Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97463
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor白奇峰zh_TW
dc.contributor.advisorChi-Feng Paien
dc.contributor.author黃書鋒zh_TW
dc.contributor.authorShu-Feng Huangen
dc.date.accessioned2025-06-18T16:15:27Z-
dc.date.available2025-06-19-
dc.date.copyright2025-06-18-
dc.date.issued2025-
dc.date.submitted2025-06-09-
dc.identifier.citation[1] Liu, Y.-T., et al., Determination of spin-orbit-torque efficiencies in heterostructures with in-plane magnetic anisotropy. Physical Review Applied, 2020. 13(4): p. 044032.
[2] Ramaswamy, R., et al., Recent advances in spin-orbit torques: Moving towards device applications. Applied Physics Reviews, 2018. 5(3).
[3] Hirsch, J., Spin hall effect. Physical review letters, 1999. 83(9): p. 1834.
[4] Sinova, J., et al., Spin hall effects. Reviews of modern physics, 2015. 87(4): p. 1213-1260.
[5] Bernevig, B.A. and S.-C. Zhang, Quantum spin Hall effect. Physical review letters, 2006. 96(10): p. 106802.
[6] Hoffmann, A., Spin Hall effects in metals. IEEE transactions on magnetics, 2013. 49(10): p. 5172-5193.
[7] Pai, C.-F., et al., Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Applied Physics Letters, 2012. 101(12).
[8] Liu, L., et al., Spin-torque switching with the giant spin Hall effect of tantalum. Science, 2012. 336(6081): p. 555-558.
[9] Mellnik, A.R., et al., Spin-transfer torque generated by a topological insulator. Nature, 2014. 511(7510): p. 449-451.
[10] Song, C., et al., Spin-orbit torques: Materials, mechanisms, performances, and potential applications. Progress in Materials Science, 2021. 118: p. 100761.
[11] Ikeda, S., et al., A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nature materials, 2010. 9(9): p. 721-724.
[12] Edelstein, V.M., Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Communications, 1990. 73(3): p. 233-235.
[13] Bazaliy, Y.B., B. Jones, and S.-C. Zhang, Current-induced magnetization switching in small domains of different anisotropies. Physical Review B, 2004. 69(9): p. 094421.
[14] Zhu, L., et al., Strong damping‐like spin‐orbit torque and tunable Dzyaloshinskii–Moriya interaction generated by low‐resistivity Pd1− xPtx alloys. Advanced Functional Materials, 2019. 29(16): p. 1805822.
[15] Yoon, J., et al., Anomalous spin-orbit torque switching due to field-like torque–assisted domain wall reflection. Science Advances, 2017. 3(4): p. e1603099.
[16] Kondou, K., et al., Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet. Nature communications, 2021. 12(1): p. 6491.
[17] Xing, T., et al., Direct detection of spin-orbit effective fields through magneto-optical Kerr effect. Physical Review B, 2020. 101(22): p. 224407.
[18] Ruderman, M.A. and C. Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Physical Review, 1954. 96(1): p. 99.
[19] Kasuya, T., A theory of metallic ferro-and antiferromagnetism on Zener's model. Progress of theoretical physics, 1956. 16(1): p. 45-57.
[20] Yosida, K., Magnetic properties of Cu-Mn alloys. Physical Review, 1957. 106(5): p. 893.
[21] Parkin, S. and D. Mauri, Spin engineering: Direct determination of the Ruderman-Kittel-Kasuya-Yosida far-field range function in ruthenium. Physical Review B, 1991. 44(13): p. 7131.
[22] Wang, K., V. Bheemarasetty, and G. Xiao, Spin textures in synthetic antiferromagnets: Challenges, opportunities, and future directions. APL Materials, 2023. 11(7).
[23] Bi, C., et al., Anomalous spin-orbit torque switching in synthetic antiferromagnets. Physical Review B, 2017. 95(10): p. 104434.
[24] Leal, J. and M. Kryder, Spin valves exchange biased by Co/Ru/Co synthetic antiferromagnets. Journal of applied physics, 1998. 83(7): p. 3720-3723.
[25] Saito, Y., S. Ikeda, and T. Endoh, Synthetic antiferromagnetic layer based on Pt/Ru/Pt spacer layer with 1.05 nm interlayer exchange oscillation period for spin–orbit torque devices. Applied Physics Letters, 2021. 119(14).
[26] Ounadjela, K., et al., Perpendicular anisotropy and antiferromagnetic coupling in Co/Ru strained superlattices. Physical Review B, 1992. 45(14): p. 7768.
[27] Huai, Y., Spin-transfer torque MRAM (STT-MRAM): Challenges and prospects. AAPPS bulletin, 2008. 18(6): p. 33-40.
[28] Prenat, G., et al., Beyond STT-MRAM, spin orbit torque RAM SOT-MRAM for high speed and high reliability applications. Spintronics-based Computing, 2015: p. 145-157.
[29] Shao, Q., et al., Roadmap of spin–orbit torques. IEEE transactions on magnetics, 2021. 57(7): p. 1-39.
[30] Han, X., et al., Spin-orbit torques: Materials, physics, and devices. Applied Physics Letters, 2021. 118(12).
[31] Liu, Y., J. Yu, and H. Zhong, Strong antiferromagnetic interlayer exchange coupling in [Co/Pt] 6/Ru/[Co/Pt] 4 structures with perpendicular magnetic anisotropy. Journal of Magnetism and Magnetic Materials, 2019. 473: p. 381-386.
[32] Li, Y., et al., Temperature-dependent interlayer exchange coupling strength in synthetic antiferromagnetic [Pt/Co] 2/Ru/[Co/Pt] 4 multilayers. Chinese Physics B, 2018. 27(12): p. 127502.
[33] Kelly, P.J. and R.D. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000. 56(3): p. 159-172.
[34] Swann, S., Magnetron sputtering. Physics in technology, 1988. 19(2): p. 67.
[35] Bräuer, G., et al., Magnetron sputtering–Milestones of 30 years. Vacuum, 2010. 84(12): p. 1354-1359.
[36] Maurya, D., A. Sardarinejad, and K. Alameh, Recent developments in RF magnetron sputtered thin films for pH sensing applications—an overview. Coatings, 2014. 4(4): p. 756-771.
[37] Thomson, W., XIX. On the electro-dynamic qualities of metals:—Effects of magnetization on the electric conductivity of nickel and of iron. Proceedings of the Royal Society of London, 1857(8): p. 546-550.
[38] Zhang, S.S.-L. and G. Vignale, Theory of unidirectional spin Hall magnetoresistance in heavy-metal/ferromagnetic-metal bilayers. Physical Review B, 2016. 94(14): p. 140411.
[39] Liu, G., et al., Magnonic unidirectional spin Hall magnetoresistance in a heavy-metal–ferromagnetic-insulator bilayer. Physical Review Letters, 2021. 127(20): p. 207206.
[40] Hasegawa, K., T. Koyama, and D. Chiba, Enhanced unidirectional spin Hall magnetoresistance in a Pt/Co system with a Cu interlayer. Physical Review B, 2021. 103(2): p. L020411.
[41] Gil, W., et al., Magnetoresistance anisotropy of polycrystalline cobalt films: Geometrical-size and domain effects. Physical Review B—Condensed Matter and Materials Physics, 2005. 72(13): p. 134401.
[42] Avci, C.O., et al., Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers. Nature Physics, 2015. 11(7): p. 570-575.
[43] Avci, C.O., et al., Origins of the unidirectional spin Hall magnetoresistance in metallic bilayers. Physical review letters, 2018. 121(8): p. 087207.
[44] Avci, C.O., et al., Magnetoresistance of heavy and light metal/ferromagnet bilayers. Applied Physics Letters, 2015. 107(19).
[45] Foner, S., Versatile and sensitive vibrating‐sample magnetometer. Review of Scientific Instruments, 1959. 30(7): p. 548-557.
[46] Dodrill, B. and J.R. Lindemuth, Vibrating sample magnetometry. Magnetic measurement techniques for materials characterization, 2021: p. 15-37.
[47] Foner, S., The vibrating sample magnetometer: Experiences of a volunteer. Journal of applied physics, 1996. 79(8): p. 4740-4745.
[48] Qiu, Z.Q. and S.D. Bader, Surface magneto-optic Kerr effect. Review of Scientific Instruments, 2000. 71(3): p. 1243-1255.
[49] Arregi, J.A., P. Riego, and A. Berger, What is the longitudinal magneto-optical Kerr effect? Journal of Physics D: Applied Physics, 2016. 50(3): p. 03LT01.
[50] Robinson, C.C., Longitudinal Kerr magneto-optic effect in thin films of iron, nickel, and permalloy. Journal of the Optical Society of America, 1963. 53(6): p. 681-689.
[51] Bian, X., H. Hardner, and S. Parkin, Investigation of magnetic coupling in sputtered epitaxial Fe/Cr and Co/Cu wedged structures. Journal of applied physics, 1996. 79(8): p. 4980-4982.
[52] Yin, Y., et al., Thickness dependence of unidirectional spin-Hall magnetoresistance in metallic bilayers. Applied Physics Letters, 2017. 111(23).
[53] Borisenko, I., et al., Relation between unidirectional spin Hall magnetoresistance and spin current-driven magnon generation. Applied Physics Letters, 2018. 113(6).
[54] Yamanoi, K., H. Semizu, and Y. Nozaki, Enhancement of room-temperature unidirectional spin Hall magnetoresistance by using a ferromagnetic metal with a low Curie temperature. Physical Review B, 2022. 106(14): p. L140401.
[55] Chen, Y., et al., Magnetic properties of face-centered cubic Co films. IEEE transactions on magnetics, 2006. 42(2): p. 278-282.
[56] Kawaguchi, M., et al., Anomalous spin Hall magnetoresistance in Pt/Co bilayers. Applied Physics Letters, 2018. 112(20).
[57] Skowroński, W., et al., Determination of spin Hall angle in heavy-metal/Co-Fe-B-based heterostructures with interfacial spin-orbit fields. Physical Review Applied, 2019. 11(2): p. 024039.
[58] Wang, W., et al., Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers. Chinese Physics B, 2022. 31(9): p. 097504.
[59] Yang, S., et al., Ultralow-current magnetization switching in nearly compensated synthetic antiferromagnetic frames using sandwiched spin sources. Acta Materialia, 2021. 208: p. 116708.
[60] Zhang, P., et al., Spin-orbit torque in a completely compensated synthetic antiferromagnet. Physical Review B, 2018. 97(21): p. 214403.
[61] Ishikuro, Y., et al., Highly efficient spin-orbit torque in Pt/Co/Ir multilayers with antiferromagnetic interlayer exchange coupling. Physical Review B, 2020. 101(1): p. 014404.
[62] Wang, Z., et al., Field-free spin orbit torque switching of synthetic antiferromagnet through interlayer Dzyaloshinskii-Moriya interaction. arXiv preprint arXiv:2205.04740, 2022.
[63] Kim, J., et al., Layer thickness dependence of the current-induced effective field vector in Ta| CoFeB| MgO. Nature materials, 2013. 12(3): p. 240-245.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97463-
dc.description.abstract本研究探討在合成反鐵磁(Synthetic Antiferromagnet,SAF)結構中,鐵磁層厚度差(Δt)對自旋軌道轉矩(Spin-Orbit Torque, SOT)效率的影響。採用不同厚度組合的Pt-與W基底SAF系統,利用黃光微影、磁控濺鍍等製程製作出微米級霍爾元件,並透過各種電磁量測方法,包括各向異性磁阻(AMR)位移、單向自旋霍爾磁阻(USMR)、振動樣品磁強計(VSM)與縱向磁光克爾效應(L-MOKE)等,系統性分析了SOT效率與結構參數之關聯。研究結果指出,在對稱(Δt ≈ 0)的SAF結構中,可獲得最大之單位電流有效場(H_eff/I),顯著提升SOT效率,並且有效抑制淨磁化與偶極場。同時,W基SAF系統由於其較大的負自旋霍爾角,展現出更高的USMR與SOT效應。此外,與單層結構比較後,雖然SAF可提供熱穩定性與低功耗操作優勢,但在高電流下的USMR強度略低,顯示結構對稱性與厚度不均將影響自旋電流分佈與界面散射機制。本研究提供具體實驗證據,證明鐵磁層厚度設計在提升SOT-MRAM元件效能中的關鍵角色,並為次世代自旋電子記憶體之結構優化提供實用準則。此研究評估了場型自旋軌道轉矩(field-like spin-orbit torque, FL-SOT)之效率,以更深入解析其對轉矩機制的貢獻。透過 AMR Loop-shift所導出的單位電流有效場分析,可觀察 Pt-與 W-基 SAF 結構在鐵磁層厚度與結構不對稱變化下的 FL-SOT 效率趨勢。其中,對稱結構(Δt = 0)具備最佳 FL-SOT 效率,歸因於其具備平衡之自旋電流吸收能力。此結果凸顯出鐵磁層厚度設計能提升對場型轉矩效率之優化具關鍵意義,對於低功耗自旋電子元件的設計具有重要啟示。zh_TW
dc.description.abstractThis thesis investigates the impact of ferromagnetic (FM) layer thickness asymmetry (Δt) on spin-orbit torque (SOT) efficiency in synthetic antiferromagnet (SAF) structures. Pt-based and W-based SAF devices with varying FM thicknesses were fabricated using photolithography and magnetron sputtering. Multiple characterization techniques, including anisotropic magnetoresistance (AMR) loop-shift, unidirectional spin Hall magnetoresistance (USMR), vibrating sample magnetometry (VSM), and longitudinal magneto-optical Kerr effect (L-MOKE), were employed to evaluate the relationship between structural design and spin-torque efficiency. The results demonstrate that symmetric SAF configurations (Δt≈0) yield the highest effective field per current (H_eff/I), maximizing SOT efficiency while minimizing net magnetization and dipolar fields. W-based SAFs, with larger negative spin Hall angles, exhibit stronger USMR and SOT responses than their Pt-based counterparts. Compared to single-layer systems, SAF structures provide enhanced thermal stability and lower power operation; however, slightly reduced USMR magnitude at high current suggests that spin-current distribution and interface scattering are affected by layer symmetry and thickness mismatch.
Overall, this work provides experimental evidence of the critical role played by FM thickness engineering in optimizing SOT-driven switching performance and offers practical guidelines for future high-efficiency SOT-MRAM device design. The role of field-like spin-orbit torque (FL-SOT) efficiency provides further insight into spin-torque dynamics. By analyzing the current-induced effective field obtained from AMR loop shifts, both Pt-based and W-based SAF structures were found to exhibit distinct trends in FL-SOT efficiency as a function of ferromagnetic layer thickness and structural asymmetry. Notably, symmetric SAF configurations (Δt = 0) achieved the highest FL-SOT efficiency due to balanced spin-current absorption. This highlights the importance of optimizing FM thickness design not only for maximizing damping-like torque but also for enhancing FL-SOT performance in energy-efficient spintronic devices.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-18T16:15:27Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-06-18T16:15:27Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iv
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Chapter 1 Introduction and Theoretical Background 1
1.1 Spin Hall Effect 1
1.2 Spin-Orbit Torque Characterization 3
1.2.1 HM/FM Interface Mechanism 3
1.2.2 DC Current Switching by Spin-Orbit Torque 5
1.3 Introduction to Ruderman–Kittel–Kasuya–Yosida (RKKY) Interaction and Synthetic Antiferromagnets (SAF) 7
1.4 Motivation 11
Chapter 2 Experiments 13
2.1 Devices Fabrication Methods 13
2.1.1 Photolithography 13
2.1.2 Magnetron sputtering 14
2.2 Measurement Methods 16
2.2.1 Anisotropic Magnetoresistance loop-shift Measurement 16
2.2.2 Unidirectional Spin Hall Magnetoresistance (USMR) 20
2.2.3 Vibrating Sample Magnetometer (VSM) 23
2.2.4 Longitudinal-Magneto-Optical Kerr Effect (L-MOKE) Measurement 25
Chapter 3 Analysis of Single Ferromagnetic Layer 29
3.1 Field-Scan Unidirectional Magnetoresistance 29
3.1.1 Thickness-Dependent Unidirectional Spin Hall Magnetoresistance in Ferromagnetic Layer 29
3.1.2 Current-Dependent Unidirectional Spin Hall Magnetoresistance 31
3.1.3 Thickness-Dependent Effective Field per Current (∣H_eff/I∣) in Ferromagnetic Layer 33
3.1.4 Current-Dependent Effective Field per Current (∣H_eff/I∣) in Ferromagnetic Layer 36
3.2 Spin-Orbit-Torque Efficiencies 38
3.3 Comparison of Pt-based and W-based 40
Chapter 4 Analysis of Synthetic Antiferromagnets (SAF) 43
4.1 Field-Scan Unidirectional Magnetoresistance 43
4.1.1 Thickness-Dependent Unidirectional Spin Hall Magnetoresistance in Ferromagnetic Layer 43
4.1.2 Current-Dependent Unidirectional Spin Hall Magnetoresistance 48
4.1.3 Thickness-Dependent Effective Field per Current (∣H_eff/I∣) in Ferromagnetic Layer 50
4.1.4 Current-Dependent Effective Field per Current (∣H_eff/I∣) in Ferromagnetic Layer 52
4.1.5 Thickness Difference (Δt)-Dependent Effective Field per Current (∣H_eff/I∣) in Ferromagnetic Layer 55
4.2 Spin-Orbit-Torque Efficiencies 59
4.3 Comparison of Single Ferromagnetic Layer and Synthetic Antiferromagnets 64
4.4 Comparison of Pt-based and W-based 68
Chapter 5 Conclusion 73
Reference 75
-
dc.language.isoen-
dc.subject自旋霍爾效應zh_TW
dc.subject自旋軌道轉矩zh_TW
dc.subject合成反鐵磁zh_TW
dc.subject鐵磁層厚度差zh_TW
dc.subject各向異性磁阻zh_TW
dc.subject單向自旋霍爾磁阻zh_TW
dc.subjectRKKY 交互作用zh_TW
dc.subject單位電流有效場zh_TW
dc.subjectSynthetic Antiferromagnet (SAF)en
dc.subjectRuderman–Kittel–Kasuya–Yosida (RKKY) Interactionen
dc.subjectEffective Field per current (H_eff/I)en
dc.subjectFerromagnetic Layer Thickness Asymmetryen
dc.subjectAnisotropy magnetoresistance (AMR)en
dc.subjectUnidirectional Spin Hall Magnetoresistance (USMR)en
dc.subjectSpin Hall Effect (SHE)en
dc.subjectSpin-Orbit Torque (SOT)en
dc.title合成反鐵磁中鐵磁層厚度不對稱調控之研究zh_TW
dc.titleEngineering Ferromagnetic Layer Thickness Asymmetry in Synthetic Antiferromagnetsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee魏拯華;楊朝堯zh_TW
dc.contributor.oralexamcommitteeCheng-Hua Wei;Chao-Yao Yangen
dc.subject.keyword合成反鐵磁,自旋軌道轉矩,自旋霍爾效應,單向自旋霍爾磁阻,各向異性磁阻,鐵磁層厚度差,單位電流有效場,RKKY 交互作用,zh_TW
dc.subject.keywordSynthetic Antiferromagnet (SAF),Spin-Orbit Torque (SOT),Spin Hall Effect (SHE),Unidirectional Spin Hall Magnetoresistance (USMR),Anisotropy magnetoresistance (AMR),Ferromagnetic Layer Thickness Asymmetry,Effective Field per current (H_eff/I),Ruderman–Kittel–Kasuya–Yosida (RKKY) Interaction,en
dc.relation.page81-
dc.identifier.doi10.6342/NTU202501070-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-06-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2025-06-19-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved