請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97030完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙基揚 | zh_TW |
| dc.contributor.advisor | Chi-Yang Chao | en |
| dc.contributor.author | 王子豪 | zh_TW |
| dc.contributor.author | Tzu-Hao Wang | en |
| dc.date.accessioned | 2025-02-25T16:33:39Z | - |
| dc.date.available | 2025-02-26 | - |
| dc.date.copyright | 2025-02-25 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2025-02-10 | - |
| dc.identifier.citation | (1) Imholt, L.; Dong, D.; Bedrov, D.; Cekic-Laskovic, I.; Winter, M.; Brunklaus, G. Supramolecular self-assembly of methylated rotaxanes for solid polymer electrolyte application. ACS Macro Letters 2018, 7 (7), 881-885.
(2) Imholt, L.; Dörr, T. S.; Zhang, P.; Ibing, L.; Cekic-Laskovic, I.; Winter, M.; Brunklaus, G. Grafted polyrotaxanes as highly conductive electrolytes for lithium metal batteries. Journal of power sources 2019, 409, 148-158. (3) Okumura, Y.; Ito, K. The polyrotaxane gel: a topological gel by figure‐of‐eight cross‐links. Advanced materials 2001, 13 (7), 485-487. (4) Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chemical reviews 1998, 98 (5), 1743-1754. (5) Lin, Y.-C.; Ito, K.; Yokoyama, H. Solid polymer electrolyte based on crosslinked polyrotaxane. Polymer 2018, 136, 121-127. (6) Hashimoto, K.; Shiwaku, T.; Aoki, H.; Yokoyama, H.; Mayumi, K.; Ito, K. Strain-induced crystallization and phase separation used for fabricating a tough and stiff slide-ring solid polymer electrolyte. Science advances 2023, 9 (47), eadi8505. (7) Noritomi, T.; Jiang, L.; Yokoyama, H.; Mayumi, K.; Ito, K. High-yield one-pot synthesis of polyrotaxanes with tunable well-defined threading ratios over a wide range. RSC advances 2022, 12 (7), 3796-3800. (8) Kato, K.; Inoue, K.; Kudo, M.; Ito, K. Synthesis of graft polyrotaxane by simultaneous capping of backbone and grafting from rings of pseudo-polyrotaxane. Beilstein Journal of Organic Chemistry 2014, 10 (1), 2573-2579. (9) Ssu-TIng, L. Alkylated PEO-based Polyrotaxane:Syntheses and Applications in Lithium-ion Conducting Solid Polymer Electrolyte. Master Thesis, National Taiwan University, 2020. (10) Chen-Yu, P. Polyrotaxane-graft-poly(ethylene oxide):Syntheses and Applications in Solid Polymer Electrolytes. Master Thesis, National Taiwan University, 2021. (11) Seo, J.; Lee, G. H.; Hur, J.; Sung, M. C.; Seo, J. H.; Kim, D. W. Mechanically Interlocked Polymer Electrolyte with Built‐In Fast Molecular Shuttles for All‐Solid‐State Lithium Batteries. Advanced Energy Materials 2021, 11 (44), 2102583. (12) Chae, W.; Kim, B.; Ryoo, W. S.; Earmme, T. A brief review of gel polymer electrolytes using in situ polymerization for lithium-ion polymer batteries. Polymers 2023, 15 (4), 803. (13) Ma, C.; Cui, W.; Liu, X.; Ding, Y.; Wang, Y. In situ preparation of gel polymer electrolyte for lithium batteries: Progress and perspectives. InfoMat 2022, 4 (2), e12232. (14) Cheng, H.; Zhu, J.; Jin, H.; Gao, C.; Liu, H.; Cai, N.; Liu, Y.; Zhang, P.; Wang, M. In situ initiator-free gelation of highly concentrated lithium bis (fluorosulfonyl) imide-1, 3-dioxolane solid polymer electrolyte for high performance lithium-metal batteries. Materials Today Energy 2021, 20, 100623. (15) Hosseinioun, A.; Paillard, E. In situ crosslinked PMMA gel electrolyte from a low viscosity precursor solution for cost-effective, long lasting and sustainable lithium-ion batteries. Journal of membrane science 2020, 594, 117456. (16) Fan, W.; Li, N. W.; Zhang, X.; Zhao, S.; Cao, R.; Yin, Y.; Xing, Y.; Wang, J.; Guo, Y. G.; Li, C. A dual‐salt gel polymer electrolyte with 3D cross‐linked polymer network for dendrite‐free lithium metal batteries. Advanced science 2018, 5 (9), 1800559. (17) Dai, K.; Ma, C.; Feng, Y.; Zhou, L.; Kuang, G.; Zhang, Y.; Lai, Y.; Cui, X.; Wei, W. A borate-rich, cross-linked gel polymer electrolyte with near-single ion conduction for lithium metal batteries. Journal of Materials Chemistry A 2019, 7 (31), 18547-18557. (18) Zhou, D.; He, Y. B.; Liu, R.; Liu, M.; Du, H.; Li, B.; Cai, Q.; Yang, Q. H.; Kang, F. In situ synthesis of a hierarchical all‐solid‐state electrolyte based on nitrile materials for high‐performance lithium‐ion batteries. Advanced Energy Materials 2015, 5 (15), 1500353. (19) Alamgir, M.; Moulton, R.; Abraham, K. Li+-conductive polymer electrolytes derived from poly (1, 3-dioxolane) and polytetrahydrofuran. Electrochimica acta 1991, 36 (5-6), 773-782. (20) Okada, M.; Yamashita, Y.; Ishii, Y. Polymerization of 1, 3‐dioxolane. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics 1964, 80 (1), 196-207. (21) Zhao, Q.; Liu, X.; Stalin, S.; Khan, K.; Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy 2019, 4 (5), 365-373. (22) Li, W.; Gao, J.; Tian, H.; Li, X.; He, S.; Li, J.; Wang, W.; Li, L.; Li, H.; Qiu, J. SnF2‐catalyzed formation of polymerized dioxolane as solid electrolyte and its thermal decomposition behavior. Angewandte Chemie International Edition 2022, 61 (6), e202114805. (23) Liu, F.-Q.; Wang, W.-P.; Yin, Y.-X.; Zhang, S.-F.; Shi, J.-L.; Wang, L.; Zhang, X.-D.; Zheng, Y.; Zhou, J.-J.; Li, L. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Science Advances 2018, 4 (10), eaat5383. (24) Khan, K.; Tu, Z.; Zhao, Q.; Zhao, C.; Archer, L. A. Synthesis and properties of poly-ether/ethylene carbonate electrolytes with high oxidative stability. Chemistry of Materials 2019, 31 (20), 8466-8472. (25) Zhao, Q.; Liu, X.; Stalin, S.; Archer, L. In-built polymer-in-solvent and solvent-in-polymer electrolytes for high-voltage lithium metal batteries. Cell Reports Physical Science 2020, 1 (8). (26) Zhang, B.-H.; Wen, W.-X.; Wang, H.-Y.; Hou, Y.-L.; Chen, J.-Z.; Zhao, D.-L. In situ generated of hybrid interface in poly (1, 3-dioxolane) quasi solid electrolyte and extended sulfone cosolvent for lithium-metal batteries. Chemical Engineering Journal 2023, 472, 144990. (27) Bai, Y.; Ma, W.; Dong, W.; Wu, Y.; Wang, X.; Huang, F. In-situ-polymerized 1, 3-dioxolane solid-state electrolyte with space-confined plasticizers for high-voltage and robust Li/LiCoO2 batteries. ACS Applied Materials & Interfaces 2023, 15 (22), 26834-26842. (28) Li, C.; Hu, A.; Zhang, X.; Ni, H.; Fan, J.; Yuan, R.; Zheng, M.; Dong, Q. An intrinsic polymer electrolyte via in situ cross-linked for solid lithium-based batteries with high performance. PNAS nexus 2023, 2 (9), pgad263. (29) Wen, S.; Luo, C.; Wang, Q.; Wei, Z.; Zeng, Y.; Jiang, Y.; Zhang, G.; Xu, H.; Wang, J.; Wang, C. Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries. Energy Storage Materials 2022, 47, 453-461. (30) Zhu, J.; Zhang, J.; Zhao, R.; Zhao, Y.; Liu, J.; Xu, N.; Wan, X.; Li, C.; Ma, Y.; Zhang, H. In situ 3D crosslinked gel polymer electrolyte for ultra-long cycling, high-voltage, and high-safety lithium metal batteries. Energy Storage Materials 2023, 57, 92-101. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97030 | - |
| dc.description.abstract | 本研究的目的是以聚輪烷(Polyrotaxane, PR)衍生物為鋰電池開發類固態聚合物電解質(QSPEs)與膠態聚合物電解質(GPEs),並探討QSPEs與GPEs的熱性質、機械性質、電化學性質和介面性質。聚輪烷(PR)由一長鏈狀的線性聚環氧乙烯 (poly(ethylene oxide), PEO)作為主鏈,在主鏈上套上多個由6-8個醣類所組成的環糊精(Cyclodextrin, CD),最後再由封端所組成之超分子聚合物材料。由於CDs與PEO主鏈之間不存在化學鍵結,因此CDs可以沿PEO鏈滑動,形成所謂「滑環材料」,提供QSPE與GPE良好的分子運動性,在加入少量電解液即具有良好的離子傳導度,並與電極間有良好的貼合,以達到同時兼顧電池安全性與效能的目標。
在QSPE的研究中,我們開發了一新型聚輪烷(PR)衍生物hep-PR,將α-環糊精(α-CD)進行修飾得到具有末端雙鍵的1-庚烯(1-heptene)長碳鍊接枝於CD上。我們以hep-PR為基材,透過同時進行的溶劑揮發與硫醇烯反應(thiol-ene reaction)製備hep-PR獨立交聯膜,爾後將電解液加入乾膜製備成QSPEs。透過調整hep-PR的接枝率、製膜方法學、交聯劑當量與電解液添加量,並加入奈米纖維素(CNF)以提升QSPE的尺寸安定性、機械性質與離子傳導特性。當QSPEs含有100wt%的電解液時其室溫離子傳導度可達2.57✕10-4 S cm-1,在60℃時則可達1.07✕10-3 S cm-1。 在GPE的研究中, 我們對hep-PR進行環氧化反應(epoxidation)將雙鍵轉換為環氧基團得到e-PR,並將e-PR加入1,3-二氧環戊烷(DOL)的系統中作為原位陽離子開環聚合(in-situ cationic ring-opening polymerization)中的交聯劑。e-PR的CD滑環特性使e-PR成為可移動的交聯劑,提升無添加共溶劑GPEs的表現。相較於使用固定式交聯劑的GPE,e-PR GPEs最柔軟且具有最低的介面阻抗,顯示其與電極有更好的貼合;而在-20℃下其仍具有低體阻抗與適中的介面阻抗,展現其在低溫下操作的潛力。 | zh_TW |
| dc.description.abstract | The objective of this work is to develop quasi-solid polymer electrolyte (QSPEs) and gel polymer electrolyte (GPEs) for lithium batteries containing polyrotaxane derivatives, and to study the thermal, mechanical, electrochemical and interfacial properties of the obtained QSPEs and GPEs. Polyrotaxane (PR) is a supramolecule comprising of an end-capped linear poly(ethylene oxide) (PEO) main chain threading through multiple cyclodextrins (CDs) composed of 6-8 glucose units. As no chemical bonding exists between CDs and the PEO main chain, allowing CDs to slide along the PEO chain, usually recognized as “slide-ring” effect; PR should provide high molecular mobility to benefit the obtained QSPEs and GPEs with good ionic conductivity and intimate contact with electrodes upon limited liquid electrolyte uptake. Therefore, the safety and the performance of the lithium batteries could be concurrently satisfied.
In the QSPE studies, we develop a new custom made polyrotaxane derivative hep-PR by modifying α-cyclodextrin (α-CD) of PR to allow the CD tethered with 1-heptene side chains functionalized with terminal double bonds. The free standing matrix of QSPE comprised of crosslinked hep-PR is prepared from in-situ thiol-ene reaction upon solvent casting and which are subjected to liquid electrolytes uptake to afford the QSPEs. The properties of QSPEs are tailored by adjusting the degree of functionalization of hep-PR, the membrane preparation methodology, the crosslinking density, and the amount of liquid electrolyte uptake. Cellulose nanofibers (CNF) are incorporated to further enhance the dimensional stability and the mechanical properties. With 100 wt% liquid electrolyte uptake, the ionic conductivity of the QSPE could reach 2.57✕10-4 S cm-1 and 1.07✕10-3 S cm-1 at 20℃ and 60℃, respectively. In the GPE studies, the double bonds of hep-PR is further converted into epoxide to afford e-PR, a PR derivative with CDs to serve as a polymeric crosslinker in gel polymer electrolytes (GPEs) prepared from in-situ cationic ring-opening polymerization of 1,3-dioxolane (DOL). The slide ring characters of CDs allow e-PR act as a “moveable crosslinker” to improve the performance of GPEs without the use of co-solvents. Comparing to reference GPEs using “fixed crosslinkers”, the e-PR GPEs are the softest and exhibit the lowest interfacial resistance, suggesting better interface compatibility with the electrodes. It is worthy to address that low bulk resistance and moderate interfacial resistance could be achieved even at -20℃, suggesting good potential of e-PR GPEs to operate at low temperatures. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:33:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-25T16:33:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT IV 目次 VI 圖次 IX 表次 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與架構 2 第二章 文獻回顧 5 2.1 類固態電解質(QSPEs)與膠態電解質(GPEs) 5 2.2 聚輪烷(PR)在高分子電解質(SPE)中的應用 8 2.3 1,3-二氧環戊烷(DOL)為原料之原位聚合交聯膠態電解質 21 第三章 實驗藥品與儀器分析 25 3.1 實驗藥品 25 3.2 實驗儀器 28 3.3 材料分析 29 3.3.1 化學結構之鑑定 29 3.3.2 熱重分析 29 3.3.3 微差熱分析 29 3.3.4 機械強度分析 30 3.3.5 流變性質分析 30 3.3.6 離子傳導度測量 31 第四章 以hep-PR製備交聯之QSPE 32 4.1 聚輪烷(PR)的鑑定與分析 32 4.2 hep-PR的合成與鑑定 34 4.2.1 hep-PR之合成 34 4.2.2 hep-PR之鑑定 36 4.3 類固態電解質(QSPEs)之乾膜製備 39 4.3.1 QSPEs乾膜的命名法 42 4.3.2 hep-PR類固態電解質(QSPE)特性分析 42 4.3.3 熱性質分析 49 4.3.4 機械性質分析 53 4.3.5 含QSPE之CR2032鈕扣型電池組裝 54 4.3.6 離子傳導度 55 4.3.7 變溫離子傳導度 61 4.4 小結 64 第五章 以e-PR製備交聯之GPE 65 5.1 e-PR的合成與鑑定 66 5.1.1 e-PR之合成 66 5.1.2 e-PR之鑑定 67 5.2 以原位聚合製備e-PR交聯GPE 71 5.2.1 GPE之前驅液製備 71 5.2.2 含GPE之CR2032鈕扣型電池組裝 71 5.3 膠態電解質(GPE)性質分析 73 5.3.1 GPE的成膠行為 73 5.3.2 熱性質分析 74 5.3.3 機械性質分析 77 5.3.4 離子傳導度 79 5.3.5 變溫離子傳導度 81 5.4 小結 87 第六章 未來展望 88 參考文獻 89 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 膠態電解質 | zh_TW |
| dc.subject | 3-二氧戊環烷 | zh_TW |
| dc.subject | 原位聚合 | zh_TW |
| dc.subject | 移動交聯 | zh_TW |
| dc.subject | 聚輪烷 | zh_TW |
| dc.subject | 類固態電解質 | zh_TW |
| dc.subject | moveable crosslinking | en |
| dc.subject | polyrotaxane (PR) | en |
| dc.subject | gel polymer electrolyte (GPE) | en |
| dc.subject | quasi-solid polymer electrolyte (QSPE) | en |
| dc.subject | 3-dioxolane | en |
| dc.subject | in-situ polymerization | en |
| dc.title | 新型聚輪烷衍生物在鋰電池類固態電解質與膠態電解質之應用 | zh_TW |
| dc.title | Novel Polyrotaxane Derivatives for Quasi-Solid Polymer Electrolytes and Gel Polymer Electrolytes in Lithium Batteries | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉英麟;羅承慈 | zh_TW |
| dc.contributor.oralexamcommittee | Ying-Ling Liu;Chen-Tsyr Lo | en |
| dc.subject.keyword | 類固態電解質,膠態電解質,聚輪烷,移動交聯,原位聚合,1,3-二氧戊環烷, | zh_TW |
| dc.subject.keyword | quasi-solid polymer electrolyte (QSPE),gel polymer electrolyte (GPE),polyrotaxane (PR),moveable crosslinking,in-situ polymerization,1,3-dioxolane, | en |
| dc.relation.page | 92 | - |
| dc.identifier.doi | 10.6342/NTU202500438 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-02-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2028-02-12 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 此日期後於網路公開 2028-02-12 | 5.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
