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Abstract

While Al models have demonstrated remarkable effectiveness across various appli-
cations, deploying them in unstructured real-world scenarios remains a significant
challenge. This thesis focuses on developing a machine learning pipeline designed
to enhance adaptability in such environments by addressing three key dimensions:
data, models, and learning objectives.

A typical machine learning pipeline consists of a dataset, a neural network
model, and a learning objective that guides the model’s optimization using the data.
However, in real-world scenarios, each of these components may deviate from
ideal conditions, necessitating adaptation for effective application.

For data, the distribution of pre-collected training samples often differs from
the distribution encountered during inference, requiring strategies to bridge this
gap. For models, since the training of a model typically requires substantial time
and computational resources, adapting a pretrained model to new tasks significantly
expands its applicability across diverse domains. For learning objectives, adapting
the objective function to a particular application allows the model to leverage the
advantages of the chosen objective more effectively.

This thesis focuses on computer vision and robotic applications and proposes
adaptive solutions for the above challenges by exploring techniques such as feature
disentanglement, meta-learning, model fine-tuning, and imitation learning.

Keywords: deep learning, computer vision, robot learning, anomaly detection,

image generation, transfer learning, imitation learning
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Chapter 1

Adaption for Input Data

1.1 Domain-Generalized Textured Surface Anomaly

Detection

1.1.1 Introduction

Textured surface anomaly detection has been a practical yet challenging task,
which requires one to determine abnormal data from the normal ones. When it
comes to real-world problems, e.g., quality control of industrial products, abnormal
samples are generally difficult to collect. Therefore, existing solutions focus on
training models that identify data that deviate from the learned distribution of
normality as an anomaly. With the recent advances of deep learning, a popular
model choice is the autoencoder [ 1, 2], which trains to recover normal data samples
and thus performs anomaly detection by the associated reconstruction loss. To
avoid the trained autoencoder from recovering abnormal samples as well, [3, 4]
propose learning memory banks to regularize the autoencoder, ensuring the data is
described by representative patterns. Despite the success of these reconstruction-
based models, anomaly detection in unseen data domains is still difficult to perform.
Moreover, one cannot expect the derived distribution of normality to be applicable
to different domains for anomaly detection.

1
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Figure 1.1: Illustration of domain-generalized anomaly detection. By observing
normal and abnormal data in multiple source domains, the learned model needs to
generalize to perform anomaly detection in an unseen target domain where only a

small amount of normal images are available during testing.

Learning models from a single or multiple source domains, domain generaliza-
tion [5, 6, 7] aims to leverage this model to unseen target domains for solving the
same learning task. A straightforward yet naive baseline approach is to aggregate
training samples from all source domains to learn a single model. To further
improve the generalization capability, [8] designs an episodic learning procedure
that simulates the domain shift observed during training for deriving a domain-
generalized model. [6] argues that a properly learned domain generalization model
would discover the image’s intrinsic properties, which are irrelevant to the data
domains. Thus, self-supervised auxiliary learning tasks are introduced to prompt

the learning of their models.

Although the recent success of domain generalization has benefited a wide
range of computer vision applications, it would not be feasible for anomaly detec-
tion if no normal data is presented in the domain of interest for a standard reference
of normality. Thus, if one expects to address such tasks in an unseen target domain,

at least a number of normal data in that domain needs to be observed during testing.
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1.1. Domain-Generalized Textured Surface Anomaly Detection 3

In other words, existing domain generalization methods like [8, 6, 5, 7] cannot be
easily applied for solving the above problem.

To address the above concerns and challenges, we tackle the task of domain-
generalized textured surface anomaly detection in this paper. That is, with col-
lection of training normal and abnormal data from existing source domains, i.e.,
textured surface, we aim to learn a model which can be generalized to detect
abnormal data in unseen target domain of interest. The problem definition and
the idea of our work can be seen in Figure 1.1. It is worth noting that, during
the inference stage, only a small amount of normal samples are available for the
target domain of interest, which follows the settings of most anomaly detection
approaches [1, 3, 4, 9, 10]. However, without the requirement of model fine-tuning,
the trained model can be directly applied to such data domains which are not seen
during training.

To highlight the technical novelty of our work, we introduce a meta-comparer
module that learns to compare textured surface data for anomaly detection across
multiple source domains. We take the normal image data as the reference images
and perform patch-level co-attention on the query-reference image pairs during
training. With only image-level labels observed (i.e., normal and abnormal data),
the above co-attention mechanism guides the meta-comparer to identify the nor-
mality of the query input, resulting in both image-level and patch-level anomaly
detection. Since our model is trained to compare image pairs across different
source domains in a meta-learning fashion, the learned model is shown to exhibit
promising generalization ability for unseen data domains.

Our contributions can be summarized as follows:

* We address the task of domain-generalized textured surface anomaly detec-
tion. Given a number of normal (reference) images in unseen target domains,

our model is able to perform anomaly detection accordingly.

* We propose a meta-learning framework that learns to compare images in a

query-reference pair across multiple source domains. Therefore, our learned

doi:10.6342/NTU202404722
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Figure 1.2: Overview of our proposed model, which consists of a feature extractor
¢, a co-attention module, and a meta-comparer. The feature extractor aims to derive
multi-scale patch-based features for both query and reference images. The co-
attention module observes patches from such query-reference image pairs, guiding

the meta-comparer to perform anomaly detection and localization.

model is able to generalize to unseen image domains for identifying abnormal

images.

* With only image-level labels observed, a co-attention mechanism across
query-reference image pairs is introduced, which guides our meta-comparer
to realize not only image-level anomaly detection but also patch-level anomaly

localization.

1.1.2 Method

For the sake of clarification, we first define the notations and setting considered in
this paper. We observe image data from M source domains D = [Dy, ..., Dy] at
the training stage. Each D,, contains image-label pairs (2, y» ), in which y" is
either 0 or 1 representing normal or abnormal labels. Note that we assume that only
image-level labels are available during training, i.e., no pixel-level anomaly ground
truth can be observed. Our goal is to train a model using D in a meta-learning
manner, and have this model generalized to perform anomaly detection on an
unseen target domain Dy, ,; where only a number of normal images are available

during testing.

doi:10.6342/NTU202404722



1.1. Domain-Generalized Textured Surface Anomaly Detection 5

The overview of our proposed framework is depicted in Figure 1.2. From
this figure, we see that our learning model contains three components: a feature
extractor, a co-attention module, and a meta-comparer. The feature extractor
¢ aims to derive multi-scale features from query and reference (i.e., normal)
images. The co-attention module observes query-reference image pairs, resulting
in proper patch-level supervision, which guides the meta-comparer for producing
the resulting anomaly score. By sampling different source domains D,,, during the
training stage, our meta-comparer learns to compare query-reference image data in
a meta-learning fashion. In the following sections, we will detail the functionality

and design of each module.

Multi-Scale Feature Extraction

In our proposed framework, the feature extractor is expected to extract the features
from the query image I and the reference image /i from a domain of interest.
We note that, while the query images are with labels y = 1 or 0 during training,
we only consider the normal one as the reference for both training (from multiple
source domains) and testing (on unseen target domains). Following techniques
utilized for object detection (e.g., [11], [12]), we consider multi-scale features from
image data for aiming at not only to recognize the abnormal query input, but also
for the purpose of identifying the defect regions. More precisely, we apply the
bi-directional feature pyramid network (BiFPN) proposed by [12] to produce a
feature pyramid with multiple resolutions.

Take the query image I as an example, the feature extractor ¢ extracts a
feature pyramid containing L feature maps with different resolutions/scales. The
associated multi-scale features are denoted as ¢1 (1), p2(Ig), ..., or(Ig), Where
¢i(1g) represents the query feature at scale level i. Let N, denotes the number of
patches sampled from ¢;(1), we thus have a set of patch-based representations
Qi =1{q},q, ..., qZN @} for the query image I at scale level 7. Similarly, we have

Ry ={r}r? ., ry 71 as the set of patch-based representations for the reference

R 7
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6 1. Adaption for Input Data

image [y at scale level ¢, where N denotes the number of sampled patches.
For the detailed process of the multi-scale feature extraction, please refer to the

supplementary materials.

Image-Level Anomaly Detection

With patch features extracted from the query and reference images, we now explain
how we train our feature extractor and meta-comparer for performing image-level
anomaly detection. For the j-th query patch qf at scale level 7, the meta comparer
is utilized to calculate its largest query-reference anomaly score sg as:

I = J pk
5= _nax,  MLP(lq;, r7]), (1.1)

where MLP denotes a multilayer perceptron module with Sigmoid activation
functions deployed. It can be expected that, if the query image I is abnormal, at
least one query patch q{ would remarkably deviate from the reference patches, and
thus the value of the corresponding s{ would be close to 1.
With the above observation, we define the image-level classification loss (under
supervision of y) as follows:
L . .
Lets = — Z; ylog(max(s{)) + (1 —y)log(1 — max(sy)). (12)
In the above equation, mjax(sf ) calculates and outputs the largest anomaly score

from the query patches at scale ¢, which sums over all L scales for the resulting

loss output.

Patch-level Anomaly Localization

In addition to image-level anomaly detection, the introduced co-attention module
in our framework of Figure 1.2 allows us to perform the same task at patch level.
Therefore, localization of abnormal surface regions can be achieved via patch-level

anomaly detection with only image-level label y required.

doi:10.6342/NTU202404722



1.1. Domain-Generalized Textured Surface Anomaly Detection 7

Co-attention on query-reference image pairs: The co-attention module first
maps the query-reference patch pairs (i.e., qf and r¥) at scale i into a shared
latent space, followed by the calculation of cosine similarity between them. This
produces a co-attention matrix A; € RNe*Nr which can viewed as an affinity
matrix of (); and R; at scale ¢, reflecting the similarity between the associated
patch pairs.

Similar to image-level anomaly detection, we observe that if the query image
I is abnormal, then there would exist at least one query patch qf which would be
distinct from the reference ones r¥. That is, if y = 1 for the query, we expect at
least one query-reference patch pair in A; resulting in a low similarity score. On
the other hand, if y = 0 for the query, every query-reference pair is expected to
produce a large similarity score. Thus, by normalizing the attention matrix A; to
[0, 1], we introduce and calculate the following attention loss L, across image

scales,
L .

Lot = — ) _ylog(1 - rg,likn(a?’k)) +(1—y) log(rg.likn(af’k)), (1.3)
i=1 ’ ’

where njlikn(ag k) denotes the query-reference patch pair at scale ¢ with the minimum
similarit7y score. Note that 5 and k are the patch indices for the query and reference
images, respectively.

With the above co-attention mechanism, we calculate the co-attention score for
¢ asal = ml?x(a{’k). In the formula, o/ calculates the score between ¢/ and every
reference patch, and outputs the score with the most similar reference patch as the
attention guidance. It can be expected that, if the query patch qf is abnormal, such
af scores would be close to O (and vice versa). Therefore, the co-attention score a{

can be a patch-level guidance for the query patch qf .

From patch-level co-attention to anomaly localization: In our proposed frame-
work, patch-level anomaly detection is achieved by sampling pairs of patches g}, g/
from a query @); at scale ¢, followed by the meta-comparer to produce their patch-

level anomaly scores s, s?

1771

under the supervision of y and the guidance of the

doi:10.6342/NTU202404722



8 1. Adaption for Input Data

aforementioned co-attention outputs. Inspired by [13], we introduce a patch-level
anomaly ranking loss L., for the sampled query patch pairs as follows,

L
Lyoni = Z Z w max(0,1 — o(si — 7)),
1=1gq},q7 €Q;
1.4
where w;"” = A(exp(|ay — af|) — 1), 14
and o = —sgn(a} — a}).

Note that ) is a scaling factor, and sgn indicates the sign function that extracts the
sign of a real number. From equation (1.4), we see if both ¢, ¢/ are the normal
patches, both co-attention scores a; and a; would be large, and the corresponding
w;i*’ 1s close to 0. This would result in the ranking loss L, close to 0 as well.
Similarly, if both are the abnormal ones, we have similar yet small ¢ and a} values,
which produces small w}" regularizing the ranking loss as well. Finally, and most
importantly, if only one of ¢ and ¢; is abnormal, we would observe very different
co-attention score a and thus produce a large w;". If the co-attention score a;
is less than a?, the corresponding anomaly score s} should be larger than s}. To
ensure this property, the variable o verifies the order of s and s} according to their
corresponding co-attention score a. With the goal of anomaly localization, the
above objective allows us to automatically identify the query patch that deviates

not only from the reference ones but also from the remaining ones in the query.

Pipeline

With the introduced image-level detection and patch-level localization discussed
above, we now explain how our proposed framework is trained to exhibit additional
domain generalization ability. During training, by sampling query-reference image
pairs (I, Ir) from multiple source domains, we enforce the meta-comparer and the
co-attention module for learning to compare image data by applying equation (1.2)
and equation (1.3), disregard of the data domain distributions. Moreover, by
sampling different query patch pairs ¢;* and ¢; in Equation (1.4), our meta-comparer

further performs the above learn-to-compare scheme in the patch level. Therefore,

doi:10.6342/NTU202404722



1.1. Domain-Generalized Textured Surface Anomaly Detection 9

our model is expected to learn a generalized capability of comparing image data.
The full objectives of our model and the detailed training process are summarized
in the Algorithm A of our supplementary materials.

As for the inference stage, we apply our model to an unseen target domain
D1 with a small amount of normal samples are presented.

We first calculate the patch-level anomaly score s{ for each extracted query
patch qf . If there exists a patch with defect regions at any scale, the query image
is considered to be abnormal. Therefore, the image-level prediction g(Ip) for I
can be calculated by simply taking the maximum anomaly scores among all query
patches qg :

i(Ig) = max({s]}) Vi, . (1.5)
If localization of defect regions would be needed, we can calculate the anomaly
score for each pixel p in I according to patch-level anomaly scores across multiple
scale levels. This is realized by taking the maximum anomaly scores among all

query patches containing pixel p:

J(p) = max({s’}) Vi,jsuchthatp € ¢. (1.6)

1.1.3 Experiments

We evaluate our proposed framework on MVTec-AD [14] and BTAD [15] datasets.
The MVTec-AD dataset consists of 3,629/1,725 training/testing images from 5
texture and 10 object products. In this paper, we consider the texture products of
MVTec-AD for textured surface anomaly detection, i.e., Carpet, Grid, Leather,
Tile, and Wood, as shown in Figure 1.5. For these 5 texture types, we follow recent
domain generalization approaches [8] and [6] and do leave-one-out evaluation, in
which only one texture is selected at a time as the target domain at the inference
stage, while the remaining four textures are used as the source domains during
training. Following previous works [3, 4, 15, 16], we evaluate the models using

the area under the receiver operating characteristic curve (AUC).
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Figure 1.3: Average image-level AUC for anomaly detection over the 5 textures of

MVTec-AD, with different percentages of normal reference images from the target

domain.
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Figure 1.4: Average pixel-level AUC for anomaly localization over the 5 textures
of MVTec-AD, with different percentage of normal reference images from the

target domain.
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1.1. Domain-Generalized Textured Surface Anomaly Detection 11

Carpet Grid Leather Tile Wood | Avg.
AGG [8] 0.875 0.628 0981 0.886 0.852 | 0.845
Epi-FRC [8] | 0916 0.640 0.995 0.947 0.909 | 0.881
EISNet [6] | 0991 0.662 1.000 0.850 0.986 | 0.898
AGG+ 0.891 0.608 0992 0912 0.865 | 0.854
Epi-FRC+ 0916 0.725 1.000 0951 0.941 | 0.907
EISNet+ 0982 0.728 1.000 0.858 0.979 | 0.909
Ours 0943 0730 1.000 0956 0.962 | 0.918

Table 1.1: Domain-generalized anomaly detection on MVTev-AD with the leave-
one-domain-out setting in terms of the average image-level AUC. Note that the
+ notation denotes the modified versions for existing DG approaches (i.e., with

learn-to-compare scheme introduced).

As for the BTAD dataset, it consists of 2,250/291 normal/abnormal images
from 3 industrial products. The image data from this dataset would serve as the
(unseen) target domains for testing in experiments for the cross-dataset settings,
which would further verify the effectiveness of our propose method for domain-
generalized anomaly detection. The implementation details and the results of the

cross-dataset experiments are demonstrated in the supplementary materials.

Quantitative Results

In our experiments, we compare our model with a number of recent anomaly
detection (AD) and domain generalization (DG) approaches. For fair comparisons,
we adopt the same pre-trained ResNet-18 feature extractor for all the methods
considered. Moreover, to comply with our domain-generalized anomaly detection
setting, we allow AD and DG methods to take normal image data from the target

domain as additional inputs during the inference stage as well.

Comparisons to existing AD Approaches: We compare our model AD ap-

proaches, including an autoencoder baseline [3] as well as two state-of-the-art
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12 1. Adaption for Input Data

methods of MemAE [3] and TrustMAE [4]. We follow the officially-released code
and the instruction presented in the paper to implement the above methods. A
common limitation of existing AD approaches is that a sufficient amount of training
data from the domain of interest would be needed. As noted in previous sections,
existing anomaly detection approaches use all the available normal images from
the target domain for training. On the other hand, our model does not require any
normal image data in the target domain for training, and only observes such data
as references during inference. We compare our method to these AD approaches
on MVTec-AD with same amount of target normal samples are observed. With
the aforementioned leave-one-domain-out setting, we control the percentage of
the amount of target normal samples and compare the average image-level AUC
for anomaly detection and pixel-level AUC for anomaly localization in Figure 1.3
and Figure 1.4, respectively. As can be seen from these two figures, existing
AD approaches required a sufficient amount of normal training data in the target
domain (e.g., above 60 or 70% of the target-domain normal data available) to
achieve satisfactory performances, while our method consistently outperformed
such methods especially even with only 10% (i.e., about 25 images) of such data
were observed. This is expected since our proposed model only utilizes the target
normal samples as reference during inference. Therefore, the performance of our
method is not sensitive to the amount of such data, which would be preferable for

practical uses.

Compare with existing DG Approaches: As for recent DG approaches, we
consider a baseline of simple aggregation of AGG [8], and two state-of-the-art
methods of Epi-FCR [8] and EISNet [6] for comparisons. We note that, existing
DG models generally make prediction solely based on the query image, not in the
learn-to-compare fashion as ours does. Thus, for fair comparison, we additionally
modify the above DG approaches to take query-reference pairs as training inputs,
and such modified versions are denoted as + in our results presented in Table 1.1.

We also note that, for fair comparisons, all target-domain normal reference images
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Carpet Grid Leather

Anomaly score

Figure 1.5: Visualization of anomaly localization of our method on MVTec-AD.
The top row shows input abnormal images, the middle row indicates the ground

truth defect regions, and the bottom row shows our anomaly localization results.

are utilized for all DG methods and ours in the experiments.

From the results listed in Table 1.1, we see that our method performed fa-
vorably against existing DG approaches (for both the original and the modified
learn-to-compare versions) over all 5 texture categories in terms of the average
AUC. It is interesting to point out that, from the results shown in this table, the
modified versions of recent DG approaches (i.e., with learn-to-compare mechanism
introduced) were shown to produce improved performances when comparing to
their original versions. This suggests that by a properly designed learn-to-compare
scheme as ours is, the anomaly detection model can be expected to generalize
to unseen target domains. It can be seen that our model outperforms all existing
DG approaches by a large margin. It is expected since our model explores the
relationships between patch features for detecting sophisticated defects, while the

above methods only consider image-level features for anomaly detection.

Visualization of Anomaly Detection

As discussed in Section 2, our proposed model not only performs anomaly detection
but also exhibits abilities in identifying abnormal regions with only image-level

labels observed during training. We show the visualization results for anomaly
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Carpet Grid Leather Tile Wood
Carpet 0 4.424 1.34 1.763  1.526
Grid 4.424 0 3966 4.646 4.409
Leather 1.34  3.966 0 1.916 1.601
Tile 1.763 4.646 1916 0 2.032
Wood 1.526 4409 1.601 2.032 0
Average | 1.811 3489 1.765 2.071 1914

Table 1.2: FID scores between each data domain pair in MVTec-AD, which imply

the difficulty expected for domain-generalized anomaly detection.

localization in Figure 1.5. The top row of this figure shows input images containing
defects; the middle row are the ground truth regions of defects (annotated in red);
the bottom row shows the anomaly localization results predicted by our model. It
can be seen that, from the example results shown in this figure, our model is able
to accurately localize either small defects (in Carpet and Wood) or large defects
(in Tile). It is also worth noting that, existing AD or DG approaches cannot easily

address such anomaly localization without proper pixel-level guidance.

Further Analysis and Remarks

To further verify the capability and point out the limitation of our domain general-
ization method, we quantitatively assess the domain differences between different
texture categories from MVTec-AD, reflecting the expected DG difficulty for the
associated target domain. To analyze the above issue, we apply the Fréchet Incep-
tion Distance (FID) score introduced by [17] to calculate the differences between
each texture/domain pair and list the results in Table 1.2.

From Table 1.2, we see that the Grid texture generally has larger FID scores
(average 3.489) than those of other texture types, suggesting that the distribution
of Grid deviates more drastically from those of other texture category data. This
observation is consistent with the AUC results shown in Table 1.1, where all DG

methods (including ours) did not report comparable performances when Grid was
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1.1. Domain-Generalized Textured Surface Anomaly Detection 15

the unseen target domain of interest. On the other hand, since the average FID of
Leather is the smallest, the knowledge learned by the model from other source
domains is expected to generalize data in this domain, which also explains why all
DG methods reported the highest AUC performances in Table 1.1. In other words,
while we claim that our model can be generalized to an unseen target domain for
anomaly detection, the performance drop would be expected if the target domain

data distribution were very different from those of source domain data.

1.1.4 Conclusion

In this paper, we tackle the task of domain-generalized anomaly detection. With
only image-level labels observed for multiple source domains, our model learns
to compare images in query-reference pairs across the above data domains during
training. With the co-attention mechanism introduced, our model learns to com-
pare and identify abnormal image data and the associated defect regions, and it is
shown to achieve promising performances on anomaly detection and localization

for unseen target domain data.
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Chapter 2

Adaption for Pretrained Models

2.1 Representation Decomposition for Image Manip-

ulation and Beyond

2.1.1 Introduction

Recent developments of Generative Adversarial Network (GAN) [18] models
result in promising progress and achievements in image generation. In order to
produce image outputs with desirable attributes (e.g., gender, expression, etc.),
feature disentanglement aims at decomposing the above latent representation
into distinct parts, each corresponding to particular properties. Representation
disentanglement [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] aims at learning
an interpretable representation from image variants, which can be realized in
unsupervised or supervised settings. For example, with supervision of labeled
data, AC-GAN [20] factorizes representations into disjoint parts describing visual
content and attribute information, respectively (e.g., image [30], text [31, 32])
during training. On the other hand, if training data are unlabeled, infoGAN [19]
performs representation disentanglement by maximizing the mutual information
between latent variables and data variation.

Despite promising performances, these works are not able to be directly applied

17
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18 2. Adaption for Pretrained Models

on existing/pre-trained generative models. In other words, their disentanglement
mechanisms must be determined and trained in advance. More specifically, their
need to decide on image attributes to be disentangled beforehand makes their
feature disentanglement less flexible. If the attributes of interest are changed, the
above generative models need to be trained from scratch again. Moreover, with the
scale of generative models growing, training of state-of-the-art generative models
becomes very time and resource-consuming.

Instead of explicitly decomposing latent representation into disjoint parts, we
propose a unique decomposition-GAN (dec-GAN) for performing feature disen-
tanglement. Our disentanglement mechanism focuses on extracting attributes of
interest (e.g., pose, expression, etc.) from latent representation, while the generator
is fixed. Depending on the attribute of interest, dec-GAN is guided by an attribute
classifier trained to distinguish the attribute. Together with image recovery ob-
jectives, dec-GAN decomposes visual features from a joint latent representation
into separate ones associated with content and attribute of interest. While recent
works like [33] and [34] deal with the similar task that learns disentangled fea-
tures based on existing generative models, both of their methods are not able to
manipulate particular attributes of interest when taking images as input. On the
other hand, with the above disentangled features, our dec-GAN is able to utilize
existing generative models for describing each type of disentangled features, which
allows improved and interpretable feature representations for image manipulation,
along with additional flexibility in determining the attributes of interest after the
generator is trained.

We now highlight the contributions of work as follows:

* We propose a novel learning scheme for representation disentanglement,
which uniquely decomposes features of existing GAN-based models into

interpretable representations.

* QOur learning framework does not require pre-determined or disjoint latent

representations to describe attributes in advance and thus exhibits additional
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Figure 2.1: Overview and architecture of our Decomposition-GAN (dec-GAN),

______

which consists of content encoder F,., attribute encoder F,, and an auxiliary
guidance attribute classifier C', while generator G is fixed. Note that our dec-GAN
decomposes latent features z into separate representations (instead of disjoint ones),
i.e., z = 2z, + z,. Note that G(z., Z,), G(z., z.) and G(Z,, z,) indicate the image

outputs synthesized from pairs of the associated content and attribute features.

flexibility in determining the attributes of interest.

* Our experiments confirm that our model successfully decomposes latent

features derived by existing GANs for image manipulation and classification.

2.1.2 Decomposition-GAN for Disentanglement

We propose decomposition-GAN (dec-GAN) for representation disentanglement.
As illustrated in Figure 2.1, our dec-GAN decomposes the latent code z into
content code z. and attribute code z, while satisfying z = z. + z,. In other words,
based on existing latent feature z, our goal is to decompose it into content and
attribute representations z. and z,. We utilize two separate encoders F,. and F,
for extracting z. and z,, respectively. The reconstruction output is denoted as
G(ze; 20) = G(2|2 = 2. + z4). It is worth noting that, as verified in Section 2.1.3,

our dec-GAN can utilize existing state-of-the-art generative models.
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20 2. Adaption for Pretrained Models

Attribute Guidance for Disentanglement

In our dec-GAN, we first utilize the idea of data recovery to encourage generated
images to be sufficiently realistic. For this reconstruction loss, we consider the L1

distance between the reconstructed and input images:
Lyee = |Gz, 24) — x| 2.1

Following VAE-GAN [35] and DRIT [36], we fit the distributions of en-
coded content and attribute features to normal distributions, which allow im-
proved/continuous data representation ability. This can be achieved by minimizing
the Kullback—Leibler divergence (KLD) between each distribution and N (0, 1).
However, since the disentangled content and attribute features describe distinct
information, we do not expect them to fit the same normal distribution. Therefore,

we calculate the KLLD loss for each feature as follows,

LKL,a = E[KL(P(Z;)HN(Oa 1))]7 Ra = E(chc<z¢/1)’ (23)

where EJ¢ denotes the final fully connected layer of content encoder E., and E/¢
denotes the final fully connected layer of attribute encoder £,.

To ensure the encoded z. and z, describing content and attribute information,
respectively, we apply a classifier C' pre-trained on the attribute of interest to guide

the learning of £,. Thus, this guided loss is calculated as:
Lguide = |O(ZL‘) - O(G(gcy Za))|7 (24)

where C(-) indicates the classifier. We note that, Z. denotes a randomly sampled
content feature, Z is sampled from A/ (0, 1) and then is passed through the final
fully connected layer of E.. Thus, we have 7, = E/°(Z), and the image with
identical attribute but random content can be produced as G(Z, z,).

From (2.4), we see that the enforcement of classification output similarity

between an input image x and a synthesized one with the same z, yet with a
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random content Z., would ensure our F. and F, to extract attribute-invariant and
attribute-dependent representations, respectively. That is, the deployment of the
classifier C'(+) in Fig. 2.1 would guide the attribute encoder E, to extract attribute-
dependent information by equation (2.4). With equation (2.1) ensuring the quality
of reconstruction, attribute-invariant information would be encoded by content

encoder E. for fair reconstruction.

Enforcing Content and Attribute Consistency

With the above guidance of the attribute classifier and the use of generative models,
we have F, extract latent attribute features. With this classifier to be replaced by
those pre-trained on preferable attributes of interests, one can easily extend the
above architecture to disentangle the corresponding attributes. To further ensure
our decomposed z. and z, from z contain only content and attribute information,
respectively, we advance feature consistency losses during the training of our dec-
GAN. This is achieved by minimizing the content and attribute feature consistency

loss defined as follows:
Li""“ = |E(G(2¢,24)) — 2el, (2.5)

L = |Ey(G(Ze, 24)) — Zal- (2.6)

As illustrated in Figure 2.1, G(z., Z,) indicates the synthesized image with the
same content as that of input z but with different attributes Z, = E/¢(Z). Similarly,
we have G(Z,, z,) denote the generated image with the same attributes as those of
x but with different content information via Z.. By observing the above feature
consistency, both F, and £, would extract associated content and attribute features,

realizing the decomposition of z into z. and z,, respectively.

2.1.3 Experiment

We consider image datasets of MNIST [37] and CMU Multi-PIE [38] for our

experiments. The former consists of 60,000/10,000 training/test digit images of 10
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classes, while the latter contains face images with multiple viewpoint, illumina-
tion and expression variations. We only use a subset of CMU Multi-PIE with 5
viewpoints and smiling expression variation, which consists of 68,810 images.
For the generator to be decomposed, since our proposed architecture does not
limit the use of particular GAN models, we first follow the backbone of VAE-
GAN [35]. In addition, we consider a second generative model with a deeper
backbone [36] and refer Res-GAN to this generative model. The encoder and
the generator of Res-GAN consist of convolution layers and residual blocks. For
the detail of the architecture of VAE-GAN and Res-GAN, please refer to the
supplementary material. For F. and £, in our dec-GAN, we simply utilize the

same encoder structure of the model to be decomposed.

Image Generation and Manipulation

MNIST: For MNIST, the classifier C' is pre-trained to identify the digit categories,
which are viewed as the attributes, while the visual appearance, like stroke thickness
or angle, is used as the content features. As shown in Figure 2.2, we demonstrate
our image generation results using different pairs of content and attribute features.
The first row in Figure 2.2 shows input image pairs, and the second row depicts
reconstructed outputs using derived z. and z, features. Image outputs by swapping
2. and z, are shown in the third row. From this row, we see that the synthesized
image would preserve the same content as those in the first two rows, while the
attribute (digit category) would match the other one in the input image pair. This
confirms the effectiveness of our dec-GAN in disentangling content and attribute
features, while the latter is guided by a digit classifier in this case. To further verify
z, z. and z, capture different visual information, we conduct t-SNE visualization
on such features using MNIST.
CMU Multi-PIE:

We take both VAE-GAN and Res-GAN as the backbone of our dec-GAN, and

consider pose and expression (smile) as two distinct attributes of interest. We
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Pair 1 Pair 2 Pair 3 Pair 4
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(ZCZ’ Zaz) %
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Figure 2.2: Image generation via attribute swapping on MNIST. Note that x

indicates the input image, with the outputs G produced by the associated z. and z,.

demonstrate image generation results when taking pose categories as attributes of
interest in Figure 2.3(a). The first row in Figure 2.3(a) shows input facial image
pairs, and the second row depicts reconstructed image outputs using derived z. and
2. Image outputs by swapping z. and z, are shown in the third row. Comparing
this row and the first two rows, we see that the manipulated facial images remained
the same identity, with pose information altered and matched to the other one in
the input image pair. Compared to discrete categorical attributes in MNIST, this

confirms that our dec-GAN is able to handle continuous attributes such as poses.

In addition, we show the results when taking smiling expression as an attribute
of interest in Figure 2.3(b). Similarly, by comparing the last row and the first
two rows, we see that the manipulated images retain the same facial information,
with only the smiling expressions altered. This confirms that smiling expression
is able to be decomposed from the original latent feature. It is worth noting that
we decompose pose and smiling attributes from the same pre-trained generative
models, confirming the flexibility of our dec-GAN in extracting the attributes of

interest.
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Figure 2.3: Image generation from CMU-MultiPIE via swapping the attributes of
(a) pose and (b) smile. The first row shows sampled input image pairs z; and -,
the second row shows reconstructed image outputs G/(z., z,) of the input images,
and the third row depicts generated image outputs by swapping z, in each pair.
Comparing the second and the third row, we see that the image content is preserved
while the attributes (i.e., pose/smile information) are swapped within each image
pair. Note that results using VAE-GAN and Res-GAN as the backbones of our
dec-GAN are shown.

2.1.4 Quantitative Results
Quantitative Evaluation of z. and z,

We conduct quantitative experiments to examine the effectiveness of our dec-GAN
in disentangling content and attribute features. With the use of CMU Multi-PIE face
dataset, z, derived by our model would be expected to contain pose information
only, while z. represents pose-invariant identity features. We then take these two
types of features, perform pose and ID classification tasks, and compare the results

to the uses of latent representations 2z derived by VAE-GAN [35] and UFDN [29].

Table 2.1 lists and compares classification results of different tasks using z, z.
and z,. We simply apply a two-layer classifier (i.e., 2 fully connected layers with
ReLU activation, followed by a softmax layer) for comparison purposes. We do
not apply additional or complex classifiers, which can possibly further improve
the recognition performances. The number of classes is 5 for pose classification

and 249 for identity classification. From this table, we observe that z, yielded the
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Method Pose 1D

VAE-GAN [35] | 97.44 (2) | 96.94 (2)
UFDN [29] N/A 94.31 (z.)
Ours 99.74 (z,) | 98.59 (z.)

Table 2.1: Classification performances on CMU Multi-PIE. Note that our method
decomposes content and attribute features (z. and z,) from latent representation z
derived by pre-trained VAE-GAN. Since the attribute feature of UFDN [29] is a

hand-crafted one-hot vector, it cannot be directly applied for pose classification.

best result in pose classification, while z. resulted in the highest performances for
identity classification. This is expected since our dec-GAN is particularly designed
to disentangle attribute-dependent and attribute-invariant features. Note that the use
of z of VAE-GAN achieved inferior results, indicating that its latent representation
would contain both content and attribute information and thus cannot be expected to
sufficiently address either task. For UFDN, since they derive hand-crafted one-hot

vector for attribute features, their model is not applicable for pose classification.

Comparisons of Training Time

As noted earlier, a major advantage of our dec-GAN is the applicability to exist-
ing GAN-based models without the need for pre-defined attributes. We compare
the numbers of training iterations and computation times of dec-GAN and AC-
GAN [20] with the same backbone structures for generators and discriminators.
Note that all experiments were conducted on a single NVIDIA GTX 1080 Ti with
batch size = 12, and the table of results is presented in the supplementary material.

We found that dec-GAN is four times faster than AC-GAN when disentangling
smiling attributes (i.e., 6 vs. 26 mins) and is about seven times faster when
disentangling pose attributes (i.e., 13 vs. 89 mins). This is because the training
of our dec-GAN can be initialized by existing GAN models, followed by the
training of £, and E,. On the other hand, AC-GAN needs to pre-define additional
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dimensions to describe the attribute so that its training can not be initialized. From
the above experiments, the flexibility and effectiveness of our dec-GAN can be

confirmed.

2.1.5 Conclusion

In this paper, we proposed a unique decomposition-GAN (dec-GAN) to perform
feature disentanglement, which jointly extracts content and attribute representa-
tions from the latent feature observed from existing GAN-based models. Different
from prior disentanglement works, which typically derive disjoint latent representa-
tions describing desirable features, our dec-GAN performs feature decomposition,
which separates latent representation into separate features describing the proper-
ties/attributes of interest. The attribute disentanglement of our dec-GAN is driven
by classifiers pre-trained on the attribute of interest. Followed by the design of
generative network modules, this allows disentanglement of content and attributes
while exhibiting additional flexibility in determining the attributes of interest (i.e.,
by replacing such classifiers based on the desirable attribute categories). We per-
formed qualitative and quantitative evaluations using multiple image datasets, with
attributes ranging from digit categories to pose angles. The effectiveness and
robustness of our dec-GAN can be successfully confirmed, while its superiority

over existing models can also be verified.

2.2 Human-Feedback Efficient Online Diffusion Model

Finetuning

2.2.1 Introduction

Controllable text-to-image (T2I) generation focuses on aligning model outputs
with user intent, such as producing realistic images, e.g., undistorted human bodies,

or accurately reflecting the count, semantics, and attributes specified by users. To
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tackle this problem, a common paradigm involves fine-tuning latent diffusion mod-
els (DM) like Stable Diffusion (SD) [39] using supervised fine-tuning (SFT) [40],
which mostly learn from pre-collected, offline datasets. To further enhance the
alignment, online reinforcement learning (RL) fine-tuning methods [41, 42] utilize
online feedback that specifically evaluates the samples generated by the model
during training. With such dynamic guidance provided on the fly, these methods
demonstrate superior performance on various T2I tasks, such as aesthetic quality
improvement. Yet, these approaches rely on either predefined heuristic reward
functions or pretrained reward models learned from large-scale datasets, which
could be challenging to obtain, especially for tasks involving personalized content
generation (e.g., capturing cultural nuances) or concepts like specific colors or

compositions.

To address the above issue, [43] introduces D3PO, an alternative method
that directly leverages online human feedback for fine-tuning diffusion models.
Instead of learning from heuristic reward functions or pretrained reward models,
D3PO leverages the samples generated by the model as well as human annotations
collected during training. With online human feedback, D3PO addresses various
tasks, such as distorted human body correction and NSFW content prevention,
without requiring a pretrained reward model for each individual task. However,
it still necessitates approximately 5K instances of online human feedback during
training [43, 44], placing a significant burden on the human evaluator and restricting

the use of customized fine-tuning to match individual preferences.

To further improve the feedback efficiency of T2I alignment using online
human feedback, this work proposes a Human-feedback Efficient Reinforcement
learning for Online diffusion model fine-tuning framework, dubbed HERO, to
efficiently and effectively utilize online human feedback to fine-tune a SD model,
as illustrated in Figure 2.4. Specifically, we propose two novel components: (1)
Feedback-Aligned Representation Learning, an online-trained embedding map

that creates a representation space that implicitly captures human preferences
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Prompt CO\ (1\
“a photo of one blue e @ —/Human feedback | \/ Learnable Learned
rose tn a vase A @ 1315 embedding map  Representation
l “,, . Ml bad good
’ [
Stable Generate images | | | el % ’?‘
Diffusion ¢ " - w
- LN SR &)
Sample from “good”
image noise latents

?!" QR Similarity-based
Figure 2.4: (0 Online Human Feedback on Generated Images: Each epoch,

(@le]0]00])

: Rewards Computation

SD generates a batch of images, evaluated by a human as “good” or “bad”, with
the “best” among the “good” selected. The corresponding SD noises and latents
are saved. (D Feedback-Aligned Representation Learning: Human-annotated
images train an embedding map via contrastive learning, converting feedback into
continuous representations. These are rated by cosine similarity to one of the “best”
images and used to fine-tune SD via DDPO [42]. @ Feedback-Guided Image
Generation: New images are generated from a Gaussian mixture centered around
the recorded noises of “good” images. This process is repeated until the feedback

budget is exhausted.

and provides continuous reward signals for RL fine-tuning, and (2) Feedback-
Guided Image Generation, which involve generating images from SD’s refined
initialization samples aligned with human intent, for faster convergence to the

evaluator’s preferences.

Feedback-aligned representation learning (Fig. 2.4’s (D)) aims to create a rep-
resentation space that implicitly reflects human preferences, offering continuous
reward signals for RL fine-tining. At each epoch, SD generates a batch of images,
and a human evaluator classifies the images as “good” or “bad”, selecting one “best”
image from the “good” set. The latents of the human-annotated images are then
employed to train an embedding map through contrastive learning [45], aiming
to develop a feedback-aligned representation space. By calculating the cosine
similarity to the “best” representation vector in the learned representation space,

we obtain a continuous evaluation for each latent. Subsequently, we utilize the
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Figure 2.5: Result preview. Randomly sampled outputs generated by HERO

and baselines given the prompt “photo of one blue rose in a vase” are presented.
Successful samples are marked with &, and unsuccessful samples are marked with
@, which fails to accurately capture the specified count (more than one rose), color
(non-blue roses), and context (missing vase). HERO successfully captures these

aspects, outperforming the baselines.

computed similarity as continuous reward signals to fine-tune SD via LoRA [46].

After fine-tuning the SD for the first iteration, our feedback-guided image
generation (Fig. 2.4’s (2)) samples a new batch of images from a Gaussian mixture
centered on the stored “good” and “best” initial noises from the previous iteration.
This process facilitates the generation of images that align with human intentions
better than random initial noises, thereby enhancing the efficiency of fine-tuning.
HERO effectively achieves controllable T2I generation with minimal online human
feedback through iterative feedback-guided image generation, feedback-aligned

representation learning, and SD model finetuning.

We conduct extensive experiments on various T2I tasks to compare HERO
with existing methods. The experimental results show that HERO can effectively
fine-tune SD to reliably follow given text prompts with 4x fewer amount of
human feedback compared to D3PO [43]. On the other hand, the results show
that these tasks are difficult to solve through prompt enhancement [47] or fine-

tuning approaches, e.g., DreamBooth [48], that rely on a few reference images [49].
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Figure 2.5 presents a preview of the results. Extensive ablation studies verify the
effectiveness of our proposed feedback-aligned representation learning and the
technique of generating images from refined noises. Additionally, we show that
the model fine-tuned by HERO demonstrates transferability to previously unseen
inference prompts, showcasing that the desired concepts were acquired by the

model.

2.2.2 Related Works

Recent research has explored controllable generation with SD for tasks like T21
alignment [42, 50], conceptual generation [51, 52], correcting generation flaws [53],
personalization [49, 48] and removing NSFW content [54, 55, 56].

Supervised fine-tuning. DreamBooth (DB) [48] and Textual Inversion [49] take
images as input and fine-tunes SD via supervised learning to learn the specific sub-
ject present in the input images. However, such methods require reference images,
limiting their applicability to general T2I tasks, such as conceptual generation, e.g.,
emotional image content generation [51], or accurately reflecting user-specified
counts, semantics, and attributes [57]. On the other hand, [50, 54, 58, 59] use
pretrained reward models to calculate differentiable gradients for SD fine-tuning.
However, such pretrained models are not always accessible for tasks of interest,
and moreover, these methods cannot directly utilize human feedback, which is
non-differentiable.

RL fine-tuning. Various methods have explored incorporating non-differentiable
signals, such as human feedback, as rewards to fine-tune SD using RL. For exam-
ple, DDPO [42] uses predefined reward functions for tasks like compressibility,
DPOK [41] leverages feedback from an Al model trained on a large-scale human
dataset, and SEIKO [44] obtain rewards from custom reward functions trained
from extensive feedback datasets. Yet, these methods require a predefined reward
function or reward model, which can be difficult to obtain for tasks that involve gen-

erating personalized content (e.g., reflecting cultural nuances) or abstract concepts,
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such as specific colors or compositions [60, 61].

Direct preference optimization (DPO). Diffusion-DPO [62] applies DPO [63] to
directly utilize preference data to fine-tune SD, eliminating the need for predefined
rewards. Despite encouraging their results, such a method requires a large-scale pre-
collected human preference dataset e.g., Diffusion-DPO uses the Pick-a-Pic dataset
with 851K preference pairs, making it costly to collect and limiting its applicability
to various tasks, including personalization. Instead of leveraging offline datasets,
D3PO [43] uses online human feedback collected on the fly during model training
for DPO-style finetuning of SD. It demonstrates success in tasks such as body
part deformation correction and content safety improvement while avoiding the
demand for large-scale offline datasets. However, the amount of human feedback
required for D3PO is still high, requiring 5-10k feedback instances per task, which

motivates us to develop a more human-feedback-efficient framework.

2.2.3 Preliminaries

Stable Diffusion (SD). operates in two stages. First, an autoencoder compresses
images x from pixel space into latent representations z,, which can later be decoded
back to pixel space. Second, a diffusion model (DM) is trained to model the
distribution of these latent representations conditioned on text c. The forward
diffusion process is defined as p(z;|z¢) := N (z; ayzo, 021), where «; and o, are
pre-defined time dependent constants for ¢ € [0, 7). Both the forward transition
kernel p(z;|z;_1, c) and the backward conditioned transition kernel p(z; 1|z, c, zo)
are Gaussian with closed-form expressions. The DM is trained to predict the clean
sample z, using a neural network Z,(z,, t, c), denoising the noisy sample z, at time

t:

Py(zi-1|24, €) := p<Zt—1|Zt, C,Zo := 2(2s, t, C))
by optimizing the following objective:

m(ﬁinEzO’c,eyt [ |12 (cuzo + 0v€,t,¢) — zH;], e ~N(0,1).
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At inference, random noise z is sampled from a prior and iteratively denoised
using samplers like DDPM [64] and DDIM [65] to obtain a latent code zy, which
is then decoded into an image. This denoising and decoding process forms a
text-to-image generative model, with random noise z, sampled from a prior and c

as the user-provided prompt.

Denoising Diffusion Policy Optimization (DDPQO). formulates the denoising
process of diffusion models as a multi-step Markov decision process. With this
formulation, one can make direct Monte Carlo estimates of the reinforcement
learning objective. Given a denoising trajectory {zr, z7_1, ..., Zo }, the denoising
diffusion RL update is defined as the following:
T

VoLpprL(¢) = E g Ve log ps(zi—1|2s, €)r(z0, €) |, (2.7)
where ¢ is the diffusion model, and 7(x, c) is the received reward computed
according the output image x, and the input prompt c. Based on the above update,
DDPO further utilizes the importance sampling estimator [66] and the trust region
clipping from Proximal Policy Optimization (PPO) [67] to perform multiple steps
of optimization while maintaining the diffusion model ¢ not deviating too far from

the previous iteration ¢,4. The DDPO update is defined as the following:

T
_ ,C
V¢EDDPO<¢) =E E : p¢(Zt 1|Zt )

t=0 Péola (Zt—l |Zt7 c

)V¢ log py(zi—1|zt, €)r(zg,c)|.  (2.8)

2.2.4 Problem Setup and the Proposed Method

Given a user-specified text prompt, our goal is to fine-tune SD to generate images
that align with the prompt by learning from human feedback guidance. In this paper,
we focus on challenging T2I tasks that require spatial reasoning, counting, feasibil-
ity understanding, etc., as detailed in Table 2.2. To efficiently and effectively utilize
online human feedback, we propose a human-feedback efficient reinforcement
learning for online diffusion model fine-tuning framework, dubbed HEROQO, as

illustrated in Figure 2.4. Feedback-Aligned Representation Learning (Figure 2.4
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(D) makes efficient use of limited human feedback by converting discrete feedback
to informative, continuous reward signals. In addition, Feedback-Guided Image
Generation (Figure 2.4 () leverages human-preferred noise latents from previous
iterations and encourages SD outputs to align more quickly with human intention,

further improving sample efficiency.

Online Human Feedback

In the first iteration of HERO, we generate synthetic images X from a batch of
random noises Z7 sampled from SD’s prior distribution 7xgro (27) := N (z7;0,1)
using DDIM [65, 64]. For each zr € Z, the sampling trajectories are denoted
as {zr,zr_1, - , 20}, and each z; is decoded to an image for human evaluation.
A human evaluator reviews X, selects the “good” images X", and labels the
remaining images as X’ ~. To obtain a gradation among all “good” images and all
“bad” images by representation learning, we ask the evaluator to identify the “best”
image in X'*, denoted as x"*. The details of our feedback-aligned representation
learning are discussed in the following section, and we store the following for
future use: the sets of images X', X", X', xPest their corresponding SD’s clean
latents 2, Zar s 20 z(bf’“ from which they are decoded; and their initial noises (at

time T) Zr, 24, Z7, z5%* used in SD’s sampling.

Feedback-Aligned Representation Learning

HERO fine-tunes SD with minimal online human feedback by learning representa-
tions via a contrastive objective that captures discrepancies between the best SD’s
clean latent z%*, positive Z;, and negative Z; SD’s clean latents. By calculating
similarity to the best image’s representation, we use these similarity scores as con-
tinuous rewards for RL fine-tuning. This approach bypasses reward model training
by directly converting human feedback into learning signals, avoiding the need for

over 100k training samples typically required to train a reward model for unseen

data [62, 63]. Learning Representations: To learn a representation space of 2
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aligned with human feedback, we build on the contrastive learning framework of
[45]. We design an embedding network Fy(-) to map Z into the representation
space, followed by a projection head gy(-) for loss calculation. Triplet margin loss

is applied to the projection head’s output:
ﬁ(ea ZI(J)eSta ZS_, ZO_) = EZ%OOdNZS—VZBadNZO— IIlaX{S (90 (E&(deStD , v (E@ (Z%()Od))>

—S(gg (Eo(z™)), 90 (Eg(zgad)>> +a, 0}.
(2.9)
FEp(z5") serves as the anchor in the contrastive loss, with S(, -) representing the
similarity score (using cosine similarity) and « as the triplet margin set to 0.5. By
using the best image in the triplet loss, we obtain a gradation within positive and
negative categories based on the distance to the best sample. With the learned
representation Fy(zg) for zg € Zj, we can compute continuous rewards for RL
fine-tuning.
Similarity-based Rewards Computation: After training the embedding
Ey(-) on the current batch of human feedback, reward values are computed as
the cosine similarity in the learned representation space between each Fy(z) for
zo € Zy and Fp(z)*):
Ey(20) - Ep(zc™)
max { || Ey(z0) |, || Eo (25

R(zg) = for each z, € 2, (2.10)

2’ 5}
where § = 1 x 1078 to avoid zero division. By using the learned representations to
convert simple (discrete) human feedback into continuous reward signals, we avoid
the need for a large pretrained reward model or costly training of such a model.

Besides the “similarity-to-best” design, we also consider a “similarity-to-
positives” design, which uses the similarity between an image and the average of
all “good” images in the learned representation space. We choose the “similarity-
to-best” design for its superior performance. Further discussion is available in Sec-
tion 2.2.6.

Diffusion Model Finetuning: DDPO fine-tunes SD by reweighting the likeli-

hood with reward values. For a noise latent z; € Z7 and its sampling trajectory
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{zr,2r_1,--- , 20}, we incorporate the reward R(z,) from Eq. (2.10) into the
DDPO update rule in Eq. (2.8) to fine-tune the SD model ¢. To reduce costly

gradient computations, we adopt LoRA [46] for fine-tuning.

Feedback-Guided Image Generation

After the previous iteration of fine-tuning, we propose feedback-guided image
generation to facilitate the fine-tuning process by generating images that reflect
human intentions. We sample the noise latents for a new batch of images from the
Gaussian mixture with means centered around the human-selected “good” Z; and
“best” z5% SD noise latents from the previous iteration, with a small variance &.
Specifically, we sample the noise latent zy from the distribution mygro(z7) defined
as:

N(z7;0,1), first iteration
7THERO(ZT) =

BN (zr; 25, €21) + (E;‘) 3 i 2t N (zr; 25 2I)  otherwise.
(2.11)
Here, we introduce a hyperparameter best image ratio 3 to control the proportion of
the next batch sampled from the “best” image noise latent. We find that leveraging
z5 with a larger 3 can accelerate training convergence to evaluator preferences
but may reduce the diversity or the converged accuracy. The above tradeoff can be
controlled by the best image ratio 5. We generally set 5 = (.5 to balance these
effects. Further discussion on the best image ratio parameter is in Section 2.2.6.
We remark that since the variance ¢, is small, after a few iterations, samples
from 7ygro(z7) still concentrate near the prior NV(zr; 0, 1) at high probability.

good

best
Also, z7 oS

and z7** may retain semantic information about human alignment from
z£%°" and 22, as they are connected through the finite-step discretization of the
SD sampler. Thus, these validate our proposed mygro(z7) as refined initializations
for sampling.

Given a new batch of images X decoded from the clean latents Z, generated by

SD, with corresponding initial noises Z7 sampled from mygro(z7) in Eq. (2.11),
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the human evaluator provides their evaluation as described in Section 2.2.4. The
process is repeated until the feedback budget is exhausted or the evaluator is
satisfied with the generation from 7ygro(z7). After obtaining the fine-tuned SD
model ¢ and mygro(z7) through HERO, we use SD random noises from refined

mhero(Z7) and generate images using any DM sampler [65].

2.2.5 Experimental

We demonstrate HERO’s performance on a variety of tasks, including hand de-
formation correction, content safety improvement, reasoning, and personalization.
Many of them cannot be easily solved by the pretrained model, prompt enhance-
ment, or prior methods. A full list of tasks and their success conditions are shown
in Table 2.2. We adopt SD v1.5 [39] as the base T2I model, using DDIM [64, 65]
with 50 diffusion steps (20 for hand deformation correction for fair comparison to
the baselines) as the sampler.

We compare HERO to the following baselines:

* SD-pretrained prompts the pretrained SD model with the original task prompt
shown in Table 2.2.

* SD-enhanced prompts the pretrained SD model with an enhanced version of the

prompt generated by GPT-4 [68, 69].

* DreamBooth (DB) [48] finetunes diffusion models via supervised learning,
taking images as input. We use the four best images chosen by the human

evaluators as model inputs.

e D3PO [43] utilize online human feedback for DPO [63]-based diffusion model
finetuning. Due to the high feedback cost for training, this baseline is considered
only for the hand anomaly correction task directly adopted from their work.

Success rates are reported as presented in the original paper.
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Figure 2.6: Hand anomaly correction success rates. The performance of methods
except D3PO is an average of 8 seeds, where each seed is evaluated on 128 images
per epoch. DB, SD-P, and SD-E are DreamBooth, SD-pretrained, and SD-enhanced,

respectively.

Hand Deformation Correction

Following the problem setup of D3PO [43], we use the prompt “I hand” for image
generation and use human discretion to evaluate the normalcy of the generated hand
images. Parameters such as sampling steps are set to be consistent with D3PO.
In each epoch of HERO, feedback on 128 images is collected, and the human
evaluator provides a total of 1152 feedback over 9 epochs. Performance of HERO
in comparison to the baselines is shown in Figure 2.6. As shown in Figure 2.6,
the pretrained SD model struggles on this task, with a normalcy rate of 11.9%
(SD-pretrained) and 7.5% (SD-enhanced), and DB achieves 28%. D3PO reaches
33.3% normalcy rate at 5K feedback, while HERO achieves a comparable success

rate of 34.2% with only 1152 feedback (over 4 x more feedback efficient).
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Demonstration on the Variety of Tasks

Table 2.2: Task summary

Task Name Prompt Task Categories

hand “l hand” correction, feasibility
blue-rose “photo of one blue rose in a vase” reasoning, counting

black-cat “a black cat sitting inside a cardboard box” reasoning, feasibility, functionality

narcissus “narcissus by a quiet spring and its reflection in the water”  feasibility, homonym distinction

mountain “beautiful mountains viewed from a train window” reasoning, functionality, personalization

We further demonstrate the effectivity of HERO on a variety of tasks involv-
ing reasoning, correction, feasibility and functionality quality enhancement, and
personalization. Tasks are listed in Table 2.2, and descriptions of task success
conditions and task categories are found in Section 2.2.7. For each task, human
evaluators are presented with 64 images per epoch and provide a total of 512 feed-
back over 8 epochs. We report the average and standard deviation of the success
rates across three seeds, where success is evaluated on 64 images generated in
the final epoch. For methods that require human feedback (DB and HERO), three
different human evaluators were each assigned a different seed to provide feedback
on. Each evaluator was also responsible for evaluating the success rates of all
methods for their assigned seed. Results are shown in Table 2.3. For all tasks,
HERO achieves a success rate at or above 75%, outperforming all baselines. This
trend is consistent for all three human evaluators, suggesting HERO’s robustness
to individual differences among human evaluators. Sample images generated by
SD-pretrained, DB, and HERO are shown in Figure 2.7. While the baselines
often struggle in attribute reasoning (e.g., color, count), spatial reasoning (e.g.,
inside), and feasibility (e.g., reflection consistent with the subject), HERO models

consistently capture these aspects correctly.
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SD-Pretrained

DreamBooth

HERO (Ours)

Figure 2.7: Qualitative results. The randomly generated samples for the four
tasks are shown, with @ denoting successful samples and @ for failures. In the
blue-rose task, the pretrained SD model often omits the vase, while DB gen-
erates roses with incorrect color or count. In narcissus, SD frequently fails
to capture the subject or produces inconsistent reflections. For black-cat,
baseline models exhibit more issues (e.g., the cat’s body penetrating the box). In
mountain, baseline images often miss the window frame or depict impossible
views. Our fine-tuned models mitigate these issues and show significantly higher

success rates across all tasks.
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Table 2.3: Task performance. Mean and standard deviation of success rates of
different methods on the four tasks. HERO achieves a success rate at or above 75%

and outperforms all baselines, demonstrating effectiveness on a variety of tasks.

Method blue-rose Dblack-cat narcissus mountain

SD-Pretrained  0.354 (0.020) 0.422 (0.092) 0.406 (0.077) 0.412 (0.063)
SD-Enhanced  0.479 (0.030) 0.365 (0.134) 0.276 (0.041) 0.938 (0.022)
DB 0.479 (0.085) 0.453(0.142) 0.854 (0.092) 0.922 (0.059)
HERO (ours)  0.807 (0.115) 0.750 (0.130) 0.912 (0.007) 0.995 (0.007)

2.2.6 Ablations

This section presents ablation studies illustrating the roles of each component
of HERO. In regards to Feedback-Aligned Representation Learning, we investi-
gate the effects of (1) computation of rewards using learnable feedback-aligned
representations and (2) “similarity-to-best” design for reward computation. For

Feedback-Guided Image Generation, the effect of best image ratio is explored.

Effect of Feedback-Aligned Representation Learning and Reward Design

Table 2.4: Representation learning and reward design ablation

Method Success rate
SD-Pretrained 0.40
HERO-binary 0.78
HERO-noEmbed 0.76
HERO-positives 0.82
HERO 0.91

The effects of using learned feedback-aligned representations and our reward
design are investigated through three ablation experiments. Firstly, we demonstrate
the benefit of converting discrete human feedback into continuous reward signal by
investigating HERO-binary, a variant of HERO using binary rewards for training.

Secondly, we explore the effect of learned representations by replacing the learned

doi:10.6342/NTU202404722



2.2. Human-Feedback Efficient Online Diffusion Model Finetuning 41

representations in HERO with SD image latents Z;” (HERO-noEmbed). Finally,
we explain our choice for the “similarity-to-best” reward design by discussing
an alternative reward design using similarity to the average of all Z; and 25
(HERO-positives). For each setting, we test on the narcissus task with 512
feedback for training and 200 images generated by the finetuned model for success

rate evaluation. HERO outperforms all other settings, and results are summarized

in Table 2.4.

Directly using human labels as binary rewards. An intuitive way to extract a
reward signal from binary human feedback is to directly convert the feedback into
a binary reward. To investigate the effect of similarity-based conversion of human
feedback to continuous rewards, we test HERO-binary, a variant where the reward
in HERO is replaced with a binary reward. Images labeled as “good” or “best”
receive a reward of 1.0, and all other images receive a reward of 0.0. HERO-binary
only reaches 78% success rate while HERO reaches 91%. This may be because the
continuous rewards contain additional information beneficial for DDPO training:
While the binary reward only labels images as “good” or “bad”, the continuous
reward additionally captures a gradation of human ratings within the “good” and
“bad” categories, supplying additional information such as which “good” images

are nearly “best”, and which are barely “good”.

Computing rewards from pretrained image representations. Experiments
with binary rewards showed the benefit of using continuous rewards in the learned
representation space. To further understand HERO’s use of feedback-aligned
learned representations, we replace the learned representations Ejy(Zy) with SD’s
clean latents Z, obtained by denoising SD’s initial noises Z7, and call this setup
HERO-noEmbed. Without embedding map training, Z; no longer cluster around
20®, making a “similarity-to-best” reward design impractical. Thus, we only
consider the “similarity-to-positives” reward design for this ablation. While HERO-

positives reach 82% success, HERO-noEmbed reaches 76%, suggesting the benefit

of learned representations. Training the embedding map additionally offers the
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Figure 2.8: Effect of best image ratio J evaluated on the black-cat task.
Three iterations with different seeds are performed for each setting, and the mean
and standard deviation of the success rate are reported separately for clearer
visualization. “random” refers to the case where random noise latents are used for

sampling (good and best noises latents are not used).

“similarity-to-best” reward design option that gives superior performance.

Computing reward as similarity to average of all ‘“‘good” representations.
The reward in HERO is computed as the similarity to z0*'. However, another
natural choice is to compute similarity to the average of all Z;. Comparing
this “similarity-to-positives” design to the “similarity-to-best” design employed in
HERO, we find that the “similarity-to-best” design achieves 91% success, while

the “similarity-to-positives” design reaches 82%. We adopt the “similarity-to-best”

design, which empirically gives superior performance.

Effect of Best Image Ratio in Feedback-Guided Image Generation

To investigate the effect of the best image ratio, we compare the performance
of the black—cat task for § = 0.0,0.5,1.0. Further, we compare to the case
where the images are sampled from random SD noise latents to demonstrate the
benefit of using Z7 and 25 as initial noises for image generation. Results are
shown in Figure 2.8. Sampling all images from the 2% (3 = 1.0) reaches an
average of 70.8% success at the end of the training. However, as the high standard

deviation in the initial stage of training suggests, over-exploiting a single “best”
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noise latent can cause instability in training, potentially causing the model to settle
on a suboptimal output. Sampling uniformly from Z; and 2% (3 = 0.0) results
in a similar success rate as 8 = 1.0, but is less likely to converge to a suboptimal
point. We empirically find that, for our tasks, 5 = 0.5 results in the highest success
rate while avoiding the risks of fully relying on the single “best” noise latent, thus
using /3 = 0.5 for our experiments. When images are sampled from random SD
noise latents, the task success rate does not grow significantly slower in the given
best

amount of feedback, demonstrating the benefit of using ij and 27> for efficient

fine-tuning.

Transferability

While HERO is trained to optimize for a single input prompt, we observe that some
personal preferences and general concepts learned from one prompt can generalize
to other related prompts in some cases.

Transfer of personal preference. In the mountain task, we observe the
transfer of learned individual preferences. Two human evaluators trained two
separate models for the mountain task, where one evaluator preferred green
scenery while the other preferred snowy scenery. Each evaluator’s trained model as
well as the corresponding Z7 and 22" are used to generate images for a related task

“hiker watching beautiful mountains from the top of a hill”. As shown in Figure 2.9,
the preference for green or snowy scenery transfers to this new task.

Transfer of content safety. To further investigate whether a general concept,
such as content safety, learned through one task can transfer to another, we prompt
the SD model using the prompt “sexy” and train it to reduce NSFW content in
the generated images. The fine-tuned model (as well as the saved Z and 25

are used to generate images from a set of 14 potentially-unsafe prompts used in
D3PO’s content safety task. Utilizing the finetuned model and the saved SD noise

latents significantly improves the content safety rate from 57.5% of the pretrained

SD model to 87.0%, demonstrating HERO-finetuned model’s potential to transfer
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a general concept learned from one prompt to a set of related, unseen prompts.

Visual results are shown in Figure 2.10.

Before HERO Finetuning
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Figure 2.9: Demonstration of personal preference transferability. Models
trained with two distinct personal preferences (green and snowy) generate images
that inherit these preferences when prompted with a similar task (“hiker watching

beautiful mountains from the top of a hill”).

2.2.7 Details of Tasks and Task Categories

Here, we provide the detailed success conditions the human evaluators were
provided with and explanations of each task category.

Detailed Task Success Conditions

* hand: A hand has exactly five fingers with exactly one thumb, and the pose is

physically feasible.

* blue-rose: The generated subject is a rose and has the correct color (blue),

count (one), and context (inside a vase).

* black—-cat: A single cat with the correct color (black) and action (sitting

inside a box) is generated. The cat’s pose is feasible, with no parts of the body
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Figure 2.10: Qualitative results for the NSFW content hidden task showcas-

ing transferability of HERQ. The images were randomly generated using the
potentially unsafe prompt set provided by [43]. The model is the HERO-finetuned
version, trained with the “sexy” prompt to reduce nudity. The safety rate improves
from 57.5% (pretrained SD) to 87.0% (HERO), showing HERO’s ability to transfer

the concept of safety to unseen, potentially unsafe prompts.

penetrating the box. The cardboard is shaped like a functional box.

* narcissus: The image correctly captures the narcissus flower, rather than
the mythological figure, as the subject. Reflection in the water contains, and
only contains, subjects present in the scene, and the appearance of reflections is

consistent with the subject(s).

* mountain: View of the mountains is from a train window. The body of the
train the mountain is seen from is not in the view. If other trains or rails are in
view, they are not oriented in a way that may cause collision. Any rails in the

view are functional (do not make 90-degree turns, for instance).

Description of Task Categories

 Correction: Removing distortions or defects in the generated image. For example,

generating non-distorted human limbs.

* Reasoning: Capturing object attributes (e.g., color or texture), spatial relation-
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ships (e.g., on top of, next to), and non-spatial relationships (e.g., looking at,

wearing).
* Counting: Generating the correct number of specified objects.

* Feasibility: Whether the characteristics of generated images are attainable in the
real world. For example, the pose of articulated objects is physically possible, or

reflections are consistent with the subject.

* Functionality: For objects with certain functionalities (such as boxes or rails),

the object is shaped in a way that makes the object usable for this function.

* Homonym Distinction: Understanding the desired subject among input prompts

containing homonyms.

* Personalization: Aligning to personal preferences, such as preference for certain

colors, styles, or compositions.

2.2.8 HERO Implementation

HERO consists of four main steps: Online human feedback, representation learning
for reward value computation, finetuning of SD, and image sampling from human-
chosen SD latents. In myrro, We choose its variance as 5(2) = 0.1 accross all
experiments. Table 2.5 lists the parameters used in each step.

Representation learning network architecture. The embedding map is
an embedding network Ej(-) followed by a classifier head gy(-). The embedding
network Fj(-) consists of three convolutional layers with ReLU activation followed
by a fully connected layer. The kernel size is 3, and the convolutional layers map the
SD latents to 8 x 8 x 64 intermediate features. The fully connected layer maps the
flattened intermediate features to a 4096-dimensional learned representation. The
classifier head gy(-) consists of three fully connected layers with ReLLU activation,

where the dimensions are [4096, 2048, 1024, 512].
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Table 2.5: HERO training parameters

Embedding Network Ej(-) and Classifier Head gy(-)

5

Learning rate le™>

Adam [70] (81 = 0.9, By =

Optimizer
0.999, weight decay = 0)
Batch size 2048
Triplet margin « 0.5
SD Finetuning
Learning rate 3e—4
Adam [70] (51 = 0.9, 32 =
Optimizer
0.999, weight decay = le™%)
Batch size 2
Gradient accumulation steps 4
DDPO clipping parameter le?
Update steps for loss computation K 5
Image Sampling
Diffusion steps 50 (20 for hand)
DDIM sampler parameter 7 1.0
Classifier free guidance weight 5.0
Best image ratio 3 0.5

2.2.9 Conclusion

This work introduces HERO, an RLHF framework for fine-tuning SD using on-
line human feedback. By learning a feedback-aligned representation, we capture
implicit human preferences, converting simple human feedback into a contin-
uous reward signal that enhances DDPO fine-tuning. Using human-preferred
image noise latents as initial noise further accelerates alignment with preferences.
Combining these components, HERO achieves high efficiency in fine-tuning SD,
requiring 4 x less feedback than the baseline. Additionally, it shows potential for

transferring personal preferences and concepts to related tasks.
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Chapter 3

Adaptation for Objective function

3.1 Diffusion Model-Augmented Behavioral Cloning

3.1.1 Introduction

Recently, the success of deep reinforcement learning (DRL) [71, 72, 73] has in-
spired the research community to develop DRL frameworks to control robots,
aiming to automate the process of designing sensing, planning, and control algo-
rithms by letting the robot learn in an end-to-end fashion. Yet, acquiring complex
skills through trial and error can still lead to undesired behaviors even with sophis-
ticated reward design [74, 75, 76]. Moreover, the exploring process could damage
expensive robotic platforms or even be dangerous to humans [77, 78].

To overcome this issue, imitation learning (i.e., learning from demonstra-
tion) [79, 80] has received growing attention, whose aim is to learn a policy
from expert demonstrations, which are often more accessible than appropriate
reward functions for reinforcement learning. Among various imitation learning
directions, adversarial imitation learning [81, 82, 83] and inverse reinforcement
learning [84, 85] have achieved encouraging results in a variety of domains. Yet,
these methods require interacting with environments, which can still be expensive

or even dangerous.

49
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On the other hand, behavioral cloning (BC) [86, 87] does not require interacting
with environments. BC formulates imitation learning as a supervised learning
problem — given an expert demonstration dataset, an agent policy takes states
sampled from the dataset as input and learns to replicate the corresponding expert
actions. One can view a BC policy as a discriminative model p(a|s) that models
the conditional probability of actions a given a state s. Due to its simplicity and
training stability, BC has been widely adopted for various applications. However,

BC struggles at generalizing to states unobserved during training [88].

To alleviate the generalization issue, we propose to augment BC by modeling
the joint probability p(s, a) of expert state-action pairs with a generative model (e.g.,
diffusion models). This approach is motivated by [89] and [90], who illustrate that
modeling joint probability allows for better generalizing to data points unobserved
during training. However, with a learned joint probability model p(s, a), retrieving
a desired action a requires actions sampling and optimization, i.e., arg max p(s, a),
which can be extremely inefficient with a large action space. Moreosgﬁ modeling
joint probabilities can suffer from manifold overfitting [91, 92] when observed
high-dimensional data lies on a low-dimensional manifold (e.g., state-action pairs

collected from a script expert policies).

This work proposes an imitation learning framework that combines both the
efficiency and stability of modeling the conditional probability and the generaliza-
tion ability of modeling the joint probability. Specifically, we propose to model
the expert state-action pairs using a state-of-the-art generative model, a diffusion
model, which learns to estimate how likely a state-action pair is sampled from the
expert dataset. Then, we train a policy to optimize both the BC objective and the
learning signals the trained diffusion model produces. Therefore, our proposed
framework not only can efficiently predict actions given states via capturing the
conditional probability p(a|s) but also enjoys the generalization ability induced by

modeling the joint probability p(s, a) and utilizing it to guide policy learning.

We evaluate our proposed framework and baselines in various continuous
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control domains, including navigation, robot arm manipulation, and locomotion.
The experimental results show that the proposed framework outperforms all the
baselines or achieves competitive performance on all tasks. Extensive ablation
studies compare our proposed method to its variants, justifying our design choices,

such as different generative models, and investigating the effect of hyperparameters.

3.1.2 Related Work

Imitation learning aims to learn by observing expert demonstrations without access
to rewards from environments. It has various applications such as robotics [79, 93,
94], autonomous driving [95], and game Al [96].

Behavioral Cloning (BC). BC and its extensions [86, 97, 98, 94] formulates
imitating an expert as a supervised learning problem. Due to its simplicity and
effectiveness, it has been widely adopted in various domains. Yet, it often struggles
at generalizing to states unobserved from the expert demonstrations. To alleviate
the above problem, [99] propose the DAgger algorithm that gradually accumulates
additional expert demonstrations to mitigate the deviation from the expert, which re-
lies on the availability of querying an expert; Implicit BC (IBC) [100] demonstrates
better generalization than BC by using an energy-based model for state-action pairs.
However, it requires time-consuming action sampling and optimization during
inference, which may not scale well to high-dimensional action spaces. In this
work, we improve the generalization ability of policies by augmenting BC with a
diffusion model that learns to capture the joint probability of expert state-action
pairs.

Adversarial Imitation Learning (AIL). AIL methods aim to match the state-
action distributions of an agent and an expert via adversarial training. Generative ad-
versarial imitation learning (GAIL) [81] and its extensions [101, 83, 82, 102, 103]
resemble the idea of generative adversarial networks [ 18], which trains a generator
policy to imitate expert behaviors and a discriminator to distinguish between the

expert and the learner’s state-action pair distributions. While modeling state-action
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distributions often leads to satisfactory performance, adversarial learning can be
unstable and inefficient [104]. Moreover, even though scholars like [102] propose
to improve the efficiency of GAIL with the BC loss, they still require online inter-
action with environments, which can be costly or even dangerous. In contrast, our
work does not require interacting with environments.

Inverse Reinforcement Learning (IRL). IRL methods [84, 85, 105, 106, 107,
108] are designed to infer the reward function that underlies the expert demonstra-
tions and then learn a policy using the inferred reward function. This allows for
learning tasks whose reward functions are difficult to specify manually. However,
due to its double-loop learning procedure, IRL methods are typically computation-
ally expensive and time-consuming. Additionally, obtaining accurate estimates of
the expert’s reward function can be difficult, especially when the expert’s behavior
is non-deterministic or when the expert’s demonstrations are sub-optimal.
Diffusion Policies. Recently, [109, 110, 111] propose to represent and learn an
imitation learning policy using a conditional diffusion model, which produces a
predicted action conditioning on a state and a sampled noise vector. These methods
achieve encouraging results in modeling stochastic and multimodal behaviors
from human experts or play data. In contrast, instead of representing a policy
using a diffusion model, our work employs a diffusion model trained on expert

demonstrations to guide a policy as a learning objective.

3.1.3 Preliminaries
Imitation Learning

In contrast to reinforcement learning, whose goal is to learn a policy 7w based
on rewards received while interacting with the environment, imitation learning
methods aim to learn the policy from an expert demonstration dataset containing
M trajectories, D = {1, ..., Tas }, Where 7; represents a sequence of n; state-action
pairs {s{,a},..., s}, ,al, }.

Modeling Conditional Probability p(a|s): To learn a policy 7, behavioral
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cloning (BC) directly estimates the expert policy ¥ with maximum likelihood
estimation (MLE). Given a state-action pair (s, a) sampled from the dataset D,
BC optimizes mazx syazeDlog(m(ab)), where 0 denotes the parameters of the
policy 7. One can view a BC policy as a discriminative model p(a|s), capturing
the conditional probability of an action a given a state s. On the other hand,
Implicit BC [100, 112] propose to model the conditional probability with InfoNCE-
style [113] optimization. Despite their success in various applications, BC-based

methods tend to overfit and struggle at generalizing to states unseen during train-

ing [99, 114, 115].

Modeling Joint Probability p(s, a): In order to model the joint probability
p(s, a) of the expert dataset for improved generalization performance [89, 90], one
can employ explicit generative models, such as energy-based models [116, 117],
variational autoencoders [118], and flow-based models [119, 120]. However, these
methods can be extremely inefficient in retrieving actions with a large action space
during inference since sampling and optimizing actions (i.e., arg maxqc 4 p(s, a))
are required. Moreover, they are known to struggle with modeling observed
high-dimensional data that lies on a low-dimensional manifold (i.e., manifold
overfitting) [91, 92]. As aresult, these methods often perform poorly when learning
from demonstrations produced by script policies or PID controllers, as discussed

in Section 3.1.5.

We aim to develop an imitation learning framework that enjoys the advantages
of modeling the conditional probability p(a|s) and the joint probability p(s,a).
Specifically, we propose to model the joint probability of expert state-action pairs
using an explicit generative model ¢, which learns to produce an estimate indicating
how likely a state-action pair is sampled from the expert dataset. Then, we train a
policy to model the conditional probability p(a|s) by optimizing the BC objective
and the estimate produced by the learned generative model ¢. Hence, our method
can efficiently predict actions given states, generalize better to unseen states, and

suffer less from manifold overfitting.
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Forward diffusion process >
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Figure 3.1: Denoising Diffusion Probabilistic Model (DDPM). Latent variables
x1, ..., xy are produced from the data point x via the forward diffusion process,
i.e., gradually adding noises to the latent variables. The diffusion model ¢ learns to
reverse the diffusion process by denoising the noisy data to reconstruct the original

data point .

Diffusion Models

As described in the previous sections, this work aims to combine the advantages
of modeling the conditional probability p(a|s) and the joint probability p(s,a).
Hence, we leverage diffusion models to model the joint probability of expert
state-action pairs. The diffusion model is a recently developed class of generative
models and has achieved state-of-the-art performance on various tasks [121, 122,
123, 124, 125].

In this work, we utilize Denoising Diffusion Probabilistic Models (DDPMs) [126]
to model expert state-action pairs. Specifically, DDPM models gradually add noise
to data samples (i.e., concatenated state-action pairs) until they become isotropic
Gaussian (forward diffusion process), and then learn to denoise each step and
restore the original data samples (reverse diffusion process), as illustrated in Figure
3.1. In other words, DDPM learns to recognize a data distribution by learning to

denoise noisy sampled data.

3.1.4 Approach

Our goal is to design an imitation learning framework that enjoys both the advan-
tages of modeling the conditional probability and the joint probability of expert

behaviors. To this end, we first adopt behavioral cloning (BC) for modeling the
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Figure 3.2: Diffusion Model-Augmented Behavioral Cloning (DBC ). Our proposed
framework augments behavioral cloning (BC) by employing a diffusion model. (a) Learn-
ing a Diffusion Model: the diffusion model ¢ learns to model the distribution of concate-
nated state-action pairs sampled from the demonstration dataset D. It learns to reverse the
diffusion process (i.e., denoise) by optimizing Lg¢r in Eq. 3.2. (b) Learning a Policy with
the Learned Diffusion Model: we propose a diffusion model objective Lpy for policy
learning and jointly optimize it with the BC objective Lpc. Specifically, Lpy is computed
based on processing a sampled state-action pair (s, a) and a state-action pair (s, @) with

the action @ predicted by the policy 7 with L.

conditional probability from expert state-action pairs, as described in Section 3.1.4.
To capture the joint probability of expert state-action pairs, we employ a diffusion
model that learns to produce an estimate indicating how likely a state-action pair
is sampled from the expert state-action pair distribution, as presented in Section
3.1.4. Then, we propose to guide the policy learning by optimizing this estimate
provided by a learned diffusion model, encouraging the policy to produce actions
similar to expert actions, as discussed in Section 3.1.4. Finally, in Section 3.1.4,
we introduce the framework that combines the BC loss and our proposed diffusion
model loss, allowing for learning a policy that benefits from modeling both the
conditional probability and the joint probability of expert behaviors. An overview

of our proposed framework is illustrated in Figure 3.2.
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Behavioral Cloning Loss

The behavioral cloning (BC) model aims to imitate expert behaviors with super-
vision learning. BC learns to capture the conditional probability p(a|s) of expert

state-action pairs. A BC policy 7(als) learns by optimizing
EBC = E(s,a)ND,&NW(S) [d((l, d)]7 (31)

where d(-, -) denotes a distance measure between a pair of actions. For example,
we can adopt the mean-square error (MSE) loss ||a — @||” for most continuous

control tasks.

Learning a Diffusion Model and Guiding Policy Learning

Instead of directly learning the conditional probability p(a|s), this section discusses
how to model the joint probability p(s, a) of expert behaviors with a diffusion
model in Section 3.1.4 and presents how to leverage the learned diffusion model to

guide policy learning in Section 3.1.4.

Learning a Diffusion Model

We propose to model the joint probability of expert state-action pairs with a diffu-
sion model ¢. Specifically, we create a joint distribution by simply concatenating a
state vector s and an action vector a from a state-action pair (s, a). To model such
distribution by learning a denoising diffusion probabilistic model (DDPM) [126],
we inject noise €(n) into sampled state-action pairs, where n indicates the number
of steps of the Markov procedure, which can be viewed as a variable of the level of
noise, and the total number of steps is notated as N. Then, we train the diffusion

model ¢ to predict the injected noises by optimizing
ﬁdiff(& a, (,b) = ]EnNN,(s,a)ND “ ’€<57 a, n) - 6(”) | |2}

= EHNN,(s,a)ND [|’¢(S’ a, E(n)) o 6(71)”2},

where € is the noise predicted by the diffusion model ¢. Once optimized, the

(3.2)

diffusion model can recognize the expert distribution by perfectly predicting the
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noise injected into state-action pairs sampled from the expert distribution. On the
other hand, predicting the noise injected into state-action pairs sampled from any
other distribution should yield a higher loss value. Therefore, we propose to view
Laie(s, a, @) as an estimate of how well the state-action pair (s, a) fits the expert
distribution that ¢ learns from and serve this estimate as a learning signal for the

policy learning.

Learning a Policy with Diffusion Model Loss

A diffusion model ¢ trained on an expert dataset can produce an estimate Lgit(s, a, ¢)
indicating how well a state-action pair (s, a) fits the expert distribution. We propose
to leverage this signal to guide a policy 7 predicting actions & to imitate the expert.

Specifically, the policy 7 learns by optimizing
LE = Lan(s, G, 0) = Esup grn(s) [||€(S, a,n) — 6||2} : (3.3)

Intuitively, the policy 7 learns to predict actions @ that are indistinguishable from
the expert actions «a for the diffusion model conditioning on the same set of states.
Note that the injected noise € is drawn from a Gaussian distribution G(0, 1), and
the diffusion step n is drawn from the uniform distribution /(0, N'). We omit these
terms for simplicity in the equation and the following.

We hypothesize that learning a policy to optimize Eq. 3.3 can be unstable,
especially for state-action pairs that are not well-modeled by the diffusion model,
which yield a high value of Ly even with expert state-action pairs. Therefore, we

agent

propose to normalize the agent diffusion loss L with an expert diffusion loss

L5, which can be computed with expert state-action pairs (s, a) as follows:

'Cz?f};ert = ﬁdiff(sv a, QS) = IE(s,a)ND [| |€(Sa a, TL) - €||2} . (34)

We propose to optimize the diffusion model loss Lpy; for the policy based on

calculating the difference between the above agent and expert diffusion losses:

»CDM = E(sya),\,D,@Nﬂ-(s) [mcm (E?l;g;nt — E(ej;ag)fert) 0)} . (35)
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Combining the Two Objectives

Our goal is to learn a policy that benefits from both modeling the conditional
probability and the joint probability of expert behaviors. To this end, we propose to
augment a BC policy, which optimizes the BC loss Lgc in Eq. 3.1, by combining
Lgc with the proposed diffusion model loss Lpy in Eq. 3.5. By optimizing
them together, we encourage the policy to predict actions that fit the expert joint
probability captured by diffusion models. To learn from both the BC loss and the

diffusion model loss, we train the policy to optimize
»Ctotal = »CBC + )\,CDM, (36)

where A is a coefficient that determines the importance of the diffusion model loss

relative to the BC loss.

3.1.5 Experiments

We design experiments in various continuous control domains, including naviga-
tion, robot arm manipulation, dexterous manipulation, and locomotion, to compare

our proposed framework (DBC) to its variants and baselines.
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(a) MAZE (b) FETCHPICK (c) HANDROTATE

(d) CHEETAH (e) WALKER (f) ANTREACH

Figure 3.3: Environments & Tasks. (a) MAZE: A point-mass agent (green) in
a 2D maze learns to navigate from its start location to a goal location (red). (b)
FETCHPICK: The robot arm manipulation tasks employ a 7-DoF Fetch robotics
arm to pick up an object (vellow cube) from the table and move it to a target
location (red). (¢c) HANDROTATE: This dexterous manipulation task requires a
Shadow Dexterous Hand to in-hand rotate a block to a target orientation. (d)-(e)
CHEETAH and WALKER: These locomotion tasks require learning agents to walk
as fast as possible while maintaining their balance. (f) ANTREACH: This task
combines locomotion and navigation, instructing an ant robot with four legs to

reach a goal location while maintaining balance.
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Experimental Setup

This section describes the environments, tasks, and expert demonstrations used for
learning and evaluation.

Navigation. To evaluate our method on a navigation task, we choose MAZE, a
maze environment proposed in [127] (maze2d-medium-v2), as illustrated in Figure
3.3a. This task features a point-mass agent in a 2D maze learning to navigate from
its start location to a goal location by iteratively predicting its « and y acceleration.
The agent’s beginning and final locations are chosen randomly. We collect 100
demonstrations with 18,525 transitions using a controller.

Robot Arm Manipulation. We evaluate our method in FETCHPICK, a robot
arm manipulation domain with a 7-DoF Fetch task, as illustrated in Figure 3.3b.
FETCHPICK requires picking up an object from the table and lifting it to a target
location. We use the demonstrations, consisting of 10k transitions (303 trajectories),
provided by [107] for these tasks.

Dexterous Manipulation. In HANDROTATE, we further evaluate our method on a
challenging environment proposed in [128], where a 24-DoF Shadow Dexterous
Hand learns to in-hand rotate a block to a target orientation, as illustrated in Figure
3.3c. This environment has a state space (68D) and action space (20D), which
is high dimensional compared to the commonly-used environments in IL. We
collected 10k transitions (515 trajectories) from a SAC [129] expert policy trained
for 10M environment steps.

Locomotion. For locomotion, we leverage the CHEETAH and WALKER [130]
environments. Both CHEETAH and WALKER require a bipedal agent (with different
structures) to travel as fast as possible while maintaining its balance, as illustrated
in Figure 3.3d and Figure 3.3e, respectively. We use the demonstrations provided
by [131], which contains 5 trajectories with 5k state-action pairs for both the
CHEETAH and WALKER environments.

Locomotion + Navigation. We further explore our method on the challenging

ANTREACH environment. In the environment, the quadruped ant aims to reach
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a randomly generated target located along the boundary of a semicircle centered
around the ant, as illustrated in Figure 3.3f. ANTREACH environment combines
the properties of locomotion and goal-directed navigation tasks, which require
robot controlling and path planning to reach the goal. We use the demonstrations
provided by [107], which contains 500 trajectories with 25k state-action pairs in

ANTREACH.

Baselines

This work focuses on imitation learning problem without environment interactions.
Therefore, approaches that require environmental interactions, such as GAIL-based
methods, are not applicable. Instead, we extensively compared our proposed
method to state-of-the-art imitation learning methods that do not require interaction

with the environment, including Implicit BC [100] and Diffusion Policy [110, 111].

 BC learns to imitate an expert by modeling the conditional probability p(als)

of the expert behaviors via optimizing the BC loss Lgc in Eq. 3.1.

* Implicit BC (IBC) [100] models expert state-action pairs with an energy-
based model. For inference, we implement the derivative-free optimization
algorithm proposed in IBC, which samples actions iteratively and selects the

desired action according to the predicted energies.

* Diffusion policy refers to the methods that learn a conditional diffusion
model as a policy [110, 111]. Specifically, we implement this baseline based
on [109]. We include this baseline to analyze the effectiveness of using

diffusion models as a policy or as a learning objective (ours).

Multimodality of Environments

In this section, we aim to quantitatively evaluate the multimodality of expert

trajectories of each environment we use in the paper. IBC and DP are well-known
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Table 3.1: Multimodality of Environments. We evaluate the multimodality of

expert trajectories of each environment by measuring if the states in the same

cluster share actions from the same clusters. The ratio ranges from 0.1 to 1,

indicating whether states within the same cluster perform actions that are either

randomly distributed (1/10) or consistently identical (1/1), respectively.

Environment Majority Ratio

MAZE 0.184
FETCHPICK 0.604
HANDROTATE 0.331
CHEETAH 0.594
WALKER 0.582
ANTREACH 0.511

Table 3.2: Experimental Result. We report the mean and the standard deviation

of success rate (MAZE, FETCHPICK, HANDROTATE, ANTREACH) and return

(CHEETAH, WALKER), evaluated over three random seeds. Our proposed method

(DBC) outperforms or performs competitively against the best baseline over all

environments.
Method MAZE FETCHPICK  HANDROTATE CHEETAH WALKER ANTREACH
BC 92.1% +3.6% 91.6% +58% 57.5% +4.7% 4873.3 +69.7 69544 +73.5 562% +4.9%
69.4% +73% 13.8% +3.7% 1563.6 £486.8 839.8 +104.2 23.7% +4.9%

Implicit BC 78.3% + 6.0%
Diffusion Policy 95.5% + 1.9%
DBC (Ours) 95.4% £ 1.7%

83.9% =+ 3.4%
97.5% £ 1.9%

61.7% +=4.1% 4650.3 £59.9 6479.1 £ 238.6

60.1% +4.4% 4909.5 + 73.0

7034.6 & 33.7

61.8% + 4.0%
70.1% + 4.9%
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for their ability to handle multimodal data, and understanding the multimodality
in each environment can help us better compare with these baselines. In imitation
learning, multimodality may arise from either the nature of the task, e.g., different
goals with arbitrary orders, or the expert demonstrations, e.g., achieving the same
goal with various paths. For each task, we create 10 clusters of states and 10
clusters of actions from expert demonstrations. Then, we measure if the states in
the same cluster share actions from the same clusters. Specifically, we calculate
the major action class for each state cluster and compute the ratio of states with
the class. The ratio ranges from 0.1 to 1, indicating whether states within the same
cluster perform actions that are either randomly distributed (1/10) or consistently
identical (1/1), respectively.

The results of all the tasks are reported in Table 3.1. We observe that robot
arm manipulation (FETCHPICK) and locomotion (CHEETAH and WALKER) tasks
result in higher majority ratios, which indicates that the expert behaviors are more
unimodal. On the other hand, navigation (MAZE) and dexterous manipulation
(HANDROTATE) tasks result in lower majority ratios, which means the demonstra-
tions contain more multimodal paths for similar goals and ANTREACH results in an

intermediate majority ratio since it is a combination of navigation and locomotion.

Experimental Results

We report the experimental results in terms of success rate (MAZE, FETCHPICK,
HANDROTATE, and ANTREACH), and return (CHEETAH and WALKER) in Table
3.2.

Overall Task Performance. In navigation (MAZE) and dexterous manipulation
(HANDROTATE) tasks, our DBC performs competitively, i.e., within a standard
deviation, against the Diffusion Policy and outperforms the other baselines. As
discussed in Section 3.1.5, these tasks require the agent to learn from multimodal
demonstrations of various behaviors. Diffusion policy has shown promising perfor-

mance for capturing multi-modality distribution, while our DBC can also generalize
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well with the guidance of the diffusion models, so both methods achieve satisfactory

results.

In locomotion tasks, i.e., CHEETAH and WALKER, our DBC outperforms Dif-
fusion Policy and performs competitively against the simple BC baseline. We
hypothesize that this is because locomotion tasks with sufficient expert demonstra-
tions and little randomness do not require generalization during inference, which
results in lower majority scores as shown in Section 3.1.5. The agent can simply
follow the closed-loop progress of the expert demonstrations, resulting in both BC
and DBC performing similarly to the expert demonstrations. On the other hand,
the Diffusion Policy is designed for modeling multimodal behaviors and, there-
fore, performs inferior results on single-mode locomotion tasks. For ANTREACH
task, which combines locomotion and navigation, our method outperforms all the

baselines.

In summary, our proposed DBC is able to perform superior results across
all tasks, which verifies the effectiveness of combining conditional and joint

distribution modeling.

Inference Efficiency. To evaluate the inference efficiency, we measure and report
the number of evaluation episodes per second (1) for Implicit BC (9.92), Diffusion
Policy (1.38), and DBC (30.79) on an NVIDIA RTX 3080 Ti GPU in MAZE. As a
result of modeling the conditional probability p(a|s), DBC and BC can directly map
states to actions during inference. In contrast, Implicit BC samples and optimizes
actions, while Diffusion Policy iteratively denoises sampled noises, which are
both time-consuming. This verifies the efficiency of modeling the conditional
probability.

Action Space Dimension. The Implicit BC baseline requires time-consuming
action sampling and optimization during inference, and such a procedure may not
scale well to high-dimensional action spaces. Our Implicit BC baseline with a
derivative-free optimizer struggles in CHEETAH, WALKER, and HANDROTATE

environments, whose action dimensions are 6, 6, and 20, respectively. This is
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Table 3.3: Generalization Experiments in FETCHPICK. We report the perfor-
mance of our proposed framework DBC and the baselines regarding the mean and
the standard deviation of the success rate with different levels of noise injected into

the initial state and goal locations in FETCHPICK, evaluated over three random

seeds.
Noise Level
Method
1 1.25 1.5 1.75 2
BC 92.4% +85% 91.6% £58% 85.5% +63% 77.6% £7.1% 67.4% + 8.2%
Implicit BC 83.1% +3.1% 69.4% +73% 51.6% +=42% 36.5% +4.7% 23.6% =+ 3.0%

Diffusion Policy 90.0% =+ 3.5%
99.5% £ 0.5%

83.9% + 3.4%
97.5% £+ 1.9%

72.3% + 6.8%
91.5% £ 3.3%

64.1% £ 7.1%
83.3% £+ 4.8%

58.2% + 8.2%
73.5% £ 6.8%

DBC (Ours)

consistent with [100], which reports that the optimizer failed to solve tasks with
an action dimension larger than 5. In contrast, our proposed DBC can handle

high-dimensional action spaces.

Generalization Experiments in FETCHPICK

This section further investigates the generalization capabilities of the policies
learned by our proposed framework and the baselines. To this end, we evaluate the
policies by injecting different noise levels to both the initial state and goal location
in FETCHPICK. Specifically, we parameterize the noise by scaling the 2D sampling
regions for the block and goal locations in both environments. We expect all the
methods to perform worse with higher noise levels, while the performance drop of
the methods with better generalization ability is less significant. In this experiment,
we set the coefficient A of DBC to 0.1 in FETCHPICK. The results are presented in
Table 3.3 for FETCHPICK.

Overall Performance. Our proposed framework DBC consistently outperforms
all the baselines with different noise levels, indicating the superiority of DBC when

different levels of generalization are required.
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Figure 3.4: Manifold overfitting Experiments. (a) We collect the green spiral
trajectories from a script policy, whose actions are visualized as red crosses. (b)
We train and evaluate mgc, mpay and mppe using the demonstrations from the
script policy. The trajectories of T ( ) and mppc (red) can closely follow
the expert trajectories (green), while the trajectories of mpy, (blue) deviates from
expert’s. This is because the diffusion model struggles at modeling such expert
action distribution with a lower intrinsic dimension, which can be observed from

incorrectly predicted actions (blue dots) produced by the diffusion model.

Performance Drop with Increased Noise Level. In FETCHPICK, DBC expe-
riences a performance drop of 26.1% when the noise level increase from 1 to 2.
However, BC and Implicit BC demonstrate a performance drop of 27.0% and
71.6%, respectively. Notably, Diffusion Policy initially performs poorly at a noise
level of 1 but demonstrates its robustness with a performance drop of only 35.3%
when the noise level increases to 2. This shows that our proposed framework gen-

eralizes better and exhibits greater robustness to noise compared to the baselines.

Manifold Overfitting Experiments

This section aims to empirically examine if modeling joint probabilities is difficult

when observed high-dimensional data points lie on a low-dimensional manifold
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(i.e., , manifold overfitting). We employ a point maze environment implemented
with [127] and collect trajectories from a script policy that executes actions (0.5, 0),
(0,0.5), (—=0.7,0), and (0, —0.7) (red crosses in Figure 3.4a), each for 40 consecu-
tive time steps, resulting the green spiral trajectories visualized in Figure 3.4b.
Given these expert demonstrations, we learn a policy mp¢ to optimize Eq. 3.1,
a policy mpys to optimize Eq. 3.5 with a diffusion model trained on the expert
distribution, and a policy 7ppc to optimize the combined objective Eq. 3.6. Figure
3.4a shows that the diffusion model struggles at modeling such expert action
distribution with a lower intrinsic dimension. As a result, Figure 3.4b show that
the trajectories of mpy, (blue) deviates from the expert trajectories (green) as the
diffusion model cannot provide effective loss. On the other hand, the trajectories of
e ( ) and 7p e (red) are both able to closely follow the expert’s and result
in a superior success rate. This verifies our motivation to complement modeling

the joint probability with modeling the conditional probability (i.e., BC).

3.1.6 Discussion

We propose an imitation learning framework that benefits from modeling both the
conditional probability p(a|s) and the joint probability p(s, a) of the expert dis-
tribution. Our proposed Diffusion Model-Augmented Behavioral Cloning (DBC)
employs a diffusion model trained to model expert behaviors and learns a policy to
optimize both the BC loss and our proposed diffusion model loss. Specifically, the
BC loss captures the conditional probability p(a|s) from expert state-action pairs,
which directly guides the policy to replicate the expert’s action. On the other hand,
the diffusion model loss models the joint distribution of expert state-action pairs
p(s, a), which provides an evaluation of how well the predicted action aligned with
the expert distribution. DBC outperforms baselines or achieves competitive perfor-
mance in various continuous control tasks in navigation, robot arm manipulation,
dexterous manipulation, and locomotion. We design additional experiments to

verify the limitations of modeling either the conditional probability or the joint
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probability of the expert distribution and compare different generative models. Ab-
lation studies investigate the effect of hyperparameters and justify the effectiveness
of our design choices. Despite its encouraging results, our proposed framework is
designed to learn from expert trajectories without interacting with environments
and cannot learn from agent trajectories. Extending our method to incorporate
agent data can potentially allow for improvement when interacting environments

are possible.

3.2 Restoring Noisy Demonstration for Imitation

Learnings

3.2.1 Introduction

Imitation learning aims to learn a policy from expert demonstrations and has been
applied to various applications, including robotics, industrial automation, strategy
board games, video games, etc [132, 133, 134, 135, 136, 137]. Compared to
reinforcement learning (RL), acquiring a policy in a trial-and-error manner, which
can be unsafe or expensive, imitation learning (IL) algorithms can learn without
environmental interactions. Furthermore, while designing sophisticated RL reward
functions is often difficult and tedious [138, 139], IL methods learn from expert
demonstrations and do not require reward signals.

Despite the wide applicability, most existing imitation learning algorithms
assume perfect (i.e., optimal and clean) expert demonstrations, which can be chal-
lenging and expensive to collect. Specifically, expert demonstrations often contain
imperfections caused by errors from human experts or sensor and control system
inaccuracies. For example, the sensors may induce noises due to environmental
interference [140, 141], and the control system could perform imperfectly due
to steady-state error or control jitter [142, 143, 144]. As a result, learning from

noisy expert demonstrations using IL. methods while neglecting the noises can
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Figure 3.5: Illustration of Human-Feedback-Efficient Reinforcement Learning
for Online Diffusion Model Finetuning (DMDR): We propose a two-stage
learning framework that first identifies and filters clean samples from the noisy
demonstrations. Then, by learning diffusion models using the clean samples, we

restore the remaining noisy samples to provide more reliable demonstrations.

significantly limit the performance of acquired policies [145, 146].

To best leverage expert demonstrations with inherent noises, we propose to
(1) filter clean demonstrations from noisy demonstrations, (2) model the clean
demonstrations, (3) restore the noisy demonstrations with the learned model, and
(4) aggregate the clean and restored demonstrations to learn a policy, as illustrated
in Figure 3.5. In contrast, most existing learning from noisy demonstration methods
falls short of implementing this complete pipeline. For example, [147, 146] filter
out or give low importance weights on demonstrations determined noisy, failing to
extract information from noisy demonstrations; on the other hand, data restoration
methods such as [148, 149, 150] require a known linear degradation model, which
is inaccessible for noisy demonstrations in imitation learning. Uniformly restoring
entire demonstration sets without separating potentially clean demonstrations
can incorrectly modify clean demonstrations and lead to deteriorated learning

performance.
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This work proposes a filter-and-restore framework, Diffusion-Model-Based
Demonstration Restoration (DMDR), for imitation learning from noisy demon-
strations. In the demonstration filtering stage, we train autoencoders and perform
the local outlier factor [151] using the learned embeddings to assign a pseudo
label to each data point. In the demonstration restoration stage, we consider the
correlation between states and actions and train a pair of conditional diffusion
models using the pseudo-labels. One conditional diffusion model aims to restore
actions based on the corresponding states, while another diffusion model focuses
on the reverse, restoring states based on actions. Then, we aggregate the clean
and restored demonstrations and learn a policy using existing IL methods, such
as behavioral cloning (BC) [86, 87], implicit behavioral cloning (IBC) [100], and
diffusion policy (DP) [109, 110].

We evaluate our proposed framework and existing methods in various domains,
including robot arm manipulation, dexterous robotic hand manipulation, and loco-
motion. The experimental results show that our proposed framework consistently
outperforms existing methods across all the tasks. Also, we conduct extensive
ablation studies to justify all the components in our filter-and-restore pipeline, in-
cluding the filtering methods and the restoration settings. The experimental results
also confirm that our proposed filter-and-restore pipeline is IL method agnostic,
i.e., can be combined with various existing IL. methods, including BC, IBC, and

DP, and yield improved performance.

3.2.2 Related Works
Imitation Learning (IL)

Imitation learning aims to learn a policy by observing expert demonstrations
without reward signals from the environment. Online imitation learning methods
use rollouts collected from online interaction to help policy learning. In the realm
of online imitation learning, inverse reinforcement learning (IRL) methods [106,

152] aim to derive the reward function from the expert demonstrations for policy
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learning; Generative adversarial imitation learning (GAIL) methods [81, 101] learn
discriminators that can identify the rollout samples and the expert samples for
training a policy that models the expert distribution.

On the other hand, offline imitation learning methods learn a policy directly
from a fixed set of expert demonstrations without environmental interactions.
These methods are beneficial when online interactions are expensive, risky, or
impractical. Behavior cloning (BC) [153, 87, 154] is a widely studied offline
learning approach aimed at imitating expert behaviors through supervised learning;
Implicit BC (IBC) [100] learns an energy-based model that takes both states and
actions as inputs for better generalization ability; Diffusion Policy [109, 110]
employs a diffusion model as a policy to capture multi-modal behaviors that BC
struggles to model. However, the effectiveness of these imitation learning methods
heavily depends on the quality of the expert demonstrations. Noisy or sub-optimal
samples in noisy demonstrations can significantly hinder the learning process and

the performance of the derived policies.

Imitation Learning (IL) from Noisy Demonstrations

Recent works have explored online methods to address the issue of noisy demon-
strations, where polluted data or trajectories with mixed optimality pose challenges
to policy learning. Inverse reinforcement learning (IRL) methods [155, 156], aim
to derive a learned reward function based on ranked trajectories for policy learning.
Generative adversarial-based approaches [145, 157] assign a confidence or opti-
mality score for training samples to alleviate the interference of the noises. These
online IL methods [155, 145, 158] additionally leverage a supplementary dataset
with confidence annotations to help evaluate the noisy demonstrations, which is
usually not available in real-world cases.

Offline IL methods do not require environmental interactions. However, these
methods rely more on the quality of the provided expert demonstrations, making

it more challenging to learn from noisy demonstrations. [159] proposes learning
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an estimation of the stationary distribution to regularize policy learning. [160]
extends this approach by imposing additional constraints on optimization to take
the diversity of both states and actions into consideration. Discriminator-based
methods [161, 162] assign weights for training samples based on their subopti-
mality using discriminators. [162] additionally considers the dynamics models,
employing them in collaboration with the discriminator. Behavioral Cloning from
Noisy Demonstrations (BCND) [147] assign weights for training samples based
on predictions from previous iterations to seek the major mode of the distribu-
tion. However, these methods give low importance weights on demonstrations
determined as noisy and fall short of extracting useful information from them.
Therefore, we propose a filter-and-restore framework that restores noisy demon-
strations to best leverage the noisy demonstrations for policy learning. In our
experiments, we compare our proposed framework with BCND to demonstrate the

robustness and effectiveness of our approach.

Anomaly Detection (Outlier Detection)

Anomaly detection techniques aim to identify abnormal data points from normal
ones, with applications in various domains. In real-world scenarios, abnormal data
exhibits diverse characteristics from unexpected events and rare occurrences. Due
to this diversity, abnormal data is usually diverse and challenging to collect. There-
fore, previous literature focuses on learning models to identify the distribution of
normality and classify data that deviate from the learned distributions as anomalies.

Classification-based anomaly detection [163, 164, 165, 166, 167, 168] formu-
late anomaly detection as a one-class classification problem, where only normal
samples are available during training. For instance, [164, 165] utilize a limited
set of labeled outliers samples with unlabeled samples to train the classifiers.
Alternatively, other works [166, 167, 168] augment the training data with out-of-
distribution or synthetic samples to enhance the classifier’s ability to recognize

anomalies. Nevertheless, applying these augmentation methods to offline imita-
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tion learning is challenging due to the significant differences in behavior among
different environments.

On the other hand, reconstruction-based anomaly detection methods utilize
autoencoders [1, 3, 169, 4] to determine outliers based on the reconstruction errors.
In these approaches, neural networks are trained to reconstruct input data, with a
widely used assumption that deep models tend to learn clean samples faster than
noisy samples [170, 171, 172]. Consequently, samples with higher reconstruction
errors are often flagged as anomalies. In this work, we apply a reconstruction-based

method to filter outliers for the noisy demonstrations.

Diffusion Models for Data Restoration

Diffusion models have demonstrated remarkable performance in various generation
tasks [39, 173, 110, 64, 174, 175, 176]. Recent works [149, 150] study to extend
diffusion models for data restoration tasks, including super-resolution, inpainting,
colorization, etc.

Denoising Diffusion Restoration Models (DDRM) [149] demonstrate that
when the restoration task can be formulated as a linear inverse problem, pre-trained
diffusion models can be effectively leveraged for inference given the degradation
matrix. This approach allows for the utilization of existing models without the need
for retraining or fine-tuning for specific restoration tasks. Building upon DDRM,
GibbsDDRM [150] relaxes the requirement of the pre-defined degradation matrix
and adopts a learnable linear operator to describe the restoration task instead.

However, existing works in this domain often rely on diffusion models pre-
trained on clean datasets, which may not be directly applicable to noisy demonstra-
tions commonly encountered in real-world scenarios. To address this limitation,
we propose a two-stage framework. In the first stage, we filter clean samples from
noisy demonstrations to create a dataset suitable for training conditional diffusion
models. In the second stage, we utilize the derived diffusion models to restore the

noisy data effectively.
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3.2.3 Method

In this paper, we aim to learn from noisy demonstrations without environmental
interactions or additional annotations for clean samples. The noisy demonstrations
D = 1, ..., ) consists of M trajectories, where each trajectory 7; comprises a
sequence of n; state-action pairs s}, a}, ..., s}, , al, . For each state and action in
the demonstration, there exists a small probability p that random noise is injected,
indicating the noise level. Notably, the pollution of states and actions is independent
since distinct sensors are typically used for monitoring states and actions in real-
world scenarios. To simplify notation, we denote a state-action pair sampled from
the entire demonstration dataset as (s, a) ~ D, dismissing the trajectory index and
the index of a state-action pair within a trajectory.

We propose a filter-and-restore framework for imitation learning from noisy
demonstrations. In Section 3.2.3, we show how we filter clean samples using
a combination of autoencoders and Local Outlier Factor, which is an anomaly
detection algorithm that calculates the local deviation. In Section 3.2.3, we illustrate

the training process for our conditional diffusion models and how we restore

samples using the derived diffusion models.

Demonstration Filtering

In this stage, we aim to filter clean samples from noisy demonstrations by integrat-
ing autoencoders and Local Outlier Factor (LOF). The process involves learning
global features of the data distribution with autoencoders and then applying LOF
to identify potential outliers based on local densities.

Anomaly Detection with Autoencoders: We apply a reconstruction-based
method to detect and filter potential abnormal samples from noisy demonstrations.
While demonstrations typically consist of sequences of state-action pairs, it’s impor-
tant to note that states and actions often represent distinct properties and are usually
captured by different sensors. For instance, states commonly denote variables like

position and velocity, whereas actions typically record the torque applied to the
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Figure 3.6: Demonstration filtering. (a) Training. We train the state autoencoder
¢, using the reconstruction loss and apply the Local Outlier Factor (LOF) on the
feature space, i.e., z;. We only show the state autoencoder ¢, in the figure for
illustration, while the action autoencoder ¢, follows the identical architecture. (b)
Inference. We use autoencoders and LOF to individually identify outliers for states
and actions. With the predictions of outliers, we filter the noisy demonstrations into
four subsets: D; 4), D(s.a7)> D(3,a7)» and Dy 4), which contains clean state-action
pairs, noisy state-action pairs, clean states with noisy actions, and noisy states with

clean actions, respectively.

joints of robots, as seen in the widely utilized MuJoCo environment [177]. Further-
more, performing the desired actions (applying desired torques on joints) could face
control system errors, such as steady-state error and control jitter [142, 143, 144],
so states and actions would encounter noise perturbation independently. As a result,
state and action should be filtered and labeled independently.

As depicted in Figure 3.6a, we train a pair of autoencoders to capture the
majority of states and actions with a reconstruction loss, which can be formulated

as follows:
Lro = B |ll6(s) = s|°] (3.7)
and

Ly = Eapn |ll6(a) —al[*], (3.8)
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where ¢(s) indicates the state autoencoder and ¢(a) indicates the action autoen-
coder. One can directly adopt 3. and L? . to filter outliers as reconstruction-based

rec rec

anomaly detection approaches do.

However, in tasks like robot arm manipulation, we find that certain state-action
pairs may be infrequent yet crucial for successful execution. For instance, in a
scenario where a robot arm needs to grasp an object and arise it to a target location.
While most state-action pairs may correspond to routine movements, such as
navigating the arm, there are specific instances, such as the action of grasping an
object, that occur less frequently but are indispensable for task completion. To
prevent discarding essential samples, we further apply the Local Outlier Factor
algorithm to identify outliers based on the encoded representations obtained from

autoencoders.

Combining Autoencoder and Local Outlier Factor: Local Outlier Factor
(LOF) is known as an anomaly detection algorithm that measures the local deviation
of samples. The algorithm begins by estimating the local density for each sample in
the dataset using the k-nearest neighbors (KNN) approach. It calculates the density
by considering the distance to each sample’s & nearest neighbors. Next, a ratio of
local density is computed using the sample and its neighbors, which serves as the
LOF score. A larger LOF score indicates that the sample has a lower density than
its neighbors, suggesting it may be an outlier. LOF effectively identifies potential

outliers in the dataset by analyzing each local region individually.

As we mentioned in the previous section, to prevent predicting state-action
pairs with unique behaviors as anomalies, we utilize the bottleneck features z, and
z, from the autoencoders to calculate LOF score for each s and a. These represen-
tations capture global behaviors since the autoencoders are trained to minimize
reconstruction loss across the entire expert demonstration dataset. LOF then evalu-
ates outliers based on the local density of these representations. By considering
the local density of samples’ representations, we effectively prevent discarding

infrequent samples with useful behaviors, thereby enhancing the robustness of
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demonstration filtering for imitation learning tasks.

In our implementation, we follow the assumption in reconstruction-based
anomaly detection that the majority of samples are clean, i.e., at least half of the
given demonstrations are clean. Therefore, half of the samples with lower LOF
scores are labeled as clean, while the other half is labeled as noisy. As shown
in Figure 3.6b, we filter the dataset into four subsets according to the pseudo-labels:
clean state-action pairs D; 4, clean states with noisy actions D; ./), noisy states

with clean actions Dy 4), and noisy state-action pairs Dy 4/).

Demonstration Restoration

In this section, we show how to restore the noisy subsets of demonstrations with
diffusion models. Previous works [149, 150] have shown how to use diffusion
models for image restorations when the distortion process is known. For instance,
Denoising Diffusion Restoration Models (DDRM) [149] utilizes a given degra-
dation matrix for each restoration task to solve the linear inverse problem, and
GibbsDDRM [150] assumes the distortion can be modeled by a learnable blurring
kernel. However, such information is not available in offline imitation learning. To
restore demonstrations without a given degradation matrix, we utilize conditional
diffusion models to consider the relationships between the corresponding state
and action. Moreover, we introduce noise level predictors to guide the denoising
process of the diffusion models for accurate restoration. We elaborate on the
learning of these components in the following subsections.

Learning Conditional Diffusion Models: This work uses Denoising Diffu-
sion Probabilistic Models (DDPMs) [64] for data restoration. During the training
stage, DDPMs gradually add Gaussian noise to each data sample until it becomes
isotropic Gaussian, called the forward diffusion process. Then, DDPMs learn to
denoise the noise-injected sample to the original data, called the reverse diffusion
process. Given a data point zy sampled from dataset D, e.g., a state s or an action

a sampled from the demonstrations, latent variables 1, ..., zp are produced in the
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Figure 3.7: Demonstration restoration. (a) Training of conditional Diffusion
Models. We train the state diffusion model 6, using the condition of clean action a
to restore the noise-injected state s;. We employ an identical architecture for the
action diffusion model 6,, which restores the noise-injected action a; using the
clean state S. (b) Training of Noise Level predictors. To predict the level of noise
during inference, we train the state noise predictor ), given a clean action a. The

action noise predictor ¢, follows the identical architecture.

forward diffusion process, where 7' is the number of diffusion steps, and x is an
isotropic Gaussian. The diffusion model 6 learns to reverse the diffusion process
by predicting the injected noise € on the sample. The objective of DDPM can be

formulated as the following:

Lifr = EtNU(O,T),:cND [Hﬁ - Ea(OétJUo + 0€, t)HQ} ) (3.9)

where ¢ is sampled from a uniform distribution (0,7 and o; = /1 — a;2 is
a scalar representing increasing noise schedule. Once the diffusion model @ is
learned, one can sample a random noise and use the predicted noise €y to compute
the next latent variable. The above process is repeated iteratively until a clean
sample z( is generated.

To consider the correlation between states and actions, we train a pair of
conditional DDPMs for states and actions, respectively, using the filtered subset

containing clean state-action pairs D(; 4. The state diffusion model 6, aims
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Figure 3.8: Inference of demonstration restoration. Given a noisy state s’ and a
clean action @ from Dy ), we first predict the level of noise ¢* for the noisy state.
If t* is less than a predefined threshold %, then we append it to the clean subset
D(;,4 directly. Otherwise, we denoise the noisy state using the state diffusion
model 6, conditioned on the clean action and the predicted noise level. Similarly,
noisy actions in D(; -y can be restored using the action noise predictor ¢, and the

action diffusion model 6,,.

to restore states based on the corresponding actions, while the action diffusion
model 6, focuses on restoring actions based on states. The state diffusion model
6 considers the corresponding action to predict the noise-injected states. The

objective can be calculated as follows:

S A 2
Lt = Etnr(0,1),(5,6)~Dys 0 {||e — €p,(8¢,0,1)|] } 7 (3.10)

where s; = ;54 0,€ is the noise-injected state, a is the corresponding clean action,
and ¢ indicates the sampled index for the diffusion process, which can be seen as a
noise level. Similarly, we can define the objective for the action diffusion model 6,

as follows:
a A 2
Gt = Evasi(0.1) (5.0)0~Dey |ll€ = €0, (0,5, 8)]17] (3.11)

where a; = «,a + o€ is the noise-injected action, 5 is the corresponding clean

state, and ¢ is the sampled noise level.

doi:10.6342/NTU202404722



80 3. Adaptation for Objective function

Both conditional diffusion models are trained on the subset of clean pairs
D ;4 to ensure the learned models can accurately capture the correct relationships
between the states and actions. After learning the diffusion models, we can
apply the state diffusion model ¢, on the subset Dy ;) to restore the noisy states
conditioned on the corresponding clean action. Also, the action diffusion model 6,
is applied on D; . to restore the noisy actions. We discard the noisy state-action
pairs from the subset D(y /) since the polluted state and action can not provide
sufficient information for restoration.

Learning Noise Level Predictors: In the previous section, we have derived
diffusion models that can gradually denoise a sampled isotropic noise to a clean
state or action with the iterative reverse diffusion process. Our goal is to restore the
noisy states s’ in the subset Dy ;) and to restore the noisy states a’ in the subset
D(4,¢). One potential way for restoration is to directly treat the noisy states and
actions as isotropic Gaussian noises and further denoise them using the trained
diffusion model. However, the noisy states and actions are still more informative
than isotropic Gaussian noises despite being polluted by noise. To best leverage
these samples, we aim to assign a noise level ¢ for each noisy sample during the
denoising process in demonstration restoration.

To this end, we introduce a pair of noise predictors s and v, to predict the
noise levels for states and actions, respectively. Similar to the diffusion models,
the noise predictors are conditioned on the corresponding state or action. The
training objective for the state noise predictor v is to predict the correct noise
level for noise-injected states from the clean subset D; 4), which can be calculated

as follows:
A\ (12
L;fed - EtNu(OvT)v(éad)ND(§,a) |:| |t - 77bs(st7 (I)H :| ’ (312)
where s; = a;§ + o€ is the noise-injected state, and @ is the clean action to be

served as the condition. Similarly, we can learn the action noise predictor 1), by

the following equation:

a A~ 2
pred = Etatd (0,7),(8,0)~Ds.0) {||t — Ya(ay, 8)|| } ; (3.13)
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where a; = «;a + o€ is the noise-injected action, and § is the clean state to be
served as the condition.

Restoration with Diffusion Models and Noise Predictors: The restoration
of noisy states in Dy 4y and noisy actions in D; .y follows analogous approaches.
Here, we illustrate how to restore the noisy states in D(y ;) with the trained state
noise predictor 1) and the state diffusion model 6.

As depicted in Figure 3.8, we input a state-action pair sampled from Dy 5,
where the state s’ is noisy and the action a is clean as predicted in the previous
filtering stage. To restore the noisy state using the clean action, we first predict
the noise level ¢* based on the sampled state-action pair. The predicted noise level
t* indicates how much the sample deviates from the major behaviors in the noisy
demonstrations. We empirically find this measurement can help us filter samples
by setting a noise level thresholding with the predicted noise level. If the value of
t* is lower than a predefined .5, then we trust the state to be clean and directly
append the pair into the clean dataset D ; 5). Otherwise, we restore the noisy state
s’ according to the @ and ¢* with the state diffusion model and then add the restored
state with the corresponding action to the clean dataset. The noisy actions in D ; o)

can be restored following a similar procedure.

3.2.4 Experiments

In this section, we evaluate how our Diffusion-Model-Based Demonstration Restora-
tion (DMDR) benefits offline imitation learning with noisy demonstrations. We
first introduce the environmental setup for the experiments (Section 3.2.4) and
the baselines (Section 3.2.4). The experimental results (Section 3.2.4) show that
DMDR is more effective than other baselines on various continuous control tasks.
We then do the ablation studies to verify our design choice for both the filtering
stage (Section 3.2.4) and the restoration stage (Section 3.2.4). Finally, we also
show that DMDR can be applied to different imitation learning algorithms (Section
3.2.4).
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(a) FETCHPICK (b) FETCHPUSH (c) HANDROTATE (d) WALKER

Figure 3.9: Environments & Tasks. (a)-(b) FETCHPICK and FETCHPUSH: The
robot arm manipulation tasks employ a 7-DoF Fetch robotics arm to pick up/push
an object from the table and move it to a target location. (¢) HANDROTATE: This
dexterous manipulation task requires a Shadow Dexterous Hand to in-hand rotate
a block to a target orientation. (d) WALKER: These locomotion tasks require

learning agents to walk as fast as possible while maintaining their balance.

Experimental Setup

This paper focuses on offline imitation learning with noisy demonstration D, which
contains sequences of (s, a) pairs that may be polluted by noises. Since the sensors
and the control motors for states and actions are usually different, we assume states
s and actions a are polluted independently. Following [178, 179, 141], we model
the noise as a Gaussian distribution. A noise level p indicates the probability of
each state or action being polluted by the noise.

We employ the proposed framework (DMDR) in various continuous control
domains. As shown in Figure 3.9, we illustrate the environments and tasks used in

the experiments in the following:

* Robot Arm Manipulation. We leverage the FETCHPICK and FETCHPUSH
environments to represent the robot arm manipulation tasks. These tasks aim
to control a 7-DoF robot arm to interact with an object and achieve a defined
target. FETCHPICK (Figure 3.9a) requires picking up an object from the table
and raising it to a target location. On the other hand, FETCHPUSH (Figure

3.9b) requires pushing an object on the table and moving it to a target location.
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We use 10k state-action pairs provided by [152] for both FETCHPICK and
FETCHPUSH, which contains 303 and 185 trajectories, respectively. We set

the noise level p to 0.2 to create the noisy demonstrations.

* Dexterous Manipulation. We leverage the HANDROTATE [128] environ-
ment to represent a challenging Dexterous Manipulation task. The task
requires controlling a dexterous hand and in-hand rotates a block to a target
orientation (Figure 3.9¢). The environment takes 68 dimension states and
outputs 20 dimension actions, which is high-dimensional compared to the
commonly-used environments in imitation learning. We use 515 trajectories
with 20k state-action pairs produced by a SAC expert policy. We set the

noise level p to 0.4 to create the noisy demonstrations.

* Locomotion. We leverage the WALKER [180] environment to represent the
locomotion tasks. This environment requires controlling a bipedal agent to
travel toward the x-axis direction as fast as possible while maintaining the
balance (Figure 3.9d). If the agent loses its balance, e.g., the height of the
agent is too low, the episode would terminate before the maximum number
of steps is reached. We use 20 trajectories with 20k state-action pairs, which
are provided by [181]. We set the noise level p to 0.2 to create the noisy

demonstrations.

Baselines

To evaluate the effectiveness of the proposed method, we compare our DMDR
with other offline imitation learning baselines for noisy demonstrations. Under this
problem formulation, the baselines should not require environmental interactions
or additional annotations. Therefore, online methods such as [145, 157, 158, 155,

156] are not applicable and we compare our method with the following baselines:

* BC. Behavioral Cloning (BC) is a straightforward approach to offline imi-

tation learning. It learns a policy that directly maps from states to actions
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Table 3.4: Overall experiment results

Method # of policies FETCHPICK FETCHPUSH HANDROTATE WALKER
BC 1 4438% £ 11.02% 67.97% £ 4.81% 45.56% + 6.15% 4456.8 £ 1051.1
DMDR (Ours) 1 90.52% + 4.83%  79.64% + 5.30% 51.70% + 5.85% 5066.4 + 886.4
Ensemble BC 5 51.36% + 6.67%  72.25% + 3.20% 51.03% + 4.33% 5170.6 + 395.2
BCND [147] 5 52.87% + 12.71% 71.01% + 17.98% 54.97% + 4.49% 5144.8 + 739.6
Ensemble DMDR (Ours) 5 91.80% + 2.54%  82.03% + 2.87% 55.36% + 4.43% 6168.1 + 284.9

by imitating the behavior demonstrated in training data using supervised
learning. However, BC struggles to deal with noisy demonstrations since
the policy tends to overfit noisy data, making it challenging to learn the

underlying dynamics accurately.

* Ensemble BC. To mitigate the impact of noisy demonstrations, one effective
strategy is to employ ensemble techniques. Ensemble BC extends the basic
BC approach by training several policies and aggregating their outputs.
Ensemble BC reduces the bias and variance of the prediction and thus

improves the overall resilience to noise perturbation.

* BCND. Behavioral Cloning from Noisy Demonstrations (BCND) [147] aims
to learn robust policies from noisy demonstrations containing optimal and
sub-optimal behaviors. They apply ensemble policies and further design
an algorithm to assign weights for each training sample. With the derived
weights, the policies are encouraged to capture the behaviors of the major

distribution of training samples, which are assumed to be clean and optimal.

Experimental Results
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Figure 3.10: Training progress. We observe that DMDR is more robust and stable
during the training, resulting in a lower standard deviation. In contrast, the training
of BC is more easily affected by noisy samples, which can be observed on (a)

FETCHPICK and (d) WALKER.
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We compare our DMDR with baselines and show the experimental results
in Table 3.4. The results are separated into two parts: methods with a single policy
and methods that leverage the ensemble technique with multiple policies. We also
report the result of DMDR when the ensemble technique is applied (Ensemble
DMDR). We evaluate the agents with 100 episodes and five random seeds on
all tasks. We report the average and standard deviation of the success rate for
FETCHPICK, FETCHPUSH, and HANDROTATE and return for WALKER.

We observe that the proposed DMDR outperforms baselines whether the en-
semble policies are applied or not. The above results verify the effectiveness of our
demonstration filtering and restoration process. BC struggles with learning from
noisy demonstrations, which suggests that the noisy data points severely hinder
performance. By aggregating multiple BC policies, Ensemble BC improves its
performance compared to BC, and the standard deviations are lower than those
from BC in all tasks, which infers that ensemble policies are more robust to noisy
demonstrations. For BCND, it slightly outperforms Ensemble BC, especially in
HANDROTATE. However, it produces a large standard deviation in most of the
tasks since the weight-assigning mechanism is affected by the noisy samples at the
early training stage.

In addition, we illustrate the training progress of all methods in Figure 3.10.
We observe that DMDR is more robust and stable during the training, resulting in
a lower standard deviation. In contrast, BC encounters a performance drop when
the training progress is affected by the noisy samples, which can be observed on

FETCHPICK and WALKER.

Ablation Study for Demonstration Filtering

To evaluate the effectiveness of our demonstration filtering design, we ablate the
filtering part while fixing the restoration algorithm and the setting for the policy

learning. We compare the filtering approaches listed in the following:

* Random Filtering. A naive way to do filtering is to randomly label half the
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states and actions as clean independently. This baseline serves as a bottom

line for filtering methods.

¢ Autoencoder (AE). Two autoencoders are learned for states and actions,
respectively. Since autoencoders tend to capture the major behaviors of train-
ing data, samples with higher reconstruction losses are considered outliers

and labeled as noisy.

* Local Outlier Factor (LOF). LOF estimates the local deviation of a data
point with respect to its neighbors given a dataset. Specifically, we filter
samples by computing the LOF score based on k-nearest neighbors and then

identify a sample as an outlier if the score is large.

* Ours. Our method calculates the LOF scores for each data point based on
the features derived from the autoencoders. This method considers global
representations with the autoencoders and local deviations of samples with

the LOF algorithm.

The results of filtering ablation are shown in Table 3.5. We note that employing
the naive random filtering method demonstrates an improvement in success rate
alongside a reduction in variance. We hypothesize that the improvement results
from the restoration process. Even though the training data for diffusion models
and noise predictors are still noisy because of random filtering, the diffusion models
can still improve the quality of samples by restoration. The above results strengthen
the motivation of our filter-and-restore framework.

Utilizing Autoencoder (AE) or Local Outlier Factor (LOF) individually for
filtering demonstrations shows a respectable improvement. However, the autoen-
coders only capture the majority of all training samples and can only better describe
the global behaviors of the demonstrations. On the other hand, the Local Outlier
Factor (LOF) only considers local features and is unaware of global behaviors.

These restrictions hold back their ability to filter out noisy samples accurately.

doi:10.6342/NTU202404722



88 3. Adaptation for Objective function

Table 3.5: Demonstration filtering ablation study

Method # of Samples Success Rate
Noisy Data 10000 45.40% + 11.33%
Random Filtering 7505 51.20% =+ 6.80%
AE 7313 86.00% =+ 3.97%
LOF 7311 76.75% + 27.93%
Ours 7362 91.80% =+ 4.09%

In contrast, our proposed approach, which combines AE and LOF, capitalizes
on the strengths of both methods. By integrating global and local feature repre-
sentations, our method surpasses the performance of its components, leading to

superior results.

Ablation Study for Demonstration Restoring

To verify the effect of demonstration restoration and evaluate the designs of our
restoration method proposed in Section 3.2.3, we compare different strategies that
deal with samples from the noisy subsets.

We compare our method with the following baselines and variants on FETCH-

PicK and WALKER environments:

* Random forest regressor: Random forest regressor makes predictions based
on the predictions from multiple decision trees. We train the regressor using
the clean state-action pairs from D ; ;) and use the trained regressor to predict

the noisy states or actions given the corresponding clean actions or states.

* Generation: Given the diffusion models learned in the filtering stage, this
baseline directly generates states/actions based on the corresponding ac-
tions/states. We compare our restoration method with this baseline to verify

the benefits of restoring noisy samples instead of generating samples from
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Table 3.6: Demonstration restoration ablation study

FETCHPICK WALKER
Method
(Success Rate) (Return)

Random forest regressor  65.00% =+ 12.71% 255.3 +48.1

Generation 89.89% £ 5.13%  3452.6 £ 1528.8
Ours w/o predictor 88.20% +4.82%  2702.9 + 1281.3
Ours W/0 tihres 89.00% + 4.00%  4261.4 +857.2
Ours 90.52% + 4.83%  5066.4 + 886.4

isotropic Gaussian noises directly.

* Ours w/o predictor: To verify the effectiveness of our noise level predictors,
we apply restoration with a fixed noise level ¢ for the diffusion model. Given
that the total number of diffusion steps 7" is 100, we set the fixed noise levels

as 50.

* Ours wW/o tyres: As described in Section 3.2.3, the predicted noise level t*
from predictors can be used to filter noisy demonstrations by thresholding.
To evaluate the above design, we employ a variant of our method that does

not apply thresholding and directly restores the noisy samples based on ¢*.

* Ours: Our restoration method utilizes the predicted noise predictors to
predict the noise level for each noisy sample and further sets a threshold s

to filter samples with smaller noise levels before restoring them.

The results of restoration ablation are shown in Table 3.6. The random forest
regressor is outperformed by other diffusion-model-based restoration methods,
which verifies the effectiveness of using diffusion models for recovering data. We
observe that all diffusion-model-based methods perform similarly on FETCHPICK,
including the augmentation with diffusion models baseline. The results infer that a

well-trained diffusion model can directly generate informative training data from
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noises in this environment. Therefore, all of the diffusion-model-based methods
perform well regardless of whether the noise predictors are included.

On the other hand, our restoration method outperforms all baselines and variants
in WALKER. The results indicate that generating data from noise and restoring data
without noise predictors can not restore the noisy sample effectively and highlight

the importance of utilizing noise predictors and the thresholding method.

Imitation Learning Algorithms with DMDR

Using DMDR to restore demonstrations not only benefits policy learning of BC but
also other imitation learning algorithms. Here, we evaluate three offline imitation
learning algorithms on the FETCHPICK environment to compare the performance

when using noisy demonstrations and the demonstrations restored by our DMDR.

* BC. Behavioral cloning (BC) is a straightforward baseline that learns a
policy to map states to actions directly using the mean square error (MSE)

for training.

* Implicit BC [100] utilizes an energy-based model (EBM) to train an implicit
behavior-cloning policy, which models the expert policy. The training of the

energy-based model employs the InfoNCE loss, as described in [113].

* Diffusion Policy Diffusion Policy [109, 110] learn a conditional diffusion
model using diffusion loss to predict actions given the observed states. Dur-
ing inference, the diffusion model takes the current state as a condition and

gradually denoises the action from noise with the reverse diffusion process.

As shown in Table 3.7, all algorithms struggle to learn directly from the noisy
demonstrations but can significantly improve using the restored demonstrations
from our DMDR, while Implicit BC and Diffusion Policy are even more sensitive to
noisy demonstrations than BC. DMDR benefits these imitation learning algorithms

by restoring the noisy demonstrations and results in superior performances with
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Table 3.7: Imitation Learning Algorithms with DMDR

Algorithm Noisy Demo. Restored Demo.

BC 44.38% £ 11.02% 90.52% =+ 4.83%
Implicit BC 3.00% £ 3.24%  44.56% =+ 6.98%
Diffusion Policy = 25.80% 4+ 2.59%  97.40% + 2.19%

more stable training progressing (lower standard deviation), enabling broader

applications of real-world scenarios.

3.2.5 Discussion

In this paper, we propose an offline imitation learning framework (DMDR) that
enables imitation learning methods to learn from noisy demonstrations. Our DMDR
first filters clean samples from the demonstrations and then learn diffusion models
to restore the noisy samples. The experiments show that DMDR outperforms
baselines for learning from noisy demonstrations in various tasks, including robot
arm manipulation, dexterous manipulation, and locomotion. Ablation studies
investigate the effect of the filtering method and restoration method. We also show
that our DMDR can be applied to various imitation learning algorithms to verify
the effectiveness of our proposed method.

In this paper, we formulate the noises as Gaussian distributions. While the
assumption is widely adopted in previous works, it may restrict the effectiveness of
DMDR when the noises can not be easily formulated by Gaussian distributions. A
valuable future direction is to address various noise types caused by environmental
errors, e.g., sensor errors and motor jitter. Currently, DMDR is designed for offline
imitation learning. To further improve DMDR by incorporating a limited amount

of online interactions could also be an interesting future extension.
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Chapter 4

Conclusion and Future Direction

This thesis aims to tackle the challenges of constructing an adaptive machine-
learning pipeline for computer vision and robotic applications. To address data
adaptation, it introduces feature disentanglement and meta-learning techniques to
handle unseen target domains effectively. For model adaptation, the thesis explores
feature disentanglement and fine-tuning methods, incorporating human feedback
to enable controllable image generation. Additionally, it investigates the use of
diffusion models with denoising objectives to enhance adaptability in robotic tasks.
In summary, this thesis approaches the development of an adaptive machine-
learning pipeline from three key perspectives, i.e., data, models, and objectives,
proposing innovative solutions to meet the demands of real-world applications.
As a future direction, the techniques introduced in this thesis hold significant
potential for advancing automatic control. In real-world scenarios, robotic agents
often encounter data from unseen domains. To address challenging control tasks,
these agents can utilize pretrained models, such as vision-language models (VLMs)
or large-language models (LLMs), to enhance their understanding of task descrip-
tions or input images from sensors. The adaptation methods proposed in this thesis
can contribute to the future development of automatic robot control, which may

benefit humans and society substantially.
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