited on MgO(001) by oblique-incidence molecular beam epitaxy," Appl. Phys. Lett., vol. 66, no. 16, pp. 2140-2142, 1995, doi: 10.1063/1.113929.
[38] C. Kittel, "On the Theory of Ferromagnetic Resonance Absorption," Phys. Rev., vol. 73, no. 2, pp. 155-161, 1948, doi: 10.1103/PhysRev.73.155.
[39] V. Denysenkov and A. M. Grishin, "Broadband ferromagnetic resonance spectrometer," Rev. Sci. Instrum., vol. 74, no. 7, pp. 3400-3405, 2003.
[40] C. Hseih, W. Huang, and J. Lue, "The change from paramagnetic resonance to ferromagnetic resonance for iron nanoparticles made by the sol–gel method," J. Phys. Chem. Solids, vol. 63, no. 5, pp. 733-741, 2002.
[41] N. Bloembergen, "On the ferromagnetic resonance in nickel and supermalloy," Phys. Rev., vol. 78, no. 5, p. 572, 1950.
[42] R. L. White and I. H. Solt, "Multiple Ferromagnetic Resonance in Ferrite Spheres," Phys. Rev., vol. 104, no. 1, pp. 56-62, 1956, doi: 10.1103/PhysRev.104.56.
[43] S. S. Kalarickal et al., "Ferromagnetic resonance linewidth in metallic thin films: Comparison of measurement methods," J. Appl. Phys., vol. 99, no. 9, 2006.
[44] I. S. Maksymov and M. Kostylev, "Broadband stripline ferromagnetic resonance spectroscopy of ferromagnetic films, multilayers and nanostructures," Physica E: Low-dimensional Systems and Nanostructures, vol. 69, pp. 253-293, 2015, doi: 10.1016/j.physe.2014.12.027.
[45] Y. Ding, T. J. Klemmer, and T. M. Crawford, "A coplanar waveguide permeameter for studying high-frequency properties of soft magnetic materials," J. Appl. Phys., vol. 96, no. 5, pp. 2969-2972, 2004, doi: 10.1063/1.1774242.
[46] M. Bailleul, "Shielding of the electromagnetic field of a coplanar waveguide by a metal film: Implications for broadband ferromagnetic resonance measurements," Appl. Phys. Lett., vol. 103, no. 19, 2013, doi: 10.1063/1.4829367.
[47] C. Bilzer, T. Devolder, P. Crozat, C. Chappert, S. Cardoso, and P. Freitas, "Vector network analyzer ferromagnetic resonance of thin films on coplanar waveguides: Comparison of different evaluation methods," J. Appl. Phys., vol. 101, no. 7, 2007.
[48] W. Chen, J.-M. Beaujour, G. De Loubens, A. Kent, and J. Sun, "Spin-torque driven ferromagnetic resonance of Co∕ Ni synthetic layers in spin valves," Appl. Phys. Lett., vol. 92, no. 1, 2008.
[49] T. Chiba, G. E. W. Bauer, and S. Takahashi, "Current-Induced Spin-Torque Resonance of Magnetic Insulators," Physical Review Applied, vol. 2, no. 3, 2014, doi: 10.1103/PhysRevApplied.2.034003.
[50] Y. Wang, R. Ramaswamy, and H. Yang, "FMR-related phenomena in spintronic devices," J. Phys. D: Appl. Phys., vol. 51, no. 27, 2018, doi: 10.1088/1361-6463/aac7b5.
[51] D. C. Ralph and M. D. Stiles, "Spin transfer torques," J. Magn. Magn. Mater., vol. 320, no. 7, pp. 1190-1216, 2008, doi: 10.1016/j.jmmm.2007.12.019.
[52] Q. Shao et al., "Roadmap of Spin–Orbit Torques," IEEE Trans. Magn., vol. 57, no. 7, pp. 1-39, 2021, doi: 10.1109/tmag.2021.3078583.
[53] P. Gambardella and I. M. Miron, "Current-induced spin-orbit torques," Philos Trans A Math Phys Eng Sci, vol. 369, no. 1948, pp. 3175-97, Aug 13 2011, doi: 10.1098/rsta.2010.0336.
[54] C.-J. Zhao, L. Ding, J.-S. HuangFu, J.-Y. Zhang, and G.-H. Yu, "Research progress in anisotropic magnetoresistance," Rare Metals, vol. 32, no. 3, pp. 213-224, 2013, doi: 10.1007/s12598-013-0090-5.
[55] A. W. Rushforth et al., "Anisotropic magnetoresistance components in (Ga,Mn)As," Phys. Rev. Lett., vol. 99, no. 14, p. 147207, Oct 5 2007, doi: 10.1103/PhysRevLett.99.147207.
[56] H. Nakayama et al., "Spin Hall magnetoresistance induced by a nonequilibrium proximity effect," Phys. Rev. Lett., vol. 110, no. 20, p. 206601, May 17 2013, doi: 10.1103/PhysRevLett.110.206601.
[57] Y.-T. Chen et al., "Theory of spin Hall magnetoresistance," Physical Review B, vol. 87, no. 14, 2013, doi: 10.1103/PhysRevB.87.144411.
[58] M. N. Baibich et al., "Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices," Phys. Rev. Lett., vol. 61, no. 21, pp. 2472-2475, Nov 21 1988, doi: 10.1103/PhysRevLett.61.2472.
[59] J. Q. Xiao, J. S. Jiang, and C. L. Chien, "Giant magnetoresistance in nonmultilayer magnetic systems," Phys. Rev. Lett., vol. 68, no. 25, pp. 3749-3752, Jun 22 1992, doi: 10.1103/PhysRevLett.68.3749.
[60] S.-K. Kim, "Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements," J. Phys. D: Appl. Phys., vol. 43, no. 26, 2010, doi: 10.1088/0022-3727/43/26/264004.
[61] J. Hirsch, "Spin hall effect," Phys. Rev. Lett., vol. 83, no. 9, p. 1834, 1999.
[62] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, "Spin Hall effects," Rev. Mod. Phys., vol. 87, no. 4, pp. 1213-1260, 2015, doi: 10.1103/RevModPhys.87.1213.
[63] R. James, Y. Pilloux, and H. Hegde, "Reactive ion beam etching of piezoelectric ScAlN for bulk acoustic wave device applications," in Journal of Physics: Conference Series, 2019, vol. 1407, no. 1: IOP Publishing, p. 012083.
[64] A. Barman, T. Kimura, Y. Otani, Y. Fukuma, K. Akahane, and S. Meguro, "Benchtop time-resolved magneto-optical Kerr magnetometer," Rev. Sci. Instrum., vol. 79, no. 12, p. 123905, Dec 2008, doi: 10.1063/1.3053353.
[65] S. Foner, "The vibrating sample magnetometer: Experiences of a volunteer (invited)," J. Appl. Phys., vol. 79, no. 8, pp. 4740-4745, 1996, doi: 10.1063/1.361657.
[66] S. Jen et al., "Magnetic and electrical properties of amorphous CoFeB films," J. Appl. Phys., vol. 99, no. 5, 2006.
[67] B. Liu and J. Ding, "Strain-induced high coercivity in CoFe2O4 powders," Appl. Phys. Lett., vol. 88, no. 4, 2006.
[68] Y.-P. Zhao, R. Gamache, G.-C. Wang, T.-M. Lu, G. Palasantzas, and J. T. M. De Hosson, "Effect of surface roughness on magnetic domain wall thickness, domain size, and coercivity," J. Appl. Phys., vol. 89, no. 2, pp. 1325-1330, 2001.
[69] O. Gutfleisch et al., "Evolution of magnetic domain structures and coercivity in high-performance SmCo 2:17-type permanent magnets," Acta Mater., vol. 54, no. 4, pp. 997-1008, 2006, doi: 10.1016/j.actamat.2005.10.026.
[70] T. Su, Z. Rao, S. Berman, D. Depla, and E. Chason, "Analysis of stress in sputter-deposited films using a kinetic model for Cu, Ni, Co, Cr, Mo, W," Appl. Surf. Sci., vol. 613, 2023, doi: 10.1016/j.apsusc.2022.156000.
[71] F. Hubenthal, T. Stobiecki, K. Thoma, and K. Röll, "Anisotropic residual stresses in sputtered TiN films prepared by linear periodic motion," Surf. Coat. Technol., vol. 201, no. 6, pp. 3399-3405, 2006, doi: 10.1016/j.surfcoat.2006.07.213.
[72] H. Takagi, S. Tsunashima, S. Uchiyama, and T. Fujii, "Stress induced anisotropy in amorphous Gd-Fe and Tb-Fe sputtered films," J. Appl. Phys., vol. 50, no. B3, pp. 1642-1644, 1979, doi: 10.1063/1.327223.
[73] N. Chowdhury and S. Bedanta, "Controlling the anisotropy and domain structure with oblique deposition and substrate rotation," AIP Advances, vol. 4, no. 2, 2014, doi: 10.1063/1.4865248.
[74] S. Mallik, S. Mallick, and S. Bedanta, "Effect of the growth conditions on the anisotropy, domain structures and the relaxation in Co thin films," J. Magn. Magn. Mater., vol. 428, pp. 50-58, 2017, doi: 10.1016/j.jmmm.2016.11.132.
[75] A. N. Bogdanov and U. K. Rossler, "Chiral symmetry breaking in magnetic thin films and multilayers," Phys. Rev. Lett., vol. 87, no. 3, p. 037203, Jul 16 2001, doi: 10.1103/PhysRevLett.87.037203.
[76] Y. V. Goryunov et al., "Magnetic anisotropies of sputtered Fe films on MgO substrates," Phys Rev B Condens Matter, vol. 52, no. 18, pp. 13450-13458, Nov 1 1995, doi: 10.1103/physrevb.52.13450.
[77] E. Liu et al., "Texture induced magnetic anisotropy in Fe3O4 films," Appl. Phys. Lett., vol. 107, no. 17, 2015, doi: 10.1063/1.4934744.
[78] C. Tannous and J. Gieraltowski, "The Stoner–Wohlfarth model of ferromagnetism," European Journal of Physics, vol. 29, no. 3, pp. 475-487, 2008, doi: 10.1088/0143-0807/29/3/008.
[79] A. Thiaville, "Coherent rotation of magnetization in three dimensions: A geometrical approach," Physical Review B, vol. 61, no. 18, p. 12221, 2000.
[80] D. Givord, P. Tenaud, and T. Viadieu, "Angular dependence of coercivity in sintered magnets," J. Magn. Magn. Mater., vol. 72, no. 3, pp. 247-252, 1988.
[81] F. Yang, C. Chien, E. Ferrari, X. Li, G. Xiao, and A. Gupta, "Uniaxial anisotropy and switching behavior in epitaxial CrO~ 2 films," Appl. Phys. Lett., vol. 77, no. 2, pp. 286-288, 2000.
[82] Y. H. Shin, I. Grinberg, I. W. Chen, and A. M. Rappe, "Nucleation and growth mechanism of ferroelectric domain-wall motion," Nature, vol. 449, no. 7164, pp. 881-4, Oct 18 2007, doi: 10.1038/nature06165.
[83] C. He et al., "Spin-Torque Ferromagnetic Resonance in W/Co−Fe−B/W/Co−Fe−B/MgO Stacks," Physical Review Applied, vol. 10, no. 3, 2018, doi: 10.1103/PhysRevApplied.10.034067.
[84] C. He et al., "Spin-torque ferromagnetic resonance measurements utilizing spin Hall magnetoresistance in W/Co40Fe40B20/MgO structures," Appl. Phys. Lett., vol. 109, no. 20, 2016, doi: 10.1063/1.4967843.
[85] S. Zohar and W. Bailey, "Interface-related damping in polycrystalline Ni81Fe19/Cu/Co93Zr7 trilayers," J. Appl. Phys., vol. 105, no. 7, 2009.
[86] M. Caminale et al., "Spin pumping damping and magnetic proximity effect in Pd and Pt spin-sink layers," Physical Review B, vol. 94, no. 1, 2016, doi: 10.1103/PhysRevB.94.014414.
[87] V. Sharma, R. K. Ghosh, and B. K. Kuanr, "Influence of ferromagnetic layer thickness on the Gilbert damping and magnetocrystalline anisotropy in PLD grown epitaxial Co2FeSi Heusler alloy thin films," Results in Surfaces and Interfaces, vol. 6, 2022, doi: 10.1016/j.rsurfi.2022.100052.
[88] N. Fujita, N. Inaba, F. Kirino, S. Igarashi, K. Koike, and H. Kato, "Damping constant of Co/Pt multilayer thin-film media," J. Magn. Magn. Mater., vol. 320, no. 22, pp. 3019-3022, 2008, doi: 10.1016/j.jmmm.2008.08.012.
[89] K. Lenz, H. Wende, W. Kuch, K. Baberschke, K. Nagy, and A. Jánossy, "Two-magnon scattering and viscous Gilbert damping in ultrathin ferromagnets," Physical Review B, vol. 73, no. 14, 2006, doi: 10.1103/PhysRevB.73.144424.
[90] K. Zakeri et al., "Spin dynamics in ferromagnets: Gilbert damping and two-magnon scattering," Physical Review B, vol. 76, no. 10, 2007, doi: 10.1103/PhysRevB.76.104416.
[91] Y. Li et al., "Drag effect induced large anisotropic damping behavior in magnetic thin films with strong magnetic anisotropy," J. Phys.: Condens. Matter, vol. 33, no. 17, p. 175801, 2021.
[92] Y. Kasatani and Y. Nozaki, "Crystallographic anisotropy of the intrinsic Gilbert damping for single-crystalline Fe film," Journal of the Magnetics Society of Japan, vol. 39, no. 6, pp. 221-226, 2015.
[93] A. Conca, S. Keller, M. R. Schweizer, E. T. Papaioannou, and B. Hillebrands, "Separation of the two-magnon scattering contribution to damping for the determination of the spin mixing conductance," Physical Review B, vol. 98, no. 21, p. 214439, 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97545-
dc.description.abstract近年來,自旋電子學(Spintronics)技術在自旋軌道矩(Spin-Orbit Torque, SOT)與磁性異質結構的研究上引起廣泛關注,其中單軸各向異性(Uniaxial Anisotropy)對磁性薄膜的磁化動力學影響更是核心議題之一。本研究的動機在於探索如何透過楔形沉積(Wedge Deposition)調控 CoFeB/Pt 結構中的單軸各向異性,並進一步分析其對磁性行為與動態特性的影響,這對於提升自旋電子學元件的性能與穩定性至關重要。
本研究製備了兩個系列的 CoFeB/Pt 樣品,皆透過磁控濺鍍機進行鍍膜,其中一組為均勻(Uniform)薄膜,另一組則透過楔形沉積使得鐵磁層(CoFeB 層)具有單軸各向異性,並調控楔形沉積與基板 x 軸的夾角範圍從 0 至 180 度,每 30 度為一個單位。透過雷射磁光克爾效應(Laser-MOKE)與振動樣品磁力儀(VSM)量測,我們確認了具有楔形結構的樣品之易磁軸(Easy Axis)與楔形方向一致。
隨後,我們利用自旋轉移力矩鐵磁共振(ST-FMR)進行頻率掃描,透過 Kittel 公式擬合獲得所有樣品的去磁場(Demagnetization Field,即 4πM_eff),並藉由共振線寬與頻率的關係進一步分析其阻尼常數(Damping Constant)。此外,透過 ST-FMR 角度掃描(Angle Scan),我們分析不同角度下的共振場變化,進一步量化單軸各向異性的大小。最後,我們對相同樣品進行鐵磁共振(FMR)量測,以比較不同量測技術的吻合程度,結果顯示兩者高度一致,驗證了本研究方法的可靠性。
本研究不僅加深了對楔形沉積 CoFeB/Pt 結構磁性行為的理解,也為磁性異質結構中單軸各向異性的調控提供了實驗依據,對於自旋電子學與未來高效磁性記憶體元件的開發具有重要價值。
zh_TW
dc.description.abstractIn recent years, spintronics has garnered significant attention, particularly in the study of spin–orbit torque (SOT) and magnetic heterostructures. Among the key issues is the role of uniaxial magnetic anisotropy in influencing the magnetization dynamics of ferromagnetic thin films. This study aims to explore how uniaxial anisotropy in CoFeB/Pt structures can be engineered via wedge deposition, and to analyze its impact on magnetic behavior and dynamic properties—an essential step toward improving the performance and stability of spintronic devices.
Two series of CoFeB/Pt samples were fabricated via magnetron sputtering: one with uniform CoFeB thickness and the other incorporating a wedge-shaped CoFeB layer to introduce uniaxial anisotropy. The deposition angle relative to the substrate x-axis was varied from 0° to 180° in 30° steps. Magneto-optical Kerr effect (MOKE) and vibrating sample magnetometry (VSM) measurements confirmed that the easy axis of the wedge-deposited samples aligned with the wedge direction.
Subsequently, spin-torque ferromagnetic resonance (ST-FMR) frequency scans were conducted to extract the demagnetization field (4πM_eff) via Kittel fitting. In addition, the damping constant was obtained by analyzing the frequency dependence of the linewidth. Angular-dependent ST-FMR measurements were also performed to analyze how the resonance field varies with magnetic field direction, enabling quantitative evaluation of the uniaxial anisotropy strength.
To further verify the consistency of the results, ferromagnetic resonance (FMR) measurements were conducted on the same set of samples. The comparison between the two techniques demonstrated strong agreement in terms of trends and extracted parameters, confirming the reliability of the experimental methods.
This study not only deepens the understanding of magnetic behavior in wedge-deposited CoFeB/Pt structures but also provides a practical foundation for tuning uniaxial anisotropy in magnetic heterostructures. The findings have significant implications for the development of next-generation spintronic devices and high-efficiency magnetic memory technologies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-07-02T16:23:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-07-02T16:23:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContects
口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contects vi
List of Figures viii
List of Tables xiii
I. Introduction 1
1-1 Magnetic Anisotropy 1
1-1.1 Shape Anisotropy 2
1-1.2 Uniaxial Anisotropy 4
1-1.3 Anisotropy Field 6
1-2 Wedge Deposition 7
1-3 Ferromagnetic Resonance(FMR) 9
1-3.1 History of FMR 9
1-3.2 Different Types of FMR 10
1-3.3 Spin-Torque Ferromagnetic Resonance(ST-FMR) 12
1-4 Theory of FMR 14
1-4.1 Landau-Lifshitz-Gilbert(LLG) Equation 14
1-4.2 Kittel Formula 15
II. Experiment 17
2-1 Magnetron Sputtering 17
2-2 ST-FMR Device Fabrication 18
2-2.1 Sample Structure 18
2-2.2 Photolithography 19
2-2.3 Ion-Beam Etching(IBE) 21
2-2.4 Electrode deposition 23
2-2.5 Process Flow 23
2-3 Laser-MOKE 26
2-4 Vibrating Sample Magnetometer (VSM) 28
2-5 ST-FMR 30
2-6 FMR 33
III. Results and Discussion 35
3-1 Laser-MOKE 35
3-1.1 Uniform Samples Thickness Dependence 35
3-1.2 Uniform Samples Angle Dependence 37
3-1.3 Wedged-Shape Samples Angle Dependence 39
3-2 VSM 42
3-3 ST-FMR: Frequency Dependence 44
3-3.1 Uniform Samples 45
3-3.2 Wedge-shaped Samples 47
3-4 ST-FMR: Angle Scan 52
3-5 FMR: Frequency Dependence 56
3-6 FMR: Angle Dependence 61
3-7 Comparison between FMR and ST-FMR 65
IV. Conclusion 68
V. Reference 71
VI. Supplementary 82
6-1 Raw data 82
6-1.1 Laser-MOKE 82
6-1.2 ST-FMR 87
6-1.3 FMR 88
 
-
dc.language.isoen-
dc.subject楔形沉積zh_TW
dc.subject單軸各向異性zh_TW
dc.subject鐵磁共振zh_TW
dc.subject自旋轉移力矩鐵磁共振zh_TW
dc.subjectwedge depositionen
dc.subjectspin-torque ferromagnetic resonanceen
dc.subjectferromagnetic resonanceen
dc.subjectuniaxial anisotropyen
dc.title具平面內單軸各向異性之楔形鈷鐵硼特性研究zh_TW
dc.titleStudy on the Characteristics of Wedge-Shaped CoFeB with In-Plane Uniaxial Anisotropyen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃斯衍;胡宸瑜zh_TW
dc.contributor.oralexamcommitteeSsu-Yen Huang;Chen-Yu Huen
dc.subject.keyword自旋轉移力矩鐵磁共振,鐵磁共振,單軸各向異性,楔形沉積,zh_TW
dc.subject.keywordspin-torque ferromagnetic resonance,ferromagnetic resonance,uniaxial anisotropy,wedge deposition,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202501047-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-06-05-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2025-07-03-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf7.47 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved