Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96852
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫紹華zh_TW
dc.contributor.advisorShao-Hua Sunen
dc.contributor.author陳尚甫zh_TW
dc.contributor.authorShang-Fu Chenen
dc.date.accessioned2025-02-24T16:15:36Z-
dc.date.available2025-02-25-
dc.date.copyright2025-02-24-
dc.date.issued2024-
dc.date.submitted2025-01-05-
dc.identifier.citation[1] B. Zong et al., “Deep autoencoding gaussian mixture model for unsupervised anomaly detection,” in ICLR, 2018. 1, 3, 73
[2] S. Venkataramanan et al., “Attention guided anomaly localization in images,” in ECCV, 2020. 1
[3] D. Gong et al., “Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection,” in ICCV, 2019. 1, 3, 9, 11, 12, 73
[4] D. S. Tan et al., “Trustmae: A noise-resilient defect classification framework using memory-augmented auto-encoders with trust regions,” in WACV, 2021. 1, 3, 9, 12, 73
[5] H. Li et al., “Domain generalization with adversarial feature learning,” in CVPR, 2018. 2, 3
[6] S. Wang et al., “Learning from extrinsic and intrinsic supervisions for domain generalization,” in ECCV. Springer, 2020. 2, 3, 9, 11, 12
[7] X. Yue et al., “Domain randomization and pyramid consistency: Simulation-to-real generalization without accessing target domain data,” in ICCV, 2019. 2, 3
[8] D. Li et al., “Episodic training for domain generalization,” in ICCV, 2019. 2, 3, 9, 11, 12
[9] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, “Ganomaly: Semi-supervised anomaly detection via adversarial training,” in ACCV, 2018. 3
[10] T. Schlegl et al., “f-anogan: Fast unsupervised anomaly detection with generative adversarial networks,” Medical image analysis, vol. 54, 2019. 3
[11] T.-Y. Lin et al., “Feature pyramid networks for object detection,” in CVPR, 2017. 5
[12] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object detection,” in CVPR, 2020. 5
[13] L. Wang et al., “Learning trailer moments in full-length movies with co-contrastive attention,” in ECCV. Springer, 2020. 8
[14] P. Bergmann et al., “Mvtec ad–a comprehensive real-world dataset for unsupervised anomaly detection,” in CVPR, 2019. 9
[15] P. Mishra et al., “Vt-adl: A vision transformer network for image anomaly detection and localization,” arXiv preprint arXiv:2104.10036, 2021. 9
[16] P. Bergmann et al., “Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings,” in CVPR, 2020. 9
[17] M. Heusel et al., “Gans trained by a two time-scale update rule converge to a local nash equilibrium,” NeurIPS, vol. 30, 2017. 14
[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems (NIPS), 2014, pp. 2672– 2680. 17, 51
[19] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “Infogan: Interpretable representation learning by information maximizing REFERENCE 97 generative adversarial nets,” in Advances in Neural Information Processing Systems (NIPS), 2016. 17
[20] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifier gans,” in Proceedings of the International Conference on Machine Learning (ICML), 2017. 17, 25
[21] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner, “beta-vae: Learning basic visual concepts with a constrained variational framework,” in Proceedings of the International Conference on Learning Representations (ICLR), 2017. 17
[22] D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling, “Semi-supervised learning with deep generative models,” in Advances in Neural Information Processing Systems (NIPS), 2014. 17
[23] T. D. Kulkarni, W. Whitney, P. Kohli, and J. B. Tenenbaum, “Deep convolutional inverse graphics network,” in Advances in Neural Information Processing Systems (NIPS), 2015. 17
[24] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum, “Deep convolutional inverse graphics network,” in Advances in neural information processing systems, 2015, pp. 2539–2547. 17
[25] Y.-C. Liu, Y.-Y. Yeh, T.-C. Fu, S.-D. Wang, W.-C. Chiu, and Y.-C. F. Wang, “Detach and adapt: Learning cross-domain disentangled deep representation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. 17
[26] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation using deep conditional generative models,” in Advances in Neural Information Processing Systems (NIPS), 2015. 17
[27] Z. Zheng and L. Sun, “Disentangling latent space for vae by label relevant/irrelevant dimensions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 12 192–12 201. 17
[28] O. Press, T. Galanti, S. Benaim, and L. Wolf, “Emerging disentanglement in auto-encoder based unsupervised image content transfer,” arXiv preprint arXiv:2001.05017, 2020. 17
[29] A. H. Liu, Y.-C. Liu, Y.-Y. Yeh, and Y.-C. F. Wang, “A unified feature disentangler for multi-domain image translation and manipulation,” in Advances in Neural Information Processing Systems (NIPS), 2018. 17, 24, 25
[30] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 17
[31] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, “Generative adversarial text to image synthesis,” in Proceedings of the International Conference on Machine Learning (ICML), 2016. 17
[32] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. Metaxas, “Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017. 17
[33] A. Voynov and A. Babenko, “Unsupervised discovery of interpretable directions in the gan latent space,” arXiv preprint arXiv:2002.03754, 2020. 18
[34] Y. Shen, C. Yang, X. Tang, and B. Zhou, “Interfacegan: Interpreting the disentangled face representation learned by gans,” arXiv preprint arXiv:2005.09635, 2020. 18
[35] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, “Autoencoding beyond pixels using a learned similarity metric,” arXiv preprint arXiv:1512.09300, 2015. 20, 22, 24, 25
[36] H.-Y. Lee, H.-Y. Tseng, J.-B. Huang, M. K. Singh, and M.-H. Yang, “Diverse image-to-image translation via disentangled representations,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018. 20, 22
[37] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, 1998. 21
[38] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “Multi-pie,” Image and Vision Computing, vol. 28, no. 5, pp. 807–813, 2010. 21
[39] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “Highresolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 10 684–10 695. 27, 36, 73
[40] K. Lee, H. Liu, M. Ryu, O. Watkins, Y. Du, C. Boutilier, P. Abbeel, M. Ghavamzadeh, and S. S. Gu, “Aligning text-to-image models using human feedback,” arXiv preprint arXiv:2302.12192, 2023. 27
[41] Y. Fan, O. Watkins, Y. Du, H. Liu, M. Ryu, C. Boutilier, P. Abbeel, M. Ghavamzadeh, K. Lee, and K. Lee, “Dpok: reinforcement learning for fine-tuning text-to-image diffusion models,” in Proceedings of the 37th International Conference on Neural Information Processing Systems, 2024. 27, 30
[42] K. Black, M. Janner, Y. Du, I. Kostrikov, and S. Levine, “Training diffusion models with reinforcement learning,” in The Twelfth International Conference on Learning Representations, 2024. 27, 28, 30
[43] K. Yang, J. Tao, J. Lyu, C. Ge, J. Chen, W. Shen, X. Zhu, and X. Li, “Using human feedback to fine-tune diffusion models without any reward model,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 8941–8951. 27, 29, 31, 36, 37, 45
[44] M. Uehara, Y. Zhao, K. Black, E. Hajiramezanali, G. Scalia, N. L. Diamant, A. M. Tseng, S. Levine, and T. Biancalani, “Feedback efficient online fine-tuning of diffusion models,” in Proceedings of the 41st International Conference on Machine Learning, 2024. 27, 30
[45] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” in Proceedings of the 37th International Conference on Machine Learning, 2020. 28, 34
[46] E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “LoRA: Low-rank adaptation of large language models,” in International Conference on Learning Representations, 2022. 29, 35
[47] G. I. Winata, H. Zhao, A. Das, W. Tang, D. D. Yao, S.-X. Zhang, and S. Sahu, “Preference tuning with human feedback on language, speech, and vision tasks: A survey,” arXiv preprint arXiv:2409.11564, 2024. 29
[48] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman, “Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 2023. 29, 30, 36
[49] R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano, G. Chechik, and D. Cohen-or, “An image is worth one word: Personalizing text-toimage generation using textual inversion,” in The Eleventh International Conference on Learning Representations, 2023. 29, 30
[50] M. Prabhudesai, A. Goyal, D. Pathak, and K. Fragkiadaki, “Aligning textto-image diffusion models with reward backpropagation,” arXiv preprint arXiv:2310.03739, 2023. 30
[51] J. Yang, J. Feng, and H. Huang, “Emogen: Emotional image content generation with text-to-image diffusion models,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2024. 30
[52] S. Zhong, Z. Huang, W. Wen, J. Qin, and L. Lin, “Sur-adapter: Enhancing text-to-image pre-trained diffusion models with large language models,” in The 31st ACM International Conference on Multimedia, 2023. 30
[53] L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control to textto- image diffusion models,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 3836–3847. 30
[54] R. Gandikota, J. Materzynska, J. Fiotto-Kaufman, and D. Bau, “Erasing concepts from diffusion models,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023. 30
[55] N. Kumari, B. Zhang, S.-Y. Wang, E. Shechtman, R. Zhang, and J.-Y. Zhu, “Ablating concepts in text-to-image diffusion models,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 22 691–22 702. 30
[56] S. Lu, Z. Wang, L. Li, Y. Liu, and A. W.-K. Kong, “Mace: Mass concept erasure in diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 6430–6440. 30
[57] W. Lin, J. Chen, J. Shi, Y. Zhu, C. Liang, J. Miao, T. Jin, Z. Zhao, F. Wu, S. Yan et al., “Non-confusing generation of customized concepts in diffusion models,” arXiv preprint arXiv:2405.06914, 2024. 30
[58] J. Xu, X. Liu, Y. Wu, Y. Tong, Q. Li, M. Ding, J. Tang, and Y. Dong, “Imagereward: Learning and evaluating human preferences for text-to-image generation,” Advances in Neural Information Processing Systems, vol. 36, 2024. 30
[59] K. Clark, P. Vicol, K. Swersky, and D. J. Fleet, “Directly fine-tuning diffusion models on differentiable rewards,” in The Twelfth International Conference on Learning Representations, 2024. 30
[60] M. Amadeus,W. A. C. Casta˜neda, A. F. Zanella, and F. R. P. Mahlow, “From pampas to pixels: Fine-tuning diffusion models for ga\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\’ucho heritage,” arXiv preprint arXiv:2401.05520, 2024. 31
[61] N. Kannen, A. Ahmad, M. Andreetto, V. Prabhakaran, U. Prabhu, A. B. Dieng, P. Bhattacharyya, and S. Dave, “Beyond aesthetics: Cultural competence in text-to-image models,” arXiv preprint arXiv:2407.06863, 2024. 31
[62] B. Wallace, M. Dang, R. Rafailov, L. Zhou, A. Lou, S. Purushwalkam, S. Ermon, C. Xiong, S. Joty, and N. Naik, “Diffusion model alignment using direct preference optimization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023. 31, 33
[63] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn, “Direct preference optimization: Your language model is secretly a reward model,” in Thirty-seventh Conference on Neural Information Processing Systems, 2023. 31, 33, 36
[64] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851, 2020. 32, 33, 36, 73, 77
[65] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” in International Conference on Learning Representations, 2020. 32, 33, 36
[66] S. Kakade and J. Langford, “Approximately optimal approximate reinforcement learning,” in Proceedings of the Nineteenth International Conference on Machine Learning, 2002, pp. 267–274. 32
[67] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017. 32
[68] T. B. Brown, “Language models are few-shot learners,” arXiv preprint arXiv:2005.14165, 2020. 36
[69] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774, 2023. 36
[70] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization.” in Proceedings of the International Conference on Learning Representations, 2015. 47
[71] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep reinforcement learning,” Nature, 2015. 49
[72] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep reinforcement learning,” in International Conference on Learning Representations, 2016. 49
[73] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep reinforcement learning: A brief survey,” IEEE Signal Processing Magazine, 2017. 49
[74] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei, “Deep reinforcement learning from human preferences,” in Advances in Neural Information Processing Systems, 2017. 49
[75] J. Leike, D. Krueger, T. Everitt, M. Martic, V. Maini, and S. Legg, “Scalable agent alignment via reward modeling: a research direction,” arXiv preprint arXiv:1811.07871, 2018. 49
[76] Y. Lee, S.-H. Sun, S. Somasundaram, E. S. Hu, and J. J. Lim, “Composing complex skills by learning transition policies,” in Proceedings of the International Conference on Learning Representations (ICLR), 2019. 49
[77] J. Garcıa and F. Fern´andez, “A comprehensive survey on safe reinforcement learning,” Journal of Machine Learning Research, 2015. 49
[78] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tutorial, review, and perspectives on open problems,” arXiv preprint arXiv:2005.01643, 2020. 49
[79] S. Schaal, “Learning from demonstration,” in Advances in Neural Information Processing Systems, 1997. 49, 51
[80] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters et al., “An algorithmic perspective on imitation learning,” Foundations and Trends® in Robotics, 2018. 49
[81] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Advances in Neural Information Processing Systems, 2016. 49, 51, 71
[82] K. Zolna, S. Reed, A. Novikov, S. G. Colmenarejo, D. Budden, S. Cabi, M. Denil, N. de Freitas, and Z. Wang, “Task-relevant adversarial imitation learning,” in Conference on Robot Learning, 2021. 49, 51
[83] I. Kostrikov, K. K. Agrawal, D. Dwibedi, S. Levine, and J. Tompson, “Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial imitation learning,” in International Conference on Learning Representations, 2019. 49, 51
[84] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement learning,”in International Conference on Machine Learning, 2000. 49, 52
[85] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learning,” in International Conference on Machine Learning, 2004. 49, 52
[86] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” in Advances in Neural Information Processing Systems, 1989. 50, 51, 70
[87] M. Bain and C. Sammut, “A framework for behavioural cloning,” in Machine Intelligence 15, 1995. 50, 70, 71
[88] T. Nguyen, Q. Zheng, and A. Grover, “Reliable conditioning of behavioral cloning for offline reinforcement learning,” arXiv preprint arXiv:2210.05158, 2023. 50
[89] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning. Springer, 2006. 50, 53
[90] D. Fisch, E. Kalkowski, and B. Sick, “Knowledge fusion for probabilistic generative classifiers with data mining applications,” IEEE Transactions on Knowledge and Data Engineering, 2013. 50, 53
[91] Q. Wu, R. Gao, and H. Zha, “Bridging explicit and implicit deep generative models via neural stein estimators,” in Neural Information Processing Systems, 2021. 50, 53
[92] G. Loaiza-Ganem, B. L. Ross, J. C. Cresswell, and A. L. Caterini, “Diagnosing and fixing manifold overfitting in deep generative models,” Transactions on Machine Learning Research, 2022. 50, 53
[93] S.-H. Sun, H. Noh, S. Somasundaram, and J. Lim, “Neural program synthesis from diverse demonstration videos,” in International Conference on Machine Learning, 2018. 51
[94] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-grained bimanual manipulation with low-cost hardware,” in Robotics: Science and Systems, 2023. 51
[95] A. O. Ly and M. Akhloufi, “Learning to drive by imitation: An overview of deep behavior cloning methods,” IEEE Transactions on Intelligent Vehicles, 2020. 51
[96] J. Harmer, L. Gissl´en, J. del Val, H. Holst, J. Bergdahl, T. Olsson, K. Sj¨o¨o, and M. Nordin, “Imitation learning with concurrent actions in 3d games,” in IEEE Conference on Computational Intelligence and Games, 2018. 51
[97] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from observation,” in International Joint Conference on Artificial Intelligence, 2018. 51
[98] N. M. M. Shafiullah, Z. J. Cui, A. Altanzaya, and L. Pinto, “Behavior transformers: Cloning k modes with one stone,” in Neural Information Processing Systems, 2022. 51
[99] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and structured prediction to no-regret online learning,” in International Conference on Artificial Intelligence and Statistics, 2011. 51, 53
[100] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A.Wong, J. Lee, I. Mordatch, and J. Tompson, “Implicit behavioral cloning,” in Conference on Robot Learning, 2022. 51, 53, 61, 65, 70, 71, 90
[101] F. Torabi, G. Warnell, and P. Stone, “Generative adversarial imitation from observation,” in International Conference on Machine Learning, 2019. 51, 71
[102] R. Jena, C. Liu, and K. Sycara, “Augmenting gail with bc for sample efficient imitation learning,” in Conference on Robot Learning, 2021. 51, 52
[103] C.-M. Lai, H.-C. Wang, P.-C. Hsieh, Y.-C. F. Wang, M.-H. Chen, and S.- H. Sun, “Diffusion-reward adversarial imitation learning,” arXiv preprint arXiv:2405.16194, 2024. 51
[104] M. Chen, Y. Wang, T. Liu, Z. Yang, X. Li, Z. Wang, and T. Zhao, “On computation and generalization of generative adversarial imitation learning,” in International Conference on Learning Representations, 2020. 52
[105] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey et al., “Maximum entropy inverse reinforcement learning.” in Association for the Advancement of Artificial Intelligence, 2008. 52
[106] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adverserial inverse reinforcement learning,” in International Conference on Learning Representations, 2018. 52, 70
[107] Y. Lee, A. Szot, S.-H. Sun, and J. J. Lim, “Generalizable imitation learning from observation via inferring goal proximity,” in Neural Information Processing Systems, 2021. 52, 60, 61
[108] G. Swamy, D. Wu, S. Choudhury, D. Bagnell, and S.Wu, “Inverse reinforcement learning without reinforcement learning,” in International Conference on Machine Learning, 2023. 52
[109] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu, S. V. Macua, S. Z. Tan, I. Momennejad, K. Hofmann, and S. Devlin, “Imitating human behaviour with diffusion models,” in International Conference on Learning Representations, 2023. 52, 61, 70, 71, 90
[110] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song, “Diffusion policy: Visuomotor policy learning via action diffusion,” in Robotics: Science and Systems, 2023. 52, 61, 70, 71, 73, 90
[111] M. Reuss, M. Li, X. Jia, and R. Lioutikov, “Goal conditioned imitation learning using score-based diffusion policies,” in Robotics: Science and Systems, 2023. 52, 61
[112] A. Ganapathi, P. Florence, J. Varley, K. Burns, K. Goldberg, and A. Zeng, “Implicit kinematic policies: Unifying joint and cartesian action spaces in end-to-end robot learning,” in International Conference on Robotics and Automation, 2022. 53
[113] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018. 53, 90
[114] F. Codevilla, E. Santana, A. M. L´opez, and A. Gaidon, “Exploring the limitations of behavior cloning for autonomous driving,” in International Conference on Computer Vision, 2019. 53
[115] L. Wang, C. Fernandez, and C. Stiller, “High-level decision making for automated highway driving via behavior cloning,” IEEE Transactions on Intelligent Vehicles, 2022. 53
[116] Y. Du and I. Mordatch, “Implicit generation and modeling with energy based models,” in Neural Information Processing Systems, 2019. 53
[117] Y. Song and D. P. Kingma, “How to train your energy-based models,” arXiv preprint arXiv:2101.03288, 2021. 53
[118] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013. 53
[119] D. Rezende and S. Mohamed, “Variational inference with normalizing flows,” in International conference on machine learning. PMLR, 2015, pp. 1530–1538. 53
[120] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real NVP,” in International Conference on Learning Representations, 2017. 53
[121] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in International Conference on Machine Learning, 2015. 54
[122] A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in International Conference on Machine Learning, 2021. 54
[123] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794, 2021. 54
[124] P.-C. Ko, J. Mao, Y. Du, S.-H. Sun, and J. B. Tenenbaum, “Learning to act from actionless videos through dense correspondences,” arXiv preprint arXiv:2310.08576, 2023. 54
[125] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall, “Dreamfusion: Text-to-3d using 2d diffusion,” in The Eleventh International Conference on Learning Representations, 2023. 54
[126] A. J. J Ho, “Denoising diffusion probabilistic models,” in Advances in Neural Information Processing Systems, 2020. 54, 56
[127] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl: Datasets for deep data-driven reinforcement learning,” arXiv preprint arXiv:2004.07219, 2020. 60, 67
[128] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell, J. Schneider, J. Tobin, M. Chociej, P. Welinder et al., “Multi-goal reinforcement learning: Challenging robotics environments and request for research,” arXiv preprint arXiv:1802.09464, 2018. 60, 83
[129] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policymaximum entropy deep reinforcement learning with a stochastic actor,” in Proceedings of the International Conference on Machine Learning (ICML), 2018. 60
[130] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “Openai gym,” 2016. 60
[131] I. Kostrikov, “Pytorch implementations of reinforcement learning algorithms,” https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018. 60
[132] B. Fang, S. Jia, D. Guo, M. Xu, S. Wen, and F. Sun, “Survey of imitation learning for robotic manipulation,” International Journal of Intelligent Robotics and Applications, vol. 3, pp. 362–369, 2019. 68
[133] F. Codevilla, M. M¨uller, A. L´opez, V. Koltun, and A. Dosovitskiy, “End-toend driving via conditional imitation learning,” in 2018 IEEE international conference on robotics and automation (ICRA). IEEE, 2018, pp. 4693– 4700. 68
[134] L. Le Mero, D. Yi, M. Dianati, and A. Mouzakitis, “A survey on imitation learning techniques for end-to-end autonomous vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 14 128–14 147, 2022. 68
[135] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,” in International Conference on Artificial Intelligence and Statistics, 2010. 68
[136] J. Harmer, L. Gissl´en, J. del Val, H. Holst, J. Bergdahl, T. Olsson, K. Sj¨o¨o, and M. Nordin, “Imitation learning with concurrent actions in 3d games,” in 2018 IEEE Conference on Computational Intelligence and Games (CIG). IEEE, 2018, pp. 1–8. 68
[137] F. F. Duarte, N. Lau, A. Pereira, and L. P. Reis, “A survey of planning and learning in games,” Applied Sciences, vol. 10, no. 13, p. 4529, 2020. 68
[138] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Man´e, “Concrete problems in ai safety,” arXiv preprint arXiv:1606.06565, 2016. 68
[139] D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell, and A. Dragan, “Inverse reward design,” Advances in neural information processing systems, vol. 30, 2017. 68
[140] S.-M. Yang and S.-J. Ke, “Performance evaluation of a velocity observer for accurate velocity estimation of servo motor drives,” IEEE Transactions on Industry Applications, vol. 36, no. 1, pp. 98–104, 2000. 68
[141] V. G. Biju, A.-M. Schmitt, and B. Engelmann, “Assessing the influence of sensor-induced noise on machine-learning-based changeover detection in cnc machines,” Sensors, vol. 24, no. 2, p. 330, 2024. 68, 82
[142] K. Smeds and X. Lu, “Effect of sampling jitter and control jitter on positioning error in motion control systems,” Precision Engineering, vol. 36, no. 2, pp. 175–192, 2012. 68, 75
[143] A. W. A. Ali, F. A. A. Razak, and N. Hayima, “A review on the ac servo motor control systems,” ELEKTRIKA-Journal of Electrical Engineering, vol. 19, no. 2, pp. 22–39, 2020. 68, 75
[144] D. Gao, S. Wang, Y. Yang, H. Zhang, H. Chen, X. Mei, S. Chen, and J. Qiu, “An intelligent control method for servo motor based on reinforcement learning,” Algorithms, vol. 17, no. 1, p. 14, 2023. 68, 75
[145] Y.-H. Wu, N. Charoenphakdee, H. Bao, V. Tangkaratt, and M. Sugiyama, “Imitation learning from imperfect demonstration,” in International Conference on Machine Learning. PMLR, 2019, pp. 6818–6827. 69, 71, 83
[146] Y. Wang, C. Xu, B. Du, and H. Lee, “Learning to weight imperfect demonstrations,” in International Conference on Machine Learning. PMLR, 2021, pp. 10 961–10 970. 69
[147] F. Sasaki and R. Yamashina, “Behavioral cloning from noisy demonstrations,” in International Conference on Learning Representations, 2020. 69, 72, 84
[148] H. Chung, B. Sim, D. Ryu, and J. C. Ye, “Improving diffusion models for inverse problems using manifold constraints,” Advances in Neural Information Processing Systems, vol. 35, pp. 25 683–25 696, 2022. 69
[149] B. Kawar, M. Elad, S. Ermon, and J. Song, “Denoising diffusion restoration models,” Advances in Neural Information Processing Systems, vol. 35, pp. 23 593–23 606, 2022. 69, 73, 77
[150] N. Murata, K. Saito, C.-H. Lai, Y. Takida, T. Uesaka, Y. Mitsufuji, and S. Ermon, “GibbsDDRM: A partially collapsed Gibbs sampler for solving blind inverse problems with denoising diffusion restoration,” in Proceedings of the 40th International Conference on Machine Learning, 2023. 69, 73, 77
[151] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD international conference on Management of data, 2000, pp. 93–104. 70
[152] Y. Lee, A. Szot, S.-H. Sun, and J. J. Lim, “Generalizable imitation learning from observation via inferring goal proximity,” Advances in neural information processing systems, vol. 34, pp. 16 118–16 130, 2021. 70, 83
[153] D. Michie, M. Bain, and J. Hayes-Miches, “Cognitive models from subcognitive skills,” IEE control engineering series, vol. 44, pp. 71–99, 1990. 71
[154] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from observation,” in Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18. International Joint Conferences on Artificial Intelligence Organization, 7 2018, pp. 4950–4957. 71
[155] D. Brown, W. Goo, P. Nagarajan, and S. Niekum, “Extrapolating beyond suboptimal demonstrations via inverse reinforcement learning from observations,” in International conference on machine learning. PMLR, 2019, pp. 783–792. 71, 83
[156] D. S. Brown, W. Goo, and S. Niekum, “Better-than-demonstrator imitation learning via automatically-ranked demonstrations,” in Conference on robot learning. PMLR, 2020, pp. 330–359. 71, 83
[157] V. Tangkaratt, N. Charoenphakdee, and M. Sugiyama, “Robust imitation learning from noisy demonstrations,” in International Conference on Artificial Intelligence and Statistics, 2020. 71, 83
[158] S. Zhang, Z. Cao, D. Sadigh, and Y. Sui, “Confidence-aware imitation learning from demonstrations with varying optimality,” Advances in Neural Information Processing Systems, vol. 34, pp. 12 340–12 350, 2021. 71, 83
[159] G.-H. Kim, S. Seo, J. Lee, W. Jeon, H. Hwang, H. Yang, and K.-E. Kim, “Demodice: Offline imitation learning with supplementary imperfect demonstrations,” in International Conference on Learning Representations, 2021. 71
[160] L. Yu, T. Yu, J. Song, W. Neiswanger, and S. Ermon, “Offline imitation learning with suboptimal demonstrations via relaxed distribution matching,” in Proceedings of the AAAI conference on artificial intelligence, 2023, pp. 11 016–11 024. 72
[161] H. Xu, X. Zhan, H. Yin, and H. Qin, “Discriminator-weighted offline imitation learning from suboptimal demonstrations,” in International Conference on Machine Learning. PMLR, 2022, pp. 24 725–24 742. 72
[162] W. Zhang, H. Xu, H. Niu, P. Cheng, M. Li, H. Zhang, G. Zhou, and X. Zhan, “Discriminator-guided model-based offline imitation learning,” in Conference on Robot Learning. PMLR, 2023, pp. 1266–1276. 72
[163] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder, E. M¨uller, and M. Kloft, “Deep one-class classification,” in International conference on machine learning. PMLR, 2018, pp. 4393–4402. 72
[164] L. Ruff, R. A. Vandermeulen, N. G¨ornitz, A. Binder, E.M¨uller, K.-R.M¨uller, and M. Kloft, “Deep semi-supervised anomaly detection,” arXiv preprint arXiv:1906.02694, 2019. 72
[165] Z. Wang et al., “Inductive multi-view semi-supervised anomaly detection via probabilistic modeling,” in 2019 IEEE International Conference on Big Knowledge (ICBK). IEEE, 2019. 72
[166] D. Hendrycks, M. Mazeika, and T. Dietterich, “Deep anomaly detection with outlier exposure,” arXiv preprint arXiv:1812.04606, 2018. 72
[167] K. Sohn, C.-L. Li, J. Yoon, M. Jin, and T. Pfister, “Learning and evaluating representations for deep one-class classification,” arXiv preprint arXiv:2011.02578, 2020. 72
[168] C.-L. Li, K. Sohn, J. Yoon, and T. Pfister, “Cutpaste: Self-supervised learning for anomaly detection and localization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 9664–9674. 72
[169] H. Park, J. Noh, and B. Ham, “Learning memory-guided normality foranomaly detection,” in CVPR, 2020. 73
[170] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight examples for robust deep learning,” in International conference on machine learning. PMLR, 2018, pp. 4334–4343. 73
[171] J. Li, R. Socher, and S. C. Hoi, “Dividemix: Learning with noisy labels as semi-supervised learning,” in International Conference on Learning Representations, 2020. 73
[172] N. Karim, M. N. Rizve, N. Rahnavard, A. Mian, and M. Shah, “Unicon: Combating label noise through uniform selection and contrastive learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 9676–9686. 73
[173] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet, “Video diffusion models,” Advances in Neural Information Processing Systems, vol. 35, pp. 8633–8646, 2022. 73
[174] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” in International Conference on Learning Representations, 2021. 73
[175] Y. Song, P. Dhariwal, M. Chen, and I. Sutskever, “Consistency models,” arXiv preprint arXiv:2303.01469, 2023. 73
[176] Z.Wang, J. J. Hunt, and M. Zhou, “Diffusion policies as an expressive policy class for offline reinforcement learning,” in The Eleventh International Conference on Learning Representations, 2023. 73
[177] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for modelbased control,” in International Conference On Intelligent Robots and Systems, 2012. 75
[178] J. Gabela, A. Kealy, S. Li, M. Hedley, W. Moran, W. Ni, and S. Williams, “The effect of linear approximation and gaussian noise assumption in multi sensor positioning through experimental evaluation,” IEEE Sensors Journal, vol. 19, no. 22, pp. 10 719–10 727, 2019. 82
[179] M. El Helou and S. S¨usstrunk, “Blind universal bayesian image denoising with gaussian noise level learning,” IEEE Transactions on Image Processing, vol. 29, pp. 4885–4897, 2020. 82
[180] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016. 83
[181] I. Kostrikov, “Pytorch implementations of reinforcement learning algorithms,” https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018. 83
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96852-
dc.description.abstract雖然 AI 模型已在各種應用中展現出卓越的效能,但在未知的真實場景中使用這些模型仍然是一項重大挑戰。本論文致力於開發一個機器學習架構,透過針對資料、模型與損失函數三個關鍵項目進行改進,以提升模型在這類環境中的適應能力。

一個典型的機器學習架構包含資料、神經網路模型,以及引導模型使用資料進行優化的損失函數。然而,在真實世界中,每一個項目都可能和理想的使用條件不同,因而需要進行適應才能有效運用這些模型。

在資料方面,預先收集的訓練樣本通常與實際使用時觀察到的資料分佈不同,因此需要使用一些技術來彌合這一差距。在模型方面,由於模型的訓練通常需要大量時間與計算資源,將預訓練模型適應於新任務可以顯著擴展其在不同領域中的應用能力。在損失函數方面,針對特定的應用學習損失函數,可以使模型更有效地利用該函數的優勢。

本論文聚焦於電腦視覺與機器人應用,通過探討特徵解耦、元學習、模型微調以及模仿學習等技術,提出針對上述挑戰的適應性解決方案。
zh_TW
dc.description.abstractWhile AI models have demonstrated remarkable effectiveness across various applications, deploying them in unstructured real-world scenarios remains a significant challenge. This thesis focuses on developing a machine learning pipeline designed to enhance adaptability in such environments by addressing three key dimensions: data, models, and learning objectives.

A typical machine learning pipeline consists of a dataset, a neural network model, and a learning objective that guides the model's optimization using the data. However, in real-world scenarios, each of these components may deviate from ideal conditions, necessitating adaptation for effective application.

For data, the distribution of pre-collected training samples often differs from the distribution encountered during inference, requiring strategies to bridge this gap. For models, since the training of a model typically requires substantial time and computational resources, adapting a pretrained model to new tasks significantly expands its applicability across diverse domains. For learning objectives, adapting the objective function to a particular application allows the model to leverage the advantages of the chosen objective more effectively.

This thesis focuses on computer vision and robotic applications and proposes adaptive solutions for the above challenges by exploring techniques such as feature disentanglement, meta-learning, model fine-tuning, and imitation learning.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-24T16:15:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-24T16:15:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝i
中文摘要iii
Abstract v
List of Figures ix
List of Tables xi
1 Adaption for Input Data 1
1.1 Domain-Generalized Textured Surface Anomaly Detection . . . . 1
1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Adaption for Pretrained Models 17
2.1 Representation Decomposition for Image Manipulation and Beyond 17
2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Decomposition-GAN for Disentanglement . . . . . . . . 19
2.1.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.4 Quantitative Results . . . . . . . . . . . . . . . . . . . . 24
2.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Human-Feedback Efficient Online Diffusion Model Finetuning . . 26
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.4 Problem Setup and the Proposed Method . . . . . . . . . 32
2.2.5 Experimental . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.6 Ablations . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.7 Details of Tasks and Task Categories . . . . . . . . . . . . 44
2.2.8 HERO Implementation . . . . . . . . . . . . . . . . . . . 46
2.2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 47
3 Adaptation for Objective function 49
3.1 Diffusion Model-Augmented Behavioral Cloning . . . . . . . . . 49
3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Restoring Noisy Demonstration for Imitation Learnings . . . . . . 68
3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 81
3.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 91
4 Conclusion and Future Direction 93
Reference 95
-
dc.language.isoen-
dc.subject電腦視覺zh_TW
dc.subject機器人學習zh_TW
dc.subject異常檢測zh_TW
dc.subject圖像生成zh_TW
dc.subject遷移學習zh_TW
dc.subject模仿學習zh_TW
dc.subject深度學習zh_TW
dc.subjectimitation learningen
dc.subjectdeep learningen
dc.subjectcomputer visionen
dc.subjectrobot learningen
dc.subjectanomaly detectionen
dc.subjectimage generationen
dc.subjecttransfer learningen
dc.title適應性機器學習架構於電腦視覺與機器人學習之應用zh_TW
dc.titleAdaptive Machine Learning Pipelines for Computer Vision and Robotic Applicationsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳佩君;王鈺強;陳縕儂;陳尚澤zh_TW
dc.contributor.oralexamcommitteeTrista Pei-Chun Chen;Yu-Chiang Frank Wang;Yun-Nung Chen;Shang-Tse Chenen
dc.subject.keyword深度學習,電腦視覺,機器人學習,異常檢測,圖像生成,遷移學習,模仿學習,zh_TW
dc.subject.keyworddeep learning,computer vision,robot learning,anomaly detection,image generation,transfer learning,imitation learning,en
dc.relation.page116-
dc.identifier.doi10.6342/NTU202404722-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-01-06-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2025-02-25-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf27.59 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved