請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97026完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何傳愷 | zh_TW |
| dc.contributor.advisor | Chuan-Kai Ho | en |
| dc.contributor.author | 謝季恆 | zh_TW |
| dc.contributor.author | Chi-Heng Hsieh | en |
| dc.date.accessioned | 2025-02-25T16:32:33Z | - |
| dc.date.available | 2025-02-26 | - |
| dc.date.copyright | 2025-02-25 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-02-10 | - |
| dc.identifier.citation | Arnold, T. W., and R. M. Zink. 2011. Collision mortality has no discernible effect on population trends of North American birds. PLoS One 6:e24708.
Aymí, R., Y. González, T. López, and O. Gordo. 2017. Bird-window collisions in a city on the Iberian Mediterranean coast during autumn migration. Basilio, L. G., D. J. Moreno, and A. J. Piratelli. 2020. Main causes of bird-window collisions: a review. Anais da Academia Brasileira de Ciencias 92:e20180745. Bayne, E. M., C. A. Scobie, and M. Rawson-Clark. 2012. Factors influencing the annual risk of bird–window collisions at residential structures in Alberta, Canada. Wildlife Research 39:583-592. Bonney, R., J. L. Shirk, T. B. Phillips, A. Wiggins, H. L. Ballard, A. J. Miller-Rushing, and J. K. Parrish. 2014. Next steps for citizen science. Science 343:1436-1437. Bracey, A. M., M. A. Etterson, G. J. Niemi, and R. F. Green. 2016. Variation in bird-window collision mortality and scavenging rates within an urban landscape. The Wilson Journal of Ornithology 128:355-367. Brown, B. B., E. Kusakabe, A. Antonopoulos, S. Siddoway, and L. Thompson. 2019. Winter bird-window collisions: mitigation success, risk factors, and implementation challenges. PeerJ 7:e7620. Callaghan, C. T., D. E. Bowler, S. A. Blowes, J. M. Chase, M. B. Lyons, and H. M. Pereira. 2022. Quantifying effort needed to estimate species diversity from citizen science data. Ecosphere 13:e3966. Callaghan, C. T., S. Nakagawa, and W. K. Cornwell. 2021. Global abundance estimates for 9,700 bird species. Proceedings of the National Academy of Sciences 118:e2023170118. Chao, A., N. J. Gotelli, T. Hsieh, E. L. Sander, K. Ma, R. K. Colwell, and A. M. Ellison. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological monographs 84:45-67. Chuang, T.-R., T.-E. Lin, Y.-H. Chang, C.-Y. Chen, Y.-K. Chen, P.-K. Hsieh, and G.-S. Mai. 2016. Communal Data Workflow in TaiRON (Taiwan Roadkill Observation Network). SciDataCon, Denver, CO. Cohn, J. P. 2008. Citizen science: Can volunteers do real research? BioScience 58:192-197. Cornell Lab of Ornithology. 2022. eBird Basic Dataset. Version: EBD_relNov-2022. Ithaca, New York. Cornell Lab of Ornithology. 2023. eBird Basic Dataset. Version: EBD_relApr-2023. Ithaca, New York. Cusa, M., D. A. Jackson, and M. Mesure. 2015. Window collisions by migratory bird species: urban geographical patterns and habitat associations. Urban Ecosystems 18:1427-1446. De Groot, K. L., A. N. Porter, A. R. Norris, A. C. Huang, and R. Joy. 2021. Year-round monitoring at a Pacific coastal campus reveals similar winter and spring collision mortality and high vulnerability of the Varied Thrush. The Condor 123:duab027. Ding, T., C.-S. Juan, R.-S. Lin, Y.-J. Tsai, J.-L. Wu, J. Wu, and Y.-H. Yang. 2020. The 2020 CWBF checklist of the birds of Taiwan. Chinese Wild Bird Federation. Farias, W., M. F. Napoli, P. Dodonov, and L. R. Forti. 2022. Watch out for the car! Almost a thousand amphibians and reptiles ran over by cars at a single location during one reproductive season in Bahia state, Brazil. Biodiversity 23:129-137. Ghermandi, A., and M. Sinclair. 2019. Passive crowdsourcing of social media in environmental research: A systematic map. Global environmental change 55:36-47. Gómez-Martínez, M. A., D. Klem, O. Rojas-Soto, F. González-García, and I. MacGregor-Fors. 2019. Window strikes: bird collisions in a Neotropical green city. Urban Ecosystems 22:699-708. Hager, S. B., and B. J. Cosentino. 2014. Surveying for bird carcasses resulting from window collisions: a standardized protocol. 2167-9843, PeerJ PrePrints. Hager, S. B., B. J. Cosentino, M. A. Aguilar-Gómez, M. L. Anderson, M. Bakermans, T. J. Boves, D. Brandes, M. W. Butler, E. M. Butler, and N. L. Cagle. 2017. Continent-wide analysis of how urbanization affects bird-window collision mortality in North America. Biological Conservation 212:209-215. Hager, S. B., B. J. Cosentino, and K. J. McKay. 2012. Scavenging affects persistence of avian carcasses resulting from window collisions in an urban landscape. Journal of Field Ornithology 83:203-211. Haklay, M. 2012. Citizen science and volunteered geographic information: Overview and typology of participation. Crowdsourcing geographic knowledge: Volunteered geographic information (VGI) in theory and practice:105-122. Hsieh, T., K. Ma, and A. Chao. 2016a. iNEXT: an R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods in ecology and evolution 7:1451-1456. Hsieh, T., K. Ma, and A. Chao. 2016b. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7:1451-1456. Kemp, S. 2023. Digital 2023: Taiwan. DataReportal – Global Digital Insights. Klem Jr, D. 2006. Glass: a deadly conservation issue for birds. Bird Observer 34:73-81. Klem Jr, D. 2009. Avian mortality at windows: the second largest human source of bird mortality on earth.in Proceedings of the Fourth International Partners in Flight Conference: Tundra to Tropics. Klem Jr, D. 2015. Bird–window collisions: A critical animal welfare and conservation issue. Journal of Applied Animal Welfare Science 18:S11-S17. Klem Jr, D., P. G. Saenger, and B. P. Brogle. 2024. Evidence, consequences, and angle of strike of bird–window collisions. The Wilson Journal of Ornithology 136:113-119. Kornreich, A., D. Partridge, M. Youngblood, and K. Parkins. 2024. Rehabilitation outcomes of bird-building collision victims in the Northeastern United States. PLoS One 19:e0306362. Kummer, J. A., and E. M. Bayne. 2015. Bird feeders and their effects on bird-window collisions at residential houses. Avian Conservation and Ecology 10:6. Kummer, J. A., E. M. Bayne, and C. S. Machtans. 2016. Comparing the results of recall surveys and standardized searches in understanding bird-window collisions at houses. Avian Conservation and Ecology 11. Loss, S. R., B. V. Li, L. C. Horn, M. R. Mesure, L. Zhu, T. G. Brys, A. M. Dokter, J. A. Elmore, R. E. Gibbons, and T. Z. Homayoun. 2023a. Citizen science to address the global issue of bird–window collisions. Frontiers in Ecology and the Environment. Loss, S. R., B. V. Li, L. C. Horn, M. R. Mesure, L. Zhu, T. G. Brys, A. M. Dokter, J. A. Elmore, R. E. Gibbons, and T. Z. Homayoun. 2023b. Citizen science to address the global issue of bird–window collisions. Frontiers in Ecology and the Environment 21:418-427. Loss, S. R., S. S. Loss, T. Will, and P. P. Marra. 2015. Linking place-based citizen science with large-scale conservation research: a case study of bird-building collisions and the role of professional scientists. Biological Conservation 184:439-445. Loss, S. R., T. Will, S. S. Loss, and P. P. Marra. 2014. Bird–building collisions in the United States: Estimates of annual mortality and species vulnerability. The Condor 116:8-23. MacKinnon, J., and K. MacKinnon. 1986. Review of the Protected areas system in the Indo-Malayan realm. Menacho-Odio, R. M., M. Garro-Cruz, and J. E. Arévalo. 2019. Ecology, endemism, and conservation status of birds that collide with glass windows in Monteverde, Costa Rica. Revista de Biología Tropical 67:326-345. Newman, G., A. Wiggins, A. Crall, E. Graham, S. Newman, and K. Crowston. 2012. The future of citizen science: emerging technologies and shifting paradigms. Frontiers in Ecology and the Environment 10:298-304. Nichols, K. S., T. Homayoun, J. Eckles, and R. B. Blair. 2018. Bird-building collision risk: an assessment of the collision risk of birds with buildings by phylogeny and behavior using two citizen-science datasets. PLoS One 13:e0201558. O'Neill, D., H. Häkkinen, J. Neumann, L. Shaffrey, C. Cheffings, K. Norris, and N. Pettorelli. 2023. Investigating the potential of social media and citizen science data to track changes in species' distributions. Ecology and Evolution 13:e10063. Oliveira, S. S., B. Barros, J. L. Pereira, P. T. Santos, and R. Pereira. 2021. Social media use by citizen science projects: characterization and recommendations. Frontiers in Environmental Science 9:715319. R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Rebolo-Ifrán, N., A. Di Virgilio, and S. A. Lambertucci. 2019. Drivers of bird-window collisions in southern South America: a two-scale assessment applying citizen science. Scientific Reports 9:18148. Seo, H.-M., Y.-J. Kim, E.-J. Lee, S.-G. Lee, W.-S. Lee, and C.-Y. Choi. 2023. Another emerging threat to birds: avian mortality estimates from roadside transparent noise barrier collisions in South Korea. Bird Conservation International 33:e50. Shen, F.-Y., T.-S. Ding, and J.-S. Tsai. 2023. Comparing avian species richness estimates from structured and semi-structured citizen science data. Scientific Reports 13:1214. Sheppard, C., G. Phillips, A. Law, and M. Parr. 2015. Bird-friendly building design. American Bird Conservancy. Shizukuda, K., and M. U. Saito. 2023. The disappearance of small mammal carcasses in human-dominated habitats: a field experiment in northeastern Japan. Diversity 15:339. Silvertown, J. 2009. A new dawn for citizen science. Trends in Ecology & Evolution 24:467-471. Taiwan Wild Bird Federation. 2023. Introduction to alien bird species in Taiwan: Asian Glossy Starling. TWBF. Tan, D. J., N. A. Freymueller, K. M. Teo, W. S. Symes, S. K. Lum, and F. E. Rheindt. 2024. Disentangling the biotic and abiotic drivers of bird–building collisions in a tropical Asian city with ecological niche modeling. Conservation Biology:e14255. Van Doren, B. M., D. E. Willard, M. Hennen, K. G. Horton, E. F. Stuber, D. Sheldon, A. H. Sivakumar, J. Wang, A. Farnsworth, and B. M. Winger. 2021. Drivers of fatal bird collisions in an urban center. Proceedings of the National Academy of Sciences 118:e2101666118. Winton, R. S., N. Ocampo-Peñuela, and N. Cagle. 2018. Geo-referencing bird-window collisions for targeted mitigation. PeerJ 6:e4215. Żmihorski, M., D. Kotowska, and E. Zyśk-Gorczyńska. 2022. Using citizen science to identify environmental correlates of bird-window collisions in Poland. Science of the Total Environment 811:152358. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/97026 | - |
| dc.description.abstract | 野鳥撞玻璃(Bird-window collisions),或稱窗殺,意指鳥類撞上人造玻璃建物(包含但不限於窗戶、門、鏡子等)是人為活動間接造成鳥類死亡的主因之一。窗殺是重要的保育議題,保守估計每年全球有十億隻以上的野鳥死於窗殺,然而我們現有的認知卻侷限於溫帶,尤其是北美洲地區。因此,本研究為了彌補此一缺漏,將研究範圍設定在臺灣地區─位於熱帶與亞熱帶,高度都市化的亞洲島嶼,檢視此處的窗殺概況。
為此,我們藉由公民科學建立了一個時間跨度達十年(2012-2022)涵蓋172個物種(約臺灣地區有紀錄鳥種的25%)逾3,500筆案例紀錄的窗殺資料庫。公民科學的資料來自兩個不同平台,分別為社群媒體(臉書,約佔整體的三分之二),及臺灣動物路死觀察網(TaiRON,約佔整體的三分之一)。稀釋曲線分析(Rarefaction and extrapolation analysis)顯示,本研究整併倆公民科學平台資料所形成的窗殺資料庫為可信賴,且有效涵蓋臺灣窗殺樣態的資料庫。 相較於北美洲地區窗殺以春秋遷徙季成群大量遷徙中的小型雀型目候鳥為主要撞擊者,臺灣地區的窗殺在季節分布和種群分類組成頗為不同。其一、儘管臺灣位處東亞澳遷徙線上且為重要的遷徙中繼站,遭遇窗殺的物種中留鳥的物種數多於候鳥物種數。其二、逾半曾被記錄過遭遇窗殺的物種在物種族群豐度對撞擊數量的回歸分析中,落在1:1參考線之上,顯示出牠們面臨窗殺威脅的高風險。其三、所匡列出的「超易撞物種(super-colliders)」包含鬚鴷科(Megalaimidae)、鳩鴿科(Columbidae)、鷹科(Accipitridae)、翠鳥科(Alcedinidae)等非雀形目鳥種。其中,又以五色鳥(Psilopogon nuchalis)、翠翼鳩(Chalcophaps indica)和鳳頭蒼鷹(Lophospiza trivirgata,原Accipiter trivirgatus)在撞擊數量和撞擊風險上均列為前三,為學術紀錄上首度顯示這三個物種具高窗殺風險。 綜觀本研究,我們的成果彰顯出野鳥撞玻璃的季節分布和種群分類組成具有區域獨特性。因此,我們鼓勵過去缺乏相關研究的地區,尤其是亞洲、熱帶和亞熱帶等地區展開相關研究,以因應逐漸嚴峻的國際野生動物保育挑戰。最後,本研究亦顯示公民科學和社群媒體的興盛不僅能輔助資料收集,更能促進群眾參與和落實保育行動,可供未來類似領域的研究借鑑。 | zh_TW |
| dc.description.abstract | Bird-window collisions (i.e. birds crashing into man-made glass structures) are a major contributor to human-induced avian mortality, with global estimates exceeding one billion birds killed annually. While this conservation issue is increasingly recognized, research has predominantly focused on temperate regions, particularly North America. To address this gap, this study examines bird-window collision patterns in Taiwan, a highly urbanized tropical and subtropical Asian island.
We compiled a decade-long database (2012-2022) of over 3,500 bird-window collision cases involving 172 species (ca. 25% of Taiwan’s recorded bird species). Data were collected through citizen science efforts, with approximately two-thirds from social media (Facebook) and one-third from the Taiwan Roadkill Observation Network (TaiRON). Rarefaction and extrapolation analysis suggested that these social media data effectively captured collision events. Compared to North America, dominated by migratory passerines, bird-window collisions in Taiwan exhibited differences in seasonal distribution and taxonomic composition. First, in contrast to North America, resident birds experienced more collisions than migratory species, despite Taiwan’s role as a key stopover along the East Asian-Australasian Flyway. Second, nearly half of the species involved in collisions fell above the abundance-collision 1:1 reference line, indicating high vulnerability. Prominent “super-colliders” included non-passerine species from families such as Megalaimidae, Columbidae, Accipitridae, and Alcedinidae, with the Taiwan Barbet (Psilopogon nuchalis), Emerald Dove (Chalcophaps indica), and Crested Goshawk (Lophospiza trivirgata, formerly Accipiter trivirgatus) ranking highest in both collision frequency and vulnerability. Overall, our study suggests that seasonal patterns and taxonomic compositions of bird-window collisions vary across regions. We advocate for expanded research in under-studied areas, particularly in Asian, tropical, and subtropical regions, to develop targeted conservation strategies addressing this pressing global wildlife challenge. Lastly, citizen science and social media not only enhance data collection efforts but also engage the public in conservation, offering a valuable approach for future studies in this field. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-25T16:32:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-25T16:32:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iv Table of Contents vi Contents of Figures viii Contents of Tables x Introduction 1 Materials and Methods 6 Collection of bird-window collision cases in Taiwan 6 Quality control and data synchronization in merging Facebook and TaiRON data 9 Categorization of the migration status for the species 11 Estimation of relative vulnerability to bird-window collision for Taiwan birds 13 Results 16 Overview of Bird-window collision data in Taiwan 16 Spatial pattern 16 Temporal pattern 17 Comparison between Facebook and TaiRON data 18 The top colliding species recorded in Taiwan (by frequency) 22 Relative vulnerability to bird-window collision for Taiwan’s birds 23 Discussion 26 Summary of the key findings 26 Top collider differences and evaluation on vulnerability and discuss on the super-colliders 27 The introduction of using iNEXT to evaluate sampling coverage quality in citizen science especially under the topic of bird-window collision 30 Discuss on why the differences appeared in the two platforms 32 Potential Caveats and future work 34 Call out to more bird-window collision studies in under represent regions 35 References 37 Appendix Methods: The search queries for collecting bird-window collision data from public Facebook posts. 62 Table S1. Recent IUCN red list assessment, global population trend, endemism, and local protection status of the 20 species listed as “Super-colliders” in Taiwan 64 | - |
| dc.language.iso | en | - |
| dc.subject | 窗殺 | zh_TW |
| dc.subject | 風險評估 | zh_TW |
| dc.subject | 公民科學 | zh_TW |
| dc.subject | 社群媒體 | zh_TW |
| dc.subject | 稀釋曲線分析 | zh_TW |
| dc.subject | 臺灣 | zh_TW |
| dc.subject | 鳥類 | zh_TW |
| dc.subject | Taiwan | en |
| dc.subject | bird | en |
| dc.subject | bird-window collision | en |
| dc.subject | vulnerability | en |
| dc.subject | citizen science | en |
| dc.subject | social media | en |
| dc.subject | rarefaction analysis | en |
| dc.title | 揭開熱帶和亞熱帶鳥類獨特的窗殺模式與脆弱性: 來自臺灣十年的公民科學和社群媒體資料分析 | zh_TW |
| dc.title | Distinct patterns and vulnerability of tropical and subtropical birds to window collisions: Decadal insights from citizen science and social media in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 何熙誠;柯智仁;王齡敏 | zh_TW |
| dc.contributor.oralexamcommittee | Hsi-Cheng Ho;Chie-Jen Ko;Ling-Min Wang | en |
| dc.subject.keyword | 鳥類,窗殺,風險評估,公民科學,社群媒體,稀釋曲線分析,臺灣, | zh_TW |
| dc.subject.keyword | bird,bird-window collision,vulnerability,citizen science,social media,rarefaction analysis,Taiwan, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202500501 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-02-10 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 2.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
