請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97449完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 白奇峰 | zh_TW |
| dc.contributor.advisor | Chi-Feng Pai | en |
| dc.contributor.author | 鍾詠絢 | zh_TW |
| dc.contributor.author | Yung-Hsun Chung | en |
| dc.date.accessioned | 2025-06-18T16:11:22Z | - |
| dc.date.available | 2025-06-19 | - |
| dc.date.copyright | 2025-06-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-04 | - |
| dc.identifier.citation | 1. Griffiths, D.J. and D. Schroeter, Instructor's Solutions Manual: Introduction to Quantum Mechanics. 2005: Pearson Education.
2. Goudsmit, S. and G.E. Uhlenbeck, Spinning electrons and the structure of spectra. Nature, 1926. 117(2938): p. 264-265. 3. Bliokh, K.Y., et al., Spin–orbit interactions of light. Nature Photonics, 2015. 9(12): p. 796-808. 4. Nguyen, M.-H. and C.-F. Pai, Spin–orbit torque characterization in a nutshell. APL Materials, 2021. 9(3). 5. Tanaka, T., et al., Intrinsic spin Hall effect and orbital Hall effect in 4 d and 5 d transition metals. Physical Review B—Condensed Matter and Materials Physics, 2008. 77(16): p. 165117. 6. Saitoh, E., et al., Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Applied Physics Letters, 2006. 88(18). 7. Liu, L., et al., Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect. Physical Review Letters, 2011. 106(3): p. 036601. 8. Chen, Y.-T., et al., Theory of spin Hall magnetoresistance. Physical Review B, 2013. 87(14): p. 144411. 9. Pai, C.-F., et al., Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy. Physical Review B, 2016. 93(14): p. 144409. 10. Dyakonov, M. and V.I. Perel, Current-induced spin orientation of electrons in semiconductors. Physics Letters A, 1971. A 35: p. 459-460. 11. Murakami, S., N. Nagaosa, and S.-C. Zhang, Spin-Hall Insulator. Physical Review Letters, 2004. 93(15): p. 156804. 12. Lee, J.W., et al., Enhanced spin-orbit torque by engineering Pt resistivity in Pt/Co/Al structures. Physical Review B, 2017. 96(6): p. 064405. 13. Manchon, A., et al., Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Reviews of Modern Physics, 2019. 91(3): p. 035004. 14. Yun, D.H., et al., Investigation of magnetic properties of Pt/CoFeB/MgO layers using angle-resolved spin-torque ferromagnetic resonance spectroscopy. Journal of Applied Physics, 2022. 131(24). 15. Liu, Y., et al., Direct visualization of current-induced spin accumulation in topological insulators. Nature communications, 2018. 9(1): p. 2492. 16. Chen, Y. and P.C. McIntyre, Effects of chemical stability of platinum/lead zirconate titanate and iridium oxide/lead zirconate titanate interfaces on ferroelectric thin film switching reliability. Applied Physics Letters, 2007. 91(23). 17. Pai, C.-F., et al., Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Applied Physics Letters, 2012. 101. 18. Jungwirth, T., J. Sinova, and S. Valenzuela, Spin hall effects. Rev. Mod. Phys, 2015. 87: p. 1213. 19. Hayashi, M., et al., Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements. Physical Review B, 2014. 89(14): p. 144425. 20. Pai, C.-F., et al., Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Applied Physics Letters, 2012. 101(12). 21. Ikeda, S., et al., A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nature materials, 2010. 9(9): p. 721-724. 22. Wang, T.-C., et al., Comparative study on spin-orbit torque efficiencies from W/ferromagnetic and W/ferrimagnetic heterostructures. Physical Review Materials, 2018. 2(1): p. 014403. 23. Ou, Y., et al., Strong spin Hall effect in the antiferromagnet PtMn. Physical Review B, 2016. 93(22): p. 220405. 24. Miron, I.M., et al., Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature, 2011. 476(7359): p. 189-193. 25. Valenzuela, S.O. and M. Tinkham, Direct electronic measurement of the spin Hall effect. Nature, 2006. 442(7099): p. 176-179. 26. Mihai Miron, I., et al., Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nature materials, 2010. 9(3): p. 230-234. 27. Fukami, S., et al., A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration. nature nanotechnology, 2016. 11(7): p. 621-625. 28. Cubukcu, M., et al., Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction. Applied Physics Letters, 2014. 104(4). 29. Zhang, W., et al., Role of transparency of platinum–ferromagnet interfaces in determining the intrinsic magnitude of the spin Hall effect. Nature physics, 2015. 11(6): p. 496-502. 30. Yu, G., et al., Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nature nanotechnology, 2014. 9(7): p. 548-554. 31. Ralph, D.C. Spin-Torque Switching with the Giant Spin Hall Effect. in APS March Meeting Abstracts. 2015. 32. Chen, Q., et al., Spin orbit torques in Pt-based heterostructures with van der Waals interface. Chinese Physics B, 2021. 30(9): p. 097506. 33. Kao, S.-C., et al., Field-free magnetization switching through modulation of zero-field spin–orbit torque efficacy. APL Materials, 2023. 11(11). 34. Li, G., et al., Perpendicular magnetic properties and field-free current-induced switching in W/CoFeB/MgO trilayers with a compensating oblique W underlayer. Journal of Physics D: Applied Physics, 2024. 57(30): p. 305002. 35. Hori, S., et al., Spin–orbit torque generation in bilayers composed of CoFeB and epitaxial SrIrO3 grown on an orthorhombic DyScO3 substrate. Applied Physics Letters, 2022. 121(2). 36. Bose, A., et al., Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nature Electronics, 2022. 5(5): p. 267-274. 37. Demasius, K.-U., et al., Enhanced spin–orbit torques by oxygen incorporation in tungsten films. Nature communications, 2016. 7(1): p. 10644. 38. Sze, S. and K. Ng, Chapter 3 Metal-Semiconductors Contacts. Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons: Hoboken NJ, USA, 2007: p. 134-196. 39. Wolf, S. Silicon processing for the VLSI era. in LATTICE. 1995. 40. 俊尚科技. 電子束蒸鍍應用於 Lift-off 製程來製備具備完美垂直面的圖形化線路. [cited 2025 3.16]; Available from: https://www.junsun.com.tw/zh/techno-articles/lift-off-cht. 41. Maurya, D.K., A. Sardarinejad, and K. Alameh, Recent Developments in R.F. Magnetron Sputtered Thin Films for pH Sensing Applications—An Overview. Coatings, 2014. 4: p. 756-771. 42. Roth, J.R., Industrial Plasma Engineering: Volume 2-Applications to Nonthermal Plasma Processing. 2017: Routledge. 43. Lieberman, M. and A. Lichtenberg, Discharges and materials processing principles of plasma discharges and materials. 2005, John Wiley & Sons: Hoboken, NJ, USA. 44. Jadwiszczak, J., et al., Plasma treatment of ultrathin layered semiconductors for electronic device applications. ACS Applied Electronic Materials, 2021. 3(4): p. 1505-1529. 45. Lee, J.-W., 電漿表面處理於具垂直異向性磁性薄膜之研究與應用. 清華大學材料科學工程學系學位論文, 2010. 2010: p. 1-88. 46. Carlberg, P., et al., Lift-off process for nanoimprint lithography. Microelectronic engineering, 2003. 67: p. 203-207. 47. Delmdahl, R., R. Pätzel, and J. Brune, Large-area laser-lift-off processing in microelectronics. Physics Procedia, 2013. 41: p. 241-248. 48. Mertz, J., Introduction to optical microscopy. 2019: Cambridge University Press. 49. Araki, T., The history of optical microscope. Mechanical Engineering Reviews, 2017. 4(1): p. 16-00242-16-00242. 50. Schiller, S., et al., Pulsed magnetron sputter technology. Surface and Coatings Technology, 1993. 61(1-3): p. 331-337. 51. Shao, Q., et al., Roadmap of spin–orbit torques. IEEE transactions on magnetics, 2021. 57(7): p. 1-39. 52. Fan, X., et al., Quantifying interface and bulk contributions to spin–orbit torque in magnetic bilayers. Nature communications, 2014. 5(1): p. 3042. 53. Bass, J. and W.P. Pratt, Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: anexperimentalist’s critical review. Journal of Physics: Condensed Matter, 2007. 19(18): p. 183201. 54. Ueda, K., et al., Spin current generation from an epitaxial tungsten dioxide WO2. APL Materials, 2023. 11(6). 55. Kang, M.-G., S. Lee, and B.-G. Park, Field-free spin-orbit torques switching and its applications. npj Spintronics, 2025. 3(1): p. 8. 56. Oh, Y.-W., et al., Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures. Nature nanotechnology, 2016. 11(10): p. 878-884. 57. Liu, L., et al., Symmetry-dependent field-free switching of perpendicular magnetization. Nature Nanotechnology, 2021. 16(3): p. 277-282. 58. Liao, W.-B., et al., Processing effect on spin-orbit torque switching and efficiency characterization in perpendicularly magnetized pillar devices. Physical Review Materials, 2023. 7(10): p. 104409. 59. Oersted, H.C., Experiments on the effect of a current of electricity on the magnetic needle. Annals of Philosophy, 1820. 16(1820): p. 273-276. 60. Manfrini, M., Spin orbit torques in magnetic materials (Kiran Sethu). 2017. 61. Yu, G., et al., Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nature Nanotechnology, 2014. 9(7): p. 548-554. 62. Kim, J., et al., Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nat Mater, 2013. 12(3): p. 240-5. 63. Liu, L., et al., Spin-torque switching with the giant spin Hall effect of tantalum. Science, 2012. 336(6081): p. 555-8. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97449 | - |
| dc.description.abstract | 近年來,為了克服自旋軌道磁性隨機存取記憶在實際應用層面的挑戰,高自旋軌道耦合材料的研究與創新持續推進。自旋軌道磁性隨機存取記憶具備高速讀寫、低功耗及耐久性,使其成為新一代非揮發性記憶體的重要候選技術。
本研究旨在提升自旋軌道轉矩效率,並探討氧化對自旋軌道磁性隨機存取記憶的影響,特別是在 z 型結構中實現零場磁化翻轉。我們透過改變自旋電流源及氧化梯度來調控特性。在自旋電流源方面,我們以鎢基重金屬層進行主動濺射處理,發現適量的氧氣可顯著提升自旋軌道轉矩效率。此外,我們探討氧化鎢層的形成與其對電子結構的影響,發現適度氧化的氧化鎢可作為有效的自旋源,增強自旋霍爾效應。然而,由於鎢基材料對氧氣比例高度敏感,最佳氧化條件的範圍較窄,限制了研究窗口。 為克服此問題,我們進一步利用氧電漿處理整個鎢基試片,透過調控氧氣流量、射頻功率、真空度及施打時間來控制磁性變化。此方法不僅有助於推測樣品在空氣中的變化,還能利用鈷鐵硼在氧電漿作用下磁性減弱的特性,在 z 型架構中實現零場磁化翻轉。具體而言,在霍爾棒產生不對稱性並達成零場翻轉。本研究為提升磁性隨機存取記憶體效能提供新方向,未來將進一步優化氧化條件與材料組合,以實現更高效的自旋軌道扭矩記憶體技術。 | zh_TW |
| dc.description.abstract | In recent years, research and innovation in high spin-orbit coupling materials have advanced to address the challenges of spin-orbit magnetic random access memory (SOT-MRAM) in practical applications. SOT-MRAM features high-speed read/write capabilities, low power consumption, and excellent durability, making it a promising candidate for next-generation non-volatile memory.
This study aims to enhance spin-orbit torque (SOT) efficiency and investigate the effects of oxidation on SOT-MRAM, particularly achieving field-free magnetization switching in a z-typed structure. We regulate characteristics by modifying the spin current source and oxidation gradient. In terms of the spin current source, we performed active sputtering on tungsten-based heavy metal layers and found that an appropriate amount of oxygen significantly enhances SOT efficiency. Furthermore, we explored the formation of the tungsten oxide layer and its impact on the electronic structure, revealing that moderately oxidized tungsten oxide serves as an effective spin source, strengthening the spin Hall effect. However, due to the high sensitivity of tungsten-based materials to oxygen content, the optimal oxidation condition has a narrow window, limiting the research scope. To address this issue, we further applied oxygen plasma treatment to the entire tungsten-based sample, controlling magnetic variation by adjusting oxygen flow rate, RF power, vacuum pressure, and exposure time. This method not only helps predict sample changes in the air but also utilizes the magnetic weakening effect of CoFeB under oxygen plasma treatment to achieve field-free magnetization switching in a z-type structure. Specifically, an asymmetry is induced within the Hall bar, enabling field-free switching. This study provides new insights for enhancing MRAM performance, and future research will further optimize oxidation conditions and material combinations to achieve more efficient spin-orbit torque memory technology. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-06-18T16:11:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-06-18T16:11:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii Contents v List of Figures vii List of Tables xvi Chapter 1 Introduction and Theoretical Background 1 1.1 Spin Hall Effect 1 1.1.1 Pt-based 2 1.1.2 Ta-based 3 1.1.3 W-based 3 1.2 Spin-Orbit Torque Characterization 5 1.2.1 SH/FM Interface Mechanism 5 1.2.2 Structure of SOT Device- Type x, y, z Structure 6 1.2.3 DC Current Switching 8 1.2.4 Hysteresis Loop Shift Measurement 8 1.3 Field-free Mechanism of Type z Structure in W/CoFeB/MgO 11 1.3.1 Néel Orange Peel 11 1.3.2 Oblique W Deposition 11 1.4 Motivation 12 Chapter 2 Experimental Preparation Process 14 2.1 Fabrication Methods 14 2.1.1 Photolithography 14 2.1.2 Magnetron sputtering 15 2.1.3 Oxygen Plasma Treatment 17 2.2 Process flow 21 2.2.1 Hall Bar Device 21 2.2.2 Pillar Device with Oxygen Plasma Treatment (Field-free Mechanism) 22 2.3 Optical Microscope Characterization[48, 49] 25 2.3.1 After the second layer of photolithography 25 2.3.2 After oxygen plasma treatment 26 Chapter 3 Effect of Spin-Orbit Torque on WOx-base Structures 27 3.1 Baseline Characterization 27 3.1.1 Sputter rate[50] 27 3.1.2 Control samples of W-based 28 3.2 Oxygen ratio control at 30W sputtering power 34 3.3 Oxygen ratio control at 150W sputtering power 37 3.4 Summary 39 Chapter 4 Effect of Spin-Orbit Torque on W-based Structures Under Oxygen Plasma Treatment 40 4.1 Vacuum & RF Power Dependence 40 4.2 Time Effect 47 4.3 Post-Treatment Stability & Aging Effect 50 Chapter 5 Application of Oxygen Plasma Treatment in Field-Free Mechanism 54 5.1 New Pillar Device Performance 54 5.1.1 Oxygen Plasma Treatment for 30 seconds 55 5.1.2 Oxygen Plasma Treatment for 40 seconds 60 5.1.3 Oxygen Plasma Treatment for 50 seconds 64 5.1.4 Oxygen Plasma Treatment for 60 seconds 65 5.2 Kerr microscope 67 5.3 Experimental Observation of Field-Free Switching Behavior 68 5.4 Mechanism of Field-free switching: Contributions from Oersted Field and Current-Induced HFLz[30] 69 Chapter 6 Conclusions 73 Reference 75 | - |
| dc.language.iso | en | - |
| dc.subject | 自旋–軌道矩 | zh_TW |
| dc.subject | 自旋霍爾效應 | zh_TW |
| dc.subject | 磁性隨機存取記憶體 | zh_TW |
| dc.subject | 自旋電子學 | zh_TW |
| dc.subject | spin-orbit torque | en |
| dc.subject | spintronics | en |
| dc.subject | magnetic random access memory | en |
| dc.subject | spin Hall effect | en |
| dc.title | 氧化處理對鎢基結構自旋軌道轉矩效應的影響 | zh_TW |
| dc.title | Effect of Oxidation Treatment on Spin-Orbit Torque in W-based Structures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊朝堯;魏拯華 | zh_TW |
| dc.contributor.oralexamcommittee | Chao-Yao Yang;Jeng-Hua Wei | en |
| dc.subject.keyword | 自旋電子學,磁性隨機存取記憶體,自旋霍爾效應,自旋–軌道矩, | zh_TW |
| dc.subject.keyword | spintronics,magnetic random access memory,spin Hall effect,spin-orbit torque, | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202501049 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-06-05 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2025-06-19 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
