Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97299
Title: 利用向量渦度方程雲解析模型階層式探討影響對流聚集之物理過程
A Hierarchical Understanding of Physical Processes Modulating Convective Aggregation Using the Vector Vorticity Equation Cloud-Resolving Model
Authors: 黃金德
Jin-De Huang
Advisor: 吳健銘
Chien-Ming Wu
Keyword: 向量渦度方程雲解析模型,對流聚集過程,階層式模擬框架,預測粒子特性微物理參數化,輻射對流平衡,
vector vorticity equation cloud-resolving model (VVM),convective aggregation,hierarchical modeling framework,predicted particle properties (P3) microphysics scheme,radiative-convective equilibrium,
Publication Year : 2025
Degree: 博士
Abstract: 本研究構建了一個階層式的模擬框架,旨在解析物理機制,特別是雲微物理和反饋效應,如何影響對流系統的發展及大尺度大氣流場。第一層次的研究探討了微物理參數化對強迫環境中極端降水的作用。結果顯示,使用預測粒子特性(P3)微物理參數化法,由於減少了對流核心中的冰融效應,相較於傳統參數化法,產生了更強的上升氣流並促進了更極端的降水事件。第二層次進一步分析了反饋機制如何在輻射-對流平衡(RCE)情境下影響對流自發聚集(CSA)。這一階段強調了水汽對流反饋(MCF)對於促進對流組織化的重要性,P3方案模擬出更顯著的CSA及其對大尺度環流的深遠影響。最後,該框架比較了兩個雲解析模型—VVM和SCALE,發現不同的物理機制導致了不同的CSA發展過程。VVM呈現出快速的對流驅動聚集過程,而SCALE則展現了較為緩慢的輻射驅動聚集過程,揭示了模型中物理過程如何影響對流聚集過程。綜合來看,這一階層式框架提供了一個分析小尺度對流行為與大尺度反饋效應相互作用的系統化視角,對提升天氣與氣候模型的準確性具有重要的指導意義。
This research presents a hierarchical modeling framework to investigate how physical processes, particularly microphysics and feedback mechanisms, influence convective behavior and large-scale atmospheric circulation. The first level of analysis examines the role of microphysical parameterizations in shaping extreme precipitation under strongly forced conditions. Using the predicted particle properties (P3) microphysics scheme, the study finds that reduced melting effects in convective cores lead to stronger updrafts and more extreme precipitation than traditional schemes. The second level extends the framework to explore how feedback mechanisms drive convective self-aggregation (CSA) within radiative-convective equilibrium (RCE). This stage emphasizes the importance of moisture-convection feedback (MCF) in enhancing convective organization, with P3 simulations demonstrating stronger CSA and its broader influence on large-scale circulation. Finally, the framework compares two cloud-resolving models, VVM and SCALE, revealing that differences in physical processes lead to distinct CSA pathways. VVM follows a rapid, convection-driven aggregation, while SCALE exhibits a slower, radiation-driven pathway, highlighting how model-specific dynamics shape atmospheric behavior. This hierarchical approach provides a structured view of the interaction between small-scale convective processes and large-scale feedback mechanisms, offering valuable insights for improving weather and climate models.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97299
DOI: 10.6342/NTU202500738
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2025-04-03
Appears in Collections:大氣科學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
Access limited in NTU ip range
11.28 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved