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中文摘要

雖然AI模型已在各種應用中展現出卓越的效能，但在未知的真實場景中使

用這些模型仍然是一項重大挑戰。本論文致力於開發一個機器學習架構，

透過針對資料、模型與損失函數三個關鍵項目進行改進，以提升模型在這

類環境中的適應能力。

一個典型的機器學習架構包含資料、神經網路模型，以及引導模型使用

資料進行優化的損失函數。然而，在真實世界中，每一個項目都可能和理

想的使用條件不同，因而需要進行適應才能有效運用這些模型。

在資料方面，預先收集的訓練樣本通常與實際使用時觀察到的資料分佈

不同，因此需要使用一些技術來彌合這一差距。在模型方面，由於模型的

訓練通常需要大量時間與計算資源，將預訓練模型適應於新任務可以顯著

擴展其在不同領域中的應用能力。在損失函數方面，針對特定的應用學習

損失函數，可以使模型更有效地利用該函數的優勢。

本論文聚焦於電腦視覺與機器人應用，通過探討特徵解耦、元學習、模

型微調以及模仿學習等技術，提出針對上述挑戰的適應性解決方案。

關鍵詞：深度學習、電腦視覺、機器人學習、異常檢測、圖像生成、遷

移學習、模仿學習
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Abstract

While AI models have demonstrated remarkable effectiveness across various appli-

cations, deploying them in unstructured real-world scenarios remains a significant

challenge. This thesis focuses on developing a machine learning pipeline designed

to enhance adaptability in such environments by addressing three key dimensions:

data, models, and learning objectives.

A typical machine learning pipeline consists of a dataset, a neural network

model, and a learning objective that guides the model’s optimization using the data.

However, in real-world scenarios, each of these components may deviate from

ideal conditions, necessitating adaptation for effective application.

For data, the distribution of pre-collected training samples often differs from

the distribution encountered during inference, requiring strategies to bridge this

gap. For models, since the training of a model typically requires substantial time

and computational resources, adapting a pretrained model to new tasks significantly

expands its applicability across diverse domains. For learning objectives, adapting

the objective function to a particular application allows the model to leverage the

advantages of the chosen objective more effectively.

This thesis focuses on computer vision and robotic applications and proposes

adaptive solutions for the above challenges by exploring techniques such as feature

disentanglement, meta-learning, model fine-tuning, and imitation learning.

Keywords: deep learning, computer vision, robot learning, anomaly detection,

image generation, transfer learning, imitation learning
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Chapter 1

Adaption for Input Data

1.1 Domain-Generalized Textured Surface Anomaly

Detection

1.1.1 Introduction

Textured surface anomaly detection has been a practical yet challenging task,

which requires one to determine abnormal data from the normal ones. When it

comes to real-world problems, e.g., quality control of industrial products, abnormal

samples are generally difficult to collect. Therefore, existing solutions focus on

training models that identify data that deviate from the learned distribution of

normality as an anomaly. With the recent advances of deep learning, a popular

model choice is the autoencoder [1, 2], which trains to recover normal data samples

and thus performs anomaly detection by the associated reconstruction loss. To

avoid the trained autoencoder from recovering abnormal samples as well, [3, 4]

propose learning memory banks to regularize the autoencoder, ensuring the data is

described by representative patterns. Despite the success of these reconstruction-

based models, anomaly detection in unseen data domains is still difficult to perform.

Moreover, one cannot expect the derived distribution of normality to be applicable

to different domains for anomaly detection.

1
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Figure 1.1: Illustration of domain-generalized anomaly detection. By observing

normal and abnormal data in multiple source domains, the learned model needs to

generalize to perform anomaly detection in an unseen target domain where only a

small amount of normal images are available during testing.

Learning models from a single or multiple source domains, domain generaliza-

tion [5, 6, 7] aims to leverage this model to unseen target domains for solving the

same learning task. A straightforward yet naive baseline approach is to aggregate

training samples from all source domains to learn a single model. To further

improve the generalization capability, [8] designs an episodic learning procedure

that simulates the domain shift observed during training for deriving a domain-

generalized model. [6] argues that a properly learned domain generalization model

would discover the image’s intrinsic properties, which are irrelevant to the data

domains. Thus, self-supervised auxiliary learning tasks are introduced to prompt

the learning of their models.

Although the recent success of domain generalization has benefited a wide

range of computer vision applications, it would not be feasible for anomaly detec-

tion if no normal data is presented in the domain of interest for a standard reference

of normality. Thus, if one expects to address such tasks in an unseen target domain,

at least a number of normal data in that domain needs to be observed during testing.
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In other words, existing domain generalization methods like [8, 6, 5, 7] cannot be

easily applied for solving the above problem.

To address the above concerns and challenges, we tackle the task of domain-

generalized textured surface anomaly detection in this paper. That is, with col-

lection of training normal and abnormal data from existing source domains, i.e.,

textured surface, we aim to learn a model which can be generalized to detect

abnormal data in unseen target domain of interest. The problem definition and

the idea of our work can be seen in Figure 1.1. It is worth noting that, during

the inference stage, only a small amount of normal samples are available for the

target domain of interest, which follows the settings of most anomaly detection

approaches [1, 3, 4, 9, 10]. However, without the requirement of model fine-tuning,

the trained model can be directly applied to such data domains which are not seen

during training.

To highlight the technical novelty of our work, we introduce a meta-comparer

module that learns to compare textured surface data for anomaly detection across

multiple source domains. We take the normal image data as the reference images

and perform patch-level co-attention on the query-reference image pairs during

training. With only image-level labels observed (i.e., normal and abnormal data),

the above co-attention mechanism guides the meta-comparer to identify the nor-

mality of the query input, resulting in both image-level and patch-level anomaly

detection. Since our model is trained to compare image pairs across different

source domains in a meta-learning fashion, the learned model is shown to exhibit

promising generalization ability for unseen data domains.

Our contributions can be summarized as follows:

• We address the task of domain-generalized textured surface anomaly detec-

tion. Given a number of normal (reference) images in unseen target domains,

our model is able to perform anomaly detection accordingly.

• We propose a meta-learning framework that learns to compare images in a

query-reference pair across multiple source domains. Therefore, our learned
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Figure 1.2: Overview of our proposed model, which consists of a feature extractor

ϕ, a co-attention module, and a meta-comparer. The feature extractor aims to derive

multi-scale patch-based features for both query and reference images. The co-

attention module observes patches from such query-reference image pairs, guiding

the meta-comparer to perform anomaly detection and localization.

model is able to generalize to unseen image domains for identifying abnormal

images.

• With only image-level labels observed, a co-attention mechanism across

query-reference image pairs is introduced, which guides our meta-comparer

to realize not only image-level anomaly detection but also patch-level anomaly

localization.

1.1.2 Method

For the sake of clarification, we first define the notations and setting considered in

this paper. We observe image data from M source domains D = [D1, ..., DM ] at

the training stage. Each Dm contains image-label pairs (xn
m, y

n
m), in which yn

m is

either 0 or 1 representing normal or abnormal labels. Note that we assume that only

image-level labels are available during training, i.e., no pixel-level anomaly ground

truth can be observed. Our goal is to train a model using D in a meta-learning

manner, and have this model generalized to perform anomaly detection on an

unseen target domain DM+1 where only a number of normal images are available

during testing.
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The overview of our proposed framework is depicted in Figure 1.2. From

this figure, we see that our learning model contains three components: a feature

extractor, a co-attention module, and a meta-comparer. The feature extractor

ϕ aims to derive multi-scale features from query and reference (i.e., normal)

images. The co-attention module observes query-reference image pairs, resulting

in proper patch-level supervision, which guides the meta-comparer for producing

the resulting anomaly score. By sampling different source domains Dm during the

training stage, our meta-comparer learns to compare query-reference image data in

a meta-learning fashion. In the following sections, we will detail the functionality

and design of each module.

Multi-Scale Feature Extraction

In our proposed framework, the feature extractor is expected to extract the features

from the query image IQ and the reference image IR from a domain of interest.

We note that, while the query images are with labels y = 1 or 0 during training,

we only consider the normal one as the reference for both training (from multiple

source domains) and testing (on unseen target domains). Following techniques

utilized for object detection (e.g., [11], [12]), we consider multi-scale features from

image data for aiming at not only to recognize the abnormal query input, but also

for the purpose of identifying the defect regions. More precisely, we apply the

bi-directional feature pyramid network (BiFPN) proposed by [12] to produce a

feature pyramid with multiple resolutions.

Take the query image IQ as an example, the feature extractor ϕ extracts a

feature pyramid containing L feature maps with different resolutions/scales. The

associated multi-scale features are denoted as ϕ1(IQ), ϕ2(IQ), ..., ϕL(IQ), where

ϕi(IQ) represents the query feature at scale level i. Let NQ denotes the number of

patches sampled from ϕi(IQ), we thus have a set of patch-based representations

Qi = {q1
i , q

2
i , ..., q

NQ

i } for the query image IQ at scale level i. Similarly, we have

Ri = {r1
i , r

2
i , ..., r

NR
i } as the set of patch-based representations for the reference
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image IR at scale level i, where NR denotes the number of sampled patches.

For the detailed process of the multi-scale feature extraction, please refer to the

supplementary materials.

Image-Level Anomaly Detection

With patch features extracted from the query and reference images, we now explain

how we train our feature extractor and meta-comparer for performing image-level

anomaly detection. For the j-th query patch qj
i at scale level i, the meta comparer

is utilized to calculate its largest query-reference anomaly score sj
i as:

sj
i = max

k=[1,...,NR]
MLP([qj

i , r
k
i ]), (1.1)

where MLP denotes a multilayer perceptron module with Sigmoid activation

functions deployed. It can be expected that, if the query image IQ is abnormal, at

least one query patch qj
i would remarkably deviate from the reference patches, and

thus the value of the corresponding sj
i would be close to 1.

With the above observation, we define the image-level classification loss (under

supervision of y) as follows:

Lcls = −
L∑

i=1
y log(max

j
(sj

i )) + (1 − y) log(1 − max
j

(sj
i )). (1.2)

In the above equation, max
j

(sj
i ) calculates and outputs the largest anomaly score

from the query patches at scale i, which sums over all L scales for the resulting

loss output.

Patch-level Anomaly Localization

In addition to image-level anomaly detection, the introduced co-attention module

in our framework of Figure 1.2 allows us to perform the same task at patch level.

Therefore, localization of abnormal surface regions can be achieved via patch-level

anomaly detection with only image-level label y required.
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Co-attention on query-reference image pairs: The co-attention module first

maps the query-reference patch pairs (i.e., qj
i and rk

i ) at scale i into a shared

latent space, followed by the calculation of cosine similarity between them. This

produces a co-attention matrix Ai ∈ RNQ×NR , which can viewed as an affinity

matrix of Qi and Ri at scale i, reflecting the similarity between the associated

patch pairs.

Similar to image-level anomaly detection, we observe that if the query image

IQ is abnormal, then there would exist at least one query patch qj
i which would be

distinct from the reference ones rk
i . That is, if y = 1 for the query, we expect at

least one query-reference patch pair in Ai resulting in a low similarity score. On

the other hand, if y = 0 for the query, every query-reference pair is expected to

produce a large similarity score. Thus, by normalizing the attention matrix Ai to

[0, 1], we introduce and calculate the following attention loss Latt across image

scales,

Latt = −
L∑

i=1
y log(1 − min

j,k
(aj,k

i )) + (1 − y) log(min
j,k

(aj,k
i )), (1.3)

where min
j,k

(aj,k
i ) denotes the query-reference patch pair at scale iwith the minimum

similarity score. Note that j and k are the patch indices for the query and reference

images, respectively.

With the above co-attention mechanism, we calculate the co-attention score for

qj
i as aj

i = max
k

(aj,k
i ). In the formula, aj

i calculates the score between qj
i and every

reference patch, and outputs the score with the most similar reference patch as the

attention guidance. It can be expected that, if the query patch qj
i is abnormal, such

aj
i scores would be close to 0 (and vice versa). Therefore, the co-attention score aj

i

can be a patch-level guidance for the query patch qj
i .

From patch-level co-attention to anomaly localization: In our proposed frame-

work, patch-level anomaly detection is achieved by sampling pairs of patches qu
i , q

v
i

from a query Qi at scale i, followed by the meta-comparer to produce their patch-

level anomaly scores su
i , s

v
i under the supervision of y and the guidance of the
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aforementioned co-attention outputs. Inspired by [13], we introduce a patch-level

anomaly ranking loss Lrank for the sampled query patch pairs as follows,

Lrank =
L∑

i=1

∑
qu

i ,qv
i ∈Qi

wuv
i max(0, 1 − σ(su

i − sv
i )),

where wuv
i = λ(exp(|au

i − av
i |) − 1),

and σ = −sgn(au
i − av

i ).

(1.4)

Note that λ is a scaling factor, and sgn indicates the sign function that extracts the

sign of a real number. From equation (1.4), we see if both qu
i , q

v
i are the normal

patches, both co-attention scores au
i and av

i would be large, and the corresponding

wuv
i is close to 0. This would result in the ranking loss Lrank close to 0 as well.

Similarly, if both are the abnormal ones, we have similar yet small au
i and av

i values,

which produces small wuv
i regularizing the ranking loss as well. Finally, and most

importantly, if only one of qu
i and qv

i is abnormal, we would observe very different

co-attention score a and thus produce a large wuv
i . If the co-attention score au

i

is less than av
i , the corresponding anomaly score su

i should be larger than sv
i . To

ensure this property, the variable σ verifies the order of su
i and sv

i according to their

corresponding co-attention score a. With the goal of anomaly localization, the

above objective allows us to automatically identify the query patch that deviates

not only from the reference ones but also from the remaining ones in the query.

Pipeline

With the introduced image-level detection and patch-level localization discussed

above, we now explain how our proposed framework is trained to exhibit additional

domain generalization ability. During training, by sampling query-reference image

pairs (IQ, IR) from multiple source domains, we enforce the meta-comparer and the

co-attention module for learning to compare image data by applying equation (1.2)

and equation (1.3), disregard of the data domain distributions. Moreover, by

sampling different query patch pairs qu
i and qv

i in Equation (1.4), our meta-comparer

further performs the above learn-to-compare scheme in the patch level. Therefore,
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our model is expected to learn a generalized capability of comparing image data.

The full objectives of our model and the detailed training process are summarized

in the Algorithm A of our supplementary materials.

As for the inference stage, we apply our model to an unseen target domain

DM+1 with a small amount of normal samples are presented.

We first calculate the patch-level anomaly score sj
i for each extracted query

patch qj
i . If there exists a patch with defect regions at any scale, the query image

is considered to be abnormal. Therefore, the image-level prediction ŷ(IQ) for IQ

can be calculated by simply taking the maximum anomaly scores among all query

patches qj
i :

ŷ(IQ) = max({sj
i }) ∀i, j. (1.5)

If localization of defect regions would be needed, we can calculate the anomaly

score for each pixel p in IQ according to patch-level anomaly scores across multiple

scale levels. This is realized by taking the maximum anomaly scores among all

query patches containing pixel p:

ŷ(p) = max({sj
i }) ∀i, j such that p ∈ qj

i . (1.6)

1.1.3 Experiments

We evaluate our proposed framework on MVTec-AD [14] and BTAD [15] datasets.

The MVTec-AD dataset consists of 3,629/1,725 training/testing images from 5

texture and 10 object products. In this paper, we consider the texture products of

MVTec-AD for textured surface anomaly detection, i.e., Carpet, Grid, Leather,

Tile, and Wood, as shown in Figure 1.5. For these 5 texture types, we follow recent

domain generalization approaches [8] and [6] and do leave-one-out evaluation, in

which only one texture is selected at a time as the target domain at the inference

stage, while the remaining four textures are used as the source domains during

training. Following previous works [3, 4, 15, 16], we evaluate the models using

the area under the receiver operating characteristic curve (AUC).
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Figure 1.3: Average image-level AUC for anomaly detection over the 5 textures of

MVTec-AD, with different percentages of normal reference images from the target

domain.

Figure 1.4: Average pixel-level AUC for anomaly localization over the 5 textures

of MVTec-AD, with different percentage of normal reference images from the

target domain.
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Carpet Grid Leather Tile Wood Avg.

AGG [8] 0.875 0.628 0.981 0.886 0.852 0.845

Epi-FRC [8] 0.916 0.640 0.995 0.947 0.909 0.881

EISNet [6] 0.991 0.662 1.000 0.850 0.986 0.898

AGG+ 0.891 0.608 0.992 0.912 0.865 0.854

Epi-FRC+ 0.916 0.725 1.000 0.951 0.941 0.907

EISNet+ 0.982 0.728 1.000 0.858 0.979 0.909

Ours 0.943 0.730 1.000 0.956 0.962 0.918

Table 1.1: Domain-generalized anomaly detection on MVTev-AD with the leave-

one-domain-out setting in terms of the average image-level AUC. Note that the

+ notation denotes the modified versions for existing DG approaches (i.e., with

learn-to-compare scheme introduced).

As for the BTAD dataset, it consists of 2,250/291 normal/abnormal images

from 3 industrial products. The image data from this dataset would serve as the

(unseen) target domains for testing in experiments for the cross-dataset settings,

which would further verify the effectiveness of our propose method for domain-

generalized anomaly detection. The implementation details and the results of the

cross-dataset experiments are demonstrated in the supplementary materials.

Quantitative Results

In our experiments, we compare our model with a number of recent anomaly

detection (AD) and domain generalization (DG) approaches. For fair comparisons,

we adopt the same pre-trained ResNet-18 feature extractor for all the methods

considered. Moreover, to comply with our domain-generalized anomaly detection

setting, we allow AD and DG methods to take normal image data from the target

domain as additional inputs during the inference stage as well.

Comparisons to existing AD Approaches: We compare our model AD ap-

proaches, including an autoencoder baseline [3] as well as two state-of-the-art
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methods of MemAE [3] and TrustMAE [4]. We follow the officially-released code

and the instruction presented in the paper to implement the above methods. A

common limitation of existing AD approaches is that a sufficient amount of training

data from the domain of interest would be needed. As noted in previous sections,

existing anomaly detection approaches use all the available normal images from

the target domain for training. On the other hand, our model does not require any

normal image data in the target domain for training, and only observes such data

as references during inference. We compare our method to these AD approaches

on MVTec-AD with same amount of target normal samples are observed. With

the aforementioned leave-one-domain-out setting, we control the percentage of

the amount of target normal samples and compare the average image-level AUC

for anomaly detection and pixel-level AUC for anomaly localization in Figure 1.3

and Figure 1.4, respectively. As can be seen from these two figures, existing

AD approaches required a sufficient amount of normal training data in the target

domain (e.g., above 60 or 70% of the target-domain normal data available) to

achieve satisfactory performances, while our method consistently outperformed

such methods especially even with only 10% (i.e., about 25 images) of such data

were observed. This is expected since our proposed model only utilizes the target

normal samples as reference during inference. Therefore, the performance of our

method is not sensitive to the amount of such data, which would be preferable for

practical uses.

Compare with existing DG Approaches: As for recent DG approaches, we

consider a baseline of simple aggregation of AGG [8], and two state-of-the-art

methods of Epi-FCR [8] and EISNet [6] for comparisons. We note that, existing

DG models generally make prediction solely based on the query image, not in the

learn-to-compare fashion as ours does. Thus, for fair comparison, we additionally

modify the above DG approaches to take query-reference pairs as training inputs,

and such modified versions are denoted as + in our results presented in Table 1.1.

We also note that, for fair comparisons, all target-domain normal reference images
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Figure 1.5: Visualization of anomaly localization of our method on MVTec-AD.

The top row shows input abnormal images, the middle row indicates the ground

truth defect regions, and the bottom row shows our anomaly localization results.

are utilized for all DG methods and ours in the experiments.

From the results listed in Table 1.1, we see that our method performed fa-

vorably against existing DG approaches (for both the original and the modified

learn-to-compare versions) over all 5 texture categories in terms of the average

AUC. It is interesting to point out that, from the results shown in this table, the

modified versions of recent DG approaches (i.e., with learn-to-compare mechanism

introduced) were shown to produce improved performances when comparing to

their original versions. This suggests that by a properly designed learn-to-compare

scheme as ours is, the anomaly detection model can be expected to generalize

to unseen target domains. It can be seen that our model outperforms all existing

DG approaches by a large margin. It is expected since our model explores the

relationships between patch features for detecting sophisticated defects, while the

above methods only consider image-level features for anomaly detection.

Visualization of Anomaly Detection

As discussed in Section 2, our proposed model not only performs anomaly detection

but also exhibits abilities in identifying abnormal regions with only image-level

labels observed during training. We show the visualization results for anomaly
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Carpet Grid Leather Tile Wood

Carpet 0 4.424 1.34 1.763 1.526

Grid 4.424 0 3.966 4.646 4.409

Leather 1.34 3.966 0 1.916 1.601

Tile 1.763 4.646 1.916 0 2.032

Wood 1.526 4.409 1.601 2.032 0

Average 1.811 3.489 1.765 2.071 1.914

Table 1.2: FID scores between each data domain pair in MVTec-AD, which imply

the difficulty expected for domain-generalized anomaly detection.

localization in Figure 1.5. The top row of this figure shows input images containing

defects; the middle row are the ground truth regions of defects (annotated in red);

the bottom row shows the anomaly localization results predicted by our model. It

can be seen that, from the example results shown in this figure, our model is able

to accurately localize either small defects (in Carpet and Wood) or large defects

(in Tile). It is also worth noting that, existing AD or DG approaches cannot easily

address such anomaly localization without proper pixel-level guidance.

Further Analysis and Remarks

To further verify the capability and point out the limitation of our domain general-

ization method, we quantitatively assess the domain differences between different

texture categories from MVTec-AD, reflecting the expected DG difficulty for the

associated target domain. To analyze the above issue, we apply the Fréchet Incep-

tion Distance (FID) score introduced by [17] to calculate the differences between

each texture/domain pair and list the results in Table 1.2.

From Table 1.2, we see that the Grid texture generally has larger FID scores

(average 3.489) than those of other texture types, suggesting that the distribution

of Grid deviates more drastically from those of other texture category data. This

observation is consistent with the AUC results shown in Table 1.1, where all DG

methods (including ours) did not report comparable performances when Grid was



doi:10.6342/NTU202404722

1.1. Domain-Generalized Textured Surface Anomaly Detection 15

the unseen target domain of interest. On the other hand, since the average FID of

Leather is the smallest, the knowledge learned by the model from other source

domains is expected to generalize data in this domain, which also explains why all

DG methods reported the highest AUC performances in Table 1.1. In other words,

while we claim that our model can be generalized to an unseen target domain for

anomaly detection, the performance drop would be expected if the target domain

data distribution were very different from those of source domain data.

1.1.4 Conclusion

In this paper, we tackle the task of domain-generalized anomaly detection. With

only image-level labels observed for multiple source domains, our model learns

to compare images in query-reference pairs across the above data domains during

training. With the co-attention mechanism introduced, our model learns to com-

pare and identify abnormal image data and the associated defect regions, and it is

shown to achieve promising performances on anomaly detection and localization

for unseen target domain data.
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Chapter 2

Adaption for Pretrained Models

2.1 Representation Decomposition for Image Manip-

ulation and Beyond

2.1.1 Introduction

Recent developments of Generative Adversarial Network (GAN) [18] models

result in promising progress and achievements in image generation. In order to

produce image outputs with desirable attributes (e.g., gender, expression, etc.),

feature disentanglement aims at decomposing the above latent representation

into distinct parts, each corresponding to particular properties. Representation

disentanglement [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] aims at learning

an interpretable representation from image variants, which can be realized in

unsupervised or supervised settings. For example, with supervision of labeled

data, AC-GAN [20] factorizes representations into disjoint parts describing visual

content and attribute information, respectively (e.g., image [30], text [31, 32])

during training. On the other hand, if training data are unlabeled, infoGAN [19]

performs representation disentanglement by maximizing the mutual information

between latent variables and data variation.

Despite promising performances, these works are not able to be directly applied

17
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on existing/pre-trained generative models. In other words, their disentanglement

mechanisms must be determined and trained in advance. More specifically, their

need to decide on image attributes to be disentangled beforehand makes their

feature disentanglement less flexible. If the attributes of interest are changed, the

above generative models need to be trained from scratch again. Moreover, with the

scale of generative models growing, training of state-of-the-art generative models

becomes very time and resource-consuming.

Instead of explicitly decomposing latent representation into disjoint parts, we

propose a unique decomposition-GAN (dec-GAN) for performing feature disen-

tanglement. Our disentanglement mechanism focuses on extracting attributes of

interest (e.g., pose, expression, etc.) from latent representation, while the generator

is fixed. Depending on the attribute of interest, dec-GAN is guided by an attribute

classifier trained to distinguish the attribute. Together with image recovery ob-

jectives, dec-GAN decomposes visual features from a joint latent representation

into separate ones associated with content and attribute of interest. While recent

works like [33] and [34] deal with the similar task that learns disentangled fea-

tures based on existing generative models, both of their methods are not able to

manipulate particular attributes of interest when taking images as input. On the

other hand, with the above disentangled features, our dec-GAN is able to utilize

existing generative models for describing each type of disentangled features, which

allows improved and interpretable feature representations for image manipulation,

along with additional flexibility in determining the attributes of interest after the

generator is trained.

We now highlight the contributions of work as follows:

• We propose a novel learning scheme for representation disentanglement,

which uniquely decomposes features of existing GAN-based models into

interpretable representations.

• Our learning framework does not require pre-determined or disjoint latent

representations to describe attributes in advance and thus exhibits additional
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Figure 2.1: Overview and architecture of our Decomposition-GAN (dec-GAN),

which consists of content encoder Ec, attribute encoder Ea, and an auxiliary

guidance attribute classifier C, while generator G is fixed. Note that our dec-GAN

decomposes latent features z into separate representations (instead of disjoint ones),

i.e., z = zc + za. Note that G(zc, z̃a), G(zc, za) and G(z̃c, za) indicate the image

outputs synthesized from pairs of the associated content and attribute features.

flexibility in determining the attributes of interest.

• Our experiments confirm that our model successfully decomposes latent

features derived by existing GANs for image manipulation and classification.

2.1.2 Decomposition-GAN for Disentanglement

We propose decomposition-GAN (dec-GAN) for representation disentanglement.

As illustrated in Figure 2.1, our dec-GAN decomposes the latent code z into

content code zc and attribute code za while satisfying z = zc + za. In other words,

based on existing latent feature z, our goal is to decompose it into content and

attribute representations zc and za. We utilize two separate encoders Ec and Ea

for extracting zc and za, respectively. The reconstruction output is denoted as

G(zc, za) = G(z|z = zc + za). It is worth noting that, as verified in Section 2.1.3,

our dec-GAN can utilize existing state-of-the-art generative models.
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Attribute Guidance for Disentanglement

In our dec-GAN, we first utilize the idea of data recovery to encourage generated

images to be sufficiently realistic. For this reconstruction loss, we consider the L1

distance between the reconstructed and input images:

Lrec = |G(zc, za) − x|. (2.1)

Following VAE-GAN [35] and DRIT [36], we fit the distributions of en-

coded content and attribute features to normal distributions, which allow im-

proved/continuous data representation ability. This can be achieved by minimizing

the Kullback–Leibler divergence (KLD) between each distribution and N (0, 1).

However, since the disentangled content and attribute features describe distinct

information, we do not expect them to fit the same normal distribution. Therefore,

we calculate the KLD loss for each feature as follows,

LKL,c = E[KL(P (z′
c)||N (0, 1))], zc = Efc

c (z′
c), (2.2)

LKL,a = E[KL(P (z′
a)||N (0, 1))], za = Efc

a (z′
a), (2.3)

where Efc
c denotes the final fully connected layer of content encoder Ec, and Efc

a

denotes the final fully connected layer of attribute encoder Ea.

To ensure the encoded zc and za describing content and attribute information,

respectively, we apply a classifier C pre-trained on the attribute of interest to guide

the learning of Ea. Thus, this guided loss is calculated as:

Lguide = |C(x) − C(G(z̃c, za))|, (2.4)

where C(·) indicates the classifier. We note that, z̃c denotes a randomly sampled

content feature, z̃ is sampled from N (0, 1) and then is passed through the final

fully connected layer of Ec. Thus, we have z̃c = Efc
c (z̃), and the image with

identical attribute but random content can be produced as G(z̃c, za).

From (2.4), we see that the enforcement of classification output similarity

between an input image x and a synthesized one with the same za yet with a
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random content z̃c, would ensure our Ec and Ea to extract attribute-invariant and

attribute-dependent representations, respectively. That is, the deployment of the

classifier C(·) in Fig. 2.1 would guide the attribute encoder Ea to extract attribute-

dependent information by equation (2.4). With equation (2.1) ensuring the quality

of reconstruction, attribute-invariant information would be encoded by content

encoder Ec for fair reconstruction.

Enforcing Content and Attribute Consistency

With the above guidance of the attribute classifier and the use of generative models,

we have Ea extract latent attribute features. With this classifier to be replaced by

those pre-trained on preferable attributes of interests, one can easily extend the

above architecture to disentangle the corresponding attributes. To further ensure

our decomposed zc and za from z contain only content and attribute information,

respectively, we advance feature consistency losses during the training of our dec-

GAN. This is achieved by minimizing the content and attribute feature consistency

loss defined as follows:

Lconst
c = |Ec(G(zc, z̃a)) − zc|, (2.5)

Lconst
a = |Ea(G(z̃c, za)) − za|. (2.6)

As illustrated in Figure 2.1, G(zc, z̃a) indicates the synthesized image with the

same content as that of input x but with different attributes z̃a = Efc
a (z̃). Similarly,

we have G(z̃c, za) denote the generated image with the same attributes as those of

x but with different content information via z̃c. By observing the above feature

consistency, both Ec and Ea would extract associated content and attribute features,

realizing the decomposition of z into zc and za, respectively.

2.1.3 Experiment

We consider image datasets of MNIST [37] and CMU Multi-PIE [38] for our

experiments. The former consists of 60,000/10,000 training/test digit images of 10
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classes, while the latter contains face images with multiple viewpoint, illumina-

tion and expression variations. We only use a subset of CMU Multi-PIE with 5

viewpoints and smiling expression variation, which consists of 68,810 images.

For the generator to be decomposed, since our proposed architecture does not

limit the use of particular GAN models, we first follow the backbone of VAE-

GAN [35]. In addition, we consider a second generative model with a deeper

backbone [36] and refer Res-GAN to this generative model. The encoder and

the generator of Res-GAN consist of convolution layers and residual blocks. For

the detail of the architecture of VAE-GAN and Res-GAN, please refer to the

supplementary material. For Ec and Ea in our dec-GAN, we simply utilize the

same encoder structure of the model to be decomposed.

Image Generation and Manipulation

MNIST: For MNIST, the classifier C is pre-trained to identify the digit categories,

which are viewed as the attributes, while the visual appearance, like stroke thickness

or angle, is used as the content features. As shown in Figure 2.2, we demonstrate

our image generation results using different pairs of content and attribute features.

The first row in Figure 2.2 shows input image pairs, and the second row depicts

reconstructed outputs using derived zc and za features. Image outputs by swapping

zc and za are shown in the third row. From this row, we see that the synthesized

image would preserve the same content as those in the first two rows, while the

attribute (digit category) would match the other one in the input image pair. This

confirms the effectiveness of our dec-GAN in disentangling content and attribute

features, while the latter is guided by a digit classifier in this case. To further verify

z, zc and za capture different visual information, we conduct t-SNE visualization

on such features using MNIST.

CMU Multi-PIE:

We take both VAE-GAN and Res-GAN as the backbone of our dec-GAN, and

consider pose and expression (smile) as two distinct attributes of interest. We
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Figure 2.2: Image generation via attribute swapping on MNIST. Note that x

indicates the input image, with the outputs G produced by the associated zc and za.

demonstrate image generation results when taking pose categories as attributes of

interest in Figure 2.3(a). The first row in Figure 2.3(a) shows input facial image

pairs, and the second row depicts reconstructed image outputs using derived zc and

za. Image outputs by swapping zc and za are shown in the third row. Comparing

this row and the first two rows, we see that the manipulated facial images remained

the same identity, with pose information altered and matched to the other one in

the input image pair. Compared to discrete categorical attributes in MNIST, this

confirms that our dec-GAN is able to handle continuous attributes such as poses.

In addition, we show the results when taking smiling expression as an attribute

of interest in Figure 2.3(b). Similarly, by comparing the last row and the first

two rows, we see that the manipulated images retain the same facial information,

with only the smiling expressions altered. This confirms that smiling expression

is able to be decomposed from the original latent feature. It is worth noting that

we decompose pose and smiling attributes from the same pre-trained generative

models, confirming the flexibility of our dec-GAN in extracting the attributes of

interest.
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Figure 2.3: Image generation from CMU-MultiPIE via swapping the attributes of

(a) pose and (b) smile. The first row shows sampled input image pairs x1 and x2,

the second row shows reconstructed image outputs G(zc, za) of the input images,

and the third row depicts generated image outputs by swapping za in each pair.

Comparing the second and the third row, we see that the image content is preserved

while the attributes (i.e., pose/smile information) are swapped within each image

pair. Note that results using VAE-GAN and Res-GAN as the backbones of our

dec-GAN are shown.

2.1.4 Quantitative Results

Quantitative Evaluation of zc and za

We conduct quantitative experiments to examine the effectiveness of our dec-GAN

in disentangling content and attribute features. With the use of CMU Multi-PIE face

dataset, za derived by our model would be expected to contain pose information

only, while zc represents pose-invariant identity features. We then take these two

types of features, perform pose and ID classification tasks, and compare the results

to the uses of latent representations z derived by VAE-GAN [35] and UFDN [29].

Table 2.1 lists and compares classification results of different tasks using z, zc

and za. We simply apply a two-layer classifier (i.e., 2 fully connected layers with

ReLU activation, followed by a softmax layer) for comparison purposes. We do

not apply additional or complex classifiers, which can possibly further improve

the recognition performances. The number of classes is 5 for pose classification

and 249 for identity classification. From this table, we observe that za yielded the
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Method Pose ID

VAE-GAN [35] 97.44 (z) 96.94 (z)

UFDN [29] N/A 94.31 (zc)

Ours 99.74 (za) 98.59 (zc)

Table 2.1: Classification performances on CMU Multi-PIE. Note that our method

decomposes content and attribute features (zc and za) from latent representation z

derived by pre-trained VAE-GAN. Since the attribute feature of UFDN [29] is a

hand-crafted one-hot vector, it cannot be directly applied for pose classification.

best result in pose classification, while zc resulted in the highest performances for

identity classification. This is expected since our dec-GAN is particularly designed

to disentangle attribute-dependent and attribute-invariant features. Note that the use

of z of VAE-GAN achieved inferior results, indicating that its latent representation

would contain both content and attribute information and thus cannot be expected to

sufficiently address either task. For UFDN, since they derive hand-crafted one-hot

vector for attribute features, their model is not applicable for pose classification.

Comparisons of Training Time

As noted earlier, a major advantage of our dec-GAN is the applicability to exist-

ing GAN-based models without the need for pre-defined attributes. We compare

the numbers of training iterations and computation times of dec-GAN and AC-

GAN [20] with the same backbone structures for generators and discriminators.

Note that all experiments were conducted on a single NVIDIA GTX 1080 Ti with

batch size = 12, and the table of results is presented in the supplementary material.

We found that dec-GAN is four times faster than AC-GAN when disentangling

smiling attributes (i.e., 6 vs. 26 mins) and is about seven times faster when

disentangling pose attributes (i.e., 13 vs. 89 mins). This is because the training

of our dec-GAN can be initialized by existing GAN models, followed by the

training of Ec and Ea. On the other hand, AC-GAN needs to pre-define additional
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dimensions to describe the attribute so that its training can not be initialized. From

the above experiments, the flexibility and effectiveness of our dec-GAN can be

confirmed.

2.1.5 Conclusion

In this paper, we proposed a unique decomposition-GAN (dec-GAN) to perform

feature disentanglement, which jointly extracts content and attribute representa-

tions from the latent feature observed from existing GAN-based models. Different

from prior disentanglement works, which typically derive disjoint latent representa-

tions describing desirable features, our dec-GAN performs feature decomposition,

which separates latent representation into separate features describing the proper-

ties/attributes of interest. The attribute disentanglement of our dec-GAN is driven

by classifiers pre-trained on the attribute of interest. Followed by the design of

generative network modules, this allows disentanglement of content and attributes

while exhibiting additional flexibility in determining the attributes of interest (i.e.,

by replacing such classifiers based on the desirable attribute categories). We per-

formed qualitative and quantitative evaluations using multiple image datasets, with

attributes ranging from digit categories to pose angles. The effectiveness and

robustness of our dec-GAN can be successfully confirmed, while its superiority

over existing models can also be verified.

2.2 Human-Feedback Efficient Online Diffusion Model

Finetuning

2.2.1 Introduction

Controllable text-to-image (T2I) generation focuses on aligning model outputs

with user intent, such as producing realistic images, e.g., undistorted human bodies,

or accurately reflecting the count, semantics, and attributes specified by users. To
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tackle this problem, a common paradigm involves fine-tuning latent diffusion mod-

els (DM) like Stable Diffusion (SD) [39] using supervised fine-tuning (SFT) [40],

which mostly learn from pre-collected, offline datasets. To further enhance the

alignment, online reinforcement learning (RL) fine-tuning methods [41, 42] utilize

online feedback that specifically evaluates the samples generated by the model

during training. With such dynamic guidance provided on the fly, these methods

demonstrate superior performance on various T2I tasks, such as aesthetic quality

improvement. Yet, these approaches rely on either predefined heuristic reward

functions or pretrained reward models learned from large-scale datasets, which

could be challenging to obtain, especially for tasks involving personalized content

generation (e.g., capturing cultural nuances) or concepts like specific colors or

compositions.

To address the above issue, [43] introduces D3PO, an alternative method

that directly leverages online human feedback for fine-tuning diffusion models.

Instead of learning from heuristic reward functions or pretrained reward models,

D3PO leverages the samples generated by the model as well as human annotations

collected during training. With online human feedback, D3PO addresses various

tasks, such as distorted human body correction and NSFW content prevention,

without requiring a pretrained reward model for each individual task. However,

it still necessitates approximately 5K instances of online human feedback during

training [43, 44], placing a significant burden on the human evaluator and restricting

the use of customized fine-tuning to match individual preferences.

To further improve the feedback efficiency of T2I alignment using online

human feedback, this work proposes a Human-feedback Efficient Reinforcement

learning for Online diffusion model fine-tuning framework, dubbed HERO, to

efficiently and effectively utilize online human feedback to fine-tune a SD model,

as illustrated in Figure 2.4. Specifically, we propose two novel components: (1)

Feedback-Aligned Representation Learning, an online-trained embedding map

that creates a representation space that implicitly captures human preferences
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0

Figure 2.4: 0⃝ Online Human Feedback on Generated Images: Each epoch,

SD generates a batch of images, evaluated by a human as “good” or “bad”, with

the “best” among the “good” selected. The corresponding SD noises and latents

are saved. 1⃝ Feedback-Aligned Representation Learning: Human-annotated

images train an embedding map via contrastive learning, converting feedback into

continuous representations. These are rated by cosine similarity to one of the “best”

images and used to fine-tune SD via DDPO [42]. 2⃝ Feedback-Guided Image

Generation: New images are generated from a Gaussian mixture centered around

the recorded noises of “good” images. This process is repeated until the feedback

budget is exhausted.

and provides continuous reward signals for RL fine-tuning, and (2) Feedback-

Guided Image Generation, which involve generating images from SD’s refined

initialization samples aligned with human intent, for faster convergence to the

evaluator’s preferences.

Feedback-aligned representation learning (Fig. 2.4’s 1⃝) aims to create a rep-

resentation space that implicitly reflects human preferences, offering continuous

reward signals for RL fine-tining. At each epoch, SD generates a batch of images,

and a human evaluator classifies the images as “good” or “bad”, selecting one “best”

image from the “good” set. The latents of the human-annotated images are then

employed to train an embedding map through contrastive learning [45], aiming

to develop a feedback-aligned representation space. By calculating the cosine

similarity to the “best” representation vector in the learned representation space,

we obtain a continuous evaluation for each latent. Subsequently, we utilize the
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Figure 2.5: Result preview. Randomly sampled outputs generated by HERO

and baselines given the prompt “photo of one blue rose in a vase” are presented.

Successful samples are marked with , and unsuccessful samples are marked with

, which fails to accurately capture the specified count (more than one rose), color

(non-blue roses), and context (missing vase). HERO successfully captures these

aspects, outperforming the baselines.

computed similarity as continuous reward signals to fine-tune SD via LoRA [46].

After fine-tuning the SD for the first iteration, our feedback-guided image

generation (Fig. 2.4’s 2⃝) samples a new batch of images from a Gaussian mixture

centered on the stored “good” and “best” initial noises from the previous iteration.

This process facilitates the generation of images that align with human intentions

better than random initial noises, thereby enhancing the efficiency of fine-tuning.

HERO effectively achieves controllable T2I generation with minimal online human

feedback through iterative feedback-guided image generation, feedback-aligned

representation learning, and SD model finetuning.

We conduct extensive experiments on various T2I tasks to compare HERO

with existing methods. The experimental results show that HERO can effectively

fine-tune SD to reliably follow given text prompts with 4× fewer amount of

human feedback compared to D3PO [43]. On the other hand, the results show

that these tasks are difficult to solve through prompt enhancement [47] or fine-

tuning approaches, e.g., DreamBooth [48], that rely on a few reference images [49].
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Figure 2.5 presents a preview of the results. Extensive ablation studies verify the

effectiveness of our proposed feedback-aligned representation learning and the

technique of generating images from refined noises. Additionally, we show that

the model fine-tuned by HERO demonstrates transferability to previously unseen

inference prompts, showcasing that the desired concepts were acquired by the

model.

2.2.2 Related Works

Recent research has explored controllable generation with SD for tasks like T2I

alignment [42, 50], conceptual generation [51, 52], correcting generation flaws [53],

personalization [49, 48] and removing NSFW content [54, 55, 56].

Supervised fine-tuning. DreamBooth (DB) [48] and Textual Inversion [49] take

images as input and fine-tunes SD via supervised learning to learn the specific sub-

ject present in the input images. However, such methods require reference images,

limiting their applicability to general T2I tasks, such as conceptual generation, e.g.,

emotional image content generation [51], or accurately reflecting user-specified

counts, semantics, and attributes [57]. On the other hand, [50, 54, 58, 59] use

pretrained reward models to calculate differentiable gradients for SD fine-tuning.

However, such pretrained models are not always accessible for tasks of interest,

and moreover, these methods cannot directly utilize human feedback, which is

non-differentiable.

RL fine-tuning. Various methods have explored incorporating non-differentiable

signals, such as human feedback, as rewards to fine-tune SD using RL. For exam-

ple, DDPO [42] uses predefined reward functions for tasks like compressibility,

DPOK [41] leverages feedback from an AI model trained on a large-scale human

dataset, and SEIKO [44] obtain rewards from custom reward functions trained

from extensive feedback datasets. Yet, these methods require a predefined reward

function or reward model, which can be difficult to obtain for tasks that involve gen-

erating personalized content (e.g., reflecting cultural nuances) or abstract concepts,
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such as specific colors or compositions [60, 61].

Direct preference optimization (DPO). Diffusion-DPO [62] applies DPO [63] to

directly utilize preference data to fine-tune SD, eliminating the need for predefined

rewards. Despite encouraging their results, such a method requires a large-scale pre-

collected human preference dataset e.g., Diffusion-DPO uses the Pick-a-Pic dataset

with 851K preference pairs, making it costly to collect and limiting its applicability

to various tasks, including personalization. Instead of leveraging offline datasets,

D3PO [43] uses online human feedback collected on the fly during model training

for DPO-style finetuning of SD. It demonstrates success in tasks such as body

part deformation correction and content safety improvement while avoiding the

demand for large-scale offline datasets. However, the amount of human feedback

required for D3PO is still high, requiring 5-10k feedback instances per task, which

motivates us to develop a more human-feedback-efficient framework.

2.2.3 Preliminaries

Stable Diffusion (SD). operates in two stages. First, an autoencoder compresses

images x from pixel space into latent representations z0, which can later be decoded

back to pixel space. Second, a diffusion model (DM) is trained to model the

distribution of these latent representations conditioned on text c. The forward

diffusion process is defined as p(zt|z0) := N (zt;αtz0, σ
2
t I), where αt and σt are

pre-defined time dependent constants for t ∈ [0, T ]. Both the forward transition

kernel p(zt|zt−1, c) and the backward conditioned transition kernel p(zt−1|zt, c, z0)

are Gaussian with closed-form expressions. The DM is trained to predict the clean

sample z0 using a neural network ẑϕ(zt, t, c), denoising the noisy sample zt at time

t:

pϕ(zt−1|zt, c) := p
(
zt−1|zt, c, z0 := ẑϕ(zt, t, c)

)
by optimizing the following objective:

min
ϕ

Ez0,c,ϵ,t

[
∥ẑϕ(αtz0 + σtϵ, t, c) − z∥2

2

]
, ϵ ∼ N (0, I).
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At inference, random noise zT is sampled from a prior and iteratively denoised

using samplers like DDPM [64] and DDIM [65] to obtain a latent code z0, which

is then decoded into an image. This denoising and decoding process forms a

text-to-image generative model, with random noise zT sampled from a prior and c

as the user-provided prompt.

Denoising Diffusion Policy Optimization (DDPO). formulates the denoising

process of diffusion models as a multi-step Markov decision process. With this

formulation, one can make direct Monte Carlo estimates of the reinforcement

learning objective. Given a denoising trajectory {zT , zT −1, ..., z0}, the denoising

diffusion RL update is defined as the following:

∇ϕLDDRL(ϕ) = E
[

T∑
t=0

∇ϕ log pϕ(zt−1|zt, c)r(z0, c)
]
, (2.7)

where ϕ is the diffusion model, and r(x0, c) is the received reward computed

according the output image x0 and the input prompt c. Based on the above update,

DDPO further utilizes the importance sampling estimator [66] and the trust region

clipping from Proximal Policy Optimization (PPO) [67] to perform multiple steps

of optimization while maintaining the diffusion model ϕ not deviating too far from

the previous iteration ϕold. The DDPO update is defined as the following:

∇ϕLDDPO(ϕ) = E
[

T∑
t=0

pϕ(zt−1|zt, c)
pϕold(zt−1|zt, c)∇ϕ log pϕ(zt−1|zt, c)r(z0, c)

]
. (2.8)

2.2.4 Problem Setup and the Proposed Method

Given a user-specified text prompt, our goal is to fine-tune SD to generate images

that align with the prompt by learning from human feedback guidance. In this paper,

we focus on challenging T2I tasks that require spatial reasoning, counting, feasibil-

ity understanding, etc., as detailed in Table 2.2. To efficiently and effectively utilize

online human feedback, we propose a human-feedback efficient reinforcement

learning for online diffusion model fine-tuning framework, dubbed HERO, as

illustrated in Figure 2.4. Feedback-Aligned Representation Learning (Figure 2.4
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1⃝) makes efficient use of limited human feedback by converting discrete feedback

to informative, continuous reward signals. In addition, Feedback-Guided Image

Generation (Figure 2.4 2⃝) leverages human-preferred noise latents from previous

iterations and encourages SD outputs to align more quickly with human intention,

further improving sample efficiency.

Online Human Feedback

In the first iteration of HERO, we generate synthetic images X from a batch of

random noises ZT sampled from SD’s prior distribution πHERO(zT ) := N (zT ; 0, I)

using DDIM [65, 64]. For each zT ∈ Z , the sampling trajectories are denoted

as {zT , zT −1, · · · , z0}, and each z0 is decoded to an image for human evaluation.

A human evaluator reviews X , selects the “good” images X +, and labels the

remaining images as X −. To obtain a gradation among all “good” images and all

“bad” images by representation learning, we ask the evaluator to identify the “best”

image in X +, denoted as xbest. The details of our feedback-aligned representation

learning are discussed in the following section, and we store the following for

future use: the sets of images X , X +, X −, xbest; their corresponding SD’s clean

latents Z0, Z+
0 , Z−

0 , zbest
0 from which they are decoded; and their initial noises (at

time T ) ZT , Z+
T , Z−

T , zbest
T used in SD’s sampling.

Feedback-Aligned Representation Learning

HERO fine-tunes SD with minimal online human feedback by learning representa-

tions via a contrastive objective that captures discrepancies between the best SD’s

clean latent zbest
T , positive Z+

0 , and negative Z−
0 SD’s clean latents. By calculating

similarity to the best image’s representation, we use these similarity scores as con-

tinuous rewards for RL fine-tuning. This approach bypasses reward model training

by directly converting human feedback into learning signals, avoiding the need for

over 100k training samples typically required to train a reward model for unseen

data [62, 63]. Learning Representations: To learn a representation space of Z0
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aligned with human feedback, we build on the contrastive learning framework of

[45]. We design an embedding network Eθ(·) to map Z0 into the representation

space, followed by a projection head gθ(·) for loss calculation. Triplet margin loss

is applied to the projection head’s output:

L(θ; zbest
0 ,Z+

0 ,Z−
0 ) = Ezgood

0 ∼Z+
0 ,zbad

0 ∼Z−
0

max
{
S

(
gθ

(
Eθ(zbest

0 )
)
, gθ

(
Eθ(zgood

0 )
))

−S
(
gθ

(
Eθ(zbest

0 )
)
, gθ

(
Eθ(zbad

0 )
))

+α, 0
}
.

(2.9)

Eθ(zbest
0 ) serves as the anchor in the contrastive loss, with S(·, ·) representing the

similarity score (using cosine similarity) and α as the triplet margin set to 0.5. By

using the best image in the triplet loss, we obtain a gradation within positive and

negative categories based on the distance to the best sample. With the learned

representation Eθ(z0) for z0 ∈ Z0, we can compute continuous rewards for RL

fine-tuning.

Similarity-based Rewards Computation: After training the embedding

Eθ(·) on the current batch of human feedback, reward values are computed as

the cosine similarity in the learned representation space between each Eθ(z0) for

z0 ∈ Z0 and Eθ(zbest
0 ):

R(z0) = Eθ(z0) · Eθ(zbest
0 )

max
{

∥Eθ(z0)∥2

∥∥∥Eθ(zbest
0 )

∥∥∥
2
, δ

} for each z0 ∈ Z0, (2.10)

where δ = 1 × 10−8 to avoid zero division. By using the learned representations to

convert simple (discrete) human feedback into continuous reward signals, we avoid

the need for a large pretrained reward model or costly training of such a model.

Besides the “similarity-to-best” design, we also consider a “similarity-to-

positives” design, which uses the similarity between an image and the average of

all “good” images in the learned representation space. We choose the “similarity-

to-best” design for its superior performance. Further discussion is available in Sec-

tion 2.2.6.

Diffusion Model Finetuning: DDPO fine-tunes SD by reweighting the likeli-

hood with reward values. For a noise latent zT ∈ ZT and its sampling trajectory
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{zT , zT −1, · · · , z0}, we incorporate the reward R(z0) from Eq. (2.10) into the

DDPO update rule in Eq. (2.8) to fine-tune the SD model ϕ. To reduce costly

gradient computations, we adopt LoRA [46] for fine-tuning.

Feedback-Guided Image Generation

After the previous iteration of fine-tuning, we propose feedback-guided image

generation to facilitate the fine-tuning process by generating images that reflect

human intentions. We sample the noise latents for a new batch of images from the

Gaussian mixture with means centered around the human-selected “good” Z+
T and

“best” zbest
T SD noise latents from the previous iteration, with a small variance ε0.

Specifically, we sample the noise latent zT from the distribution πHERO(zT ) defined

as:

πHERO(zT ) =


N (zT ; 0, I), first iteration

βN (zT ; zbest
T , ε2

0I) + (1−β)
|Z+

T |
∑

zgood
T ∈Z+

T
N (zT ; zgood

T , ε2
0I) otherwise.

(2.11)

Here, we introduce a hyperparameter best image ratio β to control the proportion of

the next batch sampled from the “best” image noise latent. We find that leveraging

zbest
T with a larger β can accelerate training convergence to evaluator preferences

but may reduce the diversity or the converged accuracy. The above tradeoff can be

controlled by the best image ratio β. We generally set β = 0.5 to balance these

effects. Further discussion on the best image ratio parameter is in Section 2.2.6.

We remark that since the variance ε0 is small, after a few iterations, samples

from πHERO(zT ) still concentrate near the prior N (zT ; 0, I) at high probability.

Also, zgood
T and zbest

T may retain semantic information about human alignment from

zgood
0 and zbest

0 , as they are connected through the finite-step discretization of the

SD sampler. Thus, these validate our proposed πHERO(zT ) as refined initializations

for sampling.

Given a new batch of images X decoded from the clean latents Z0 generated by

SD, with corresponding initial noises ZT sampled from πHERO(zT ) in Eq. (2.11),
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the human evaluator provides their evaluation as described in Section 2.2.4. The

process is repeated until the feedback budget is exhausted or the evaluator is

satisfied with the generation from πHERO(zT ). After obtaining the fine-tuned SD

model ϕ and πHERO(zT ) through HERO, we use SD random noises from refined

πHERO(zT ) and generate images using any DM sampler [65].

2.2.5 Experimental

We demonstrate HERO’s performance on a variety of tasks, including hand de-

formation correction, content safety improvement, reasoning, and personalization.

Many of them cannot be easily solved by the pretrained model, prompt enhance-

ment, or prior methods. A full list of tasks and their success conditions are shown

in Table 2.2. We adopt SD v1.5 [39] as the base T2I model, using DDIM [64, 65]

with 50 diffusion steps (20 for hand deformation correction for fair comparison to

the baselines) as the sampler.

We compare HERO to the following baselines:

• SD-pretrained prompts the pretrained SD model with the original task prompt

shown in Table 2.2.

• SD-enhanced prompts the pretrained SD model with an enhanced version of the

prompt generated by GPT-4 [68, 69].

• DreamBooth (DB) [48] finetunes diffusion models via supervised learning,

taking images as input. We use the four best images chosen by the human

evaluators as model inputs.

• D3PO [43] utilize online human feedback for DPO [63]-based diffusion model

finetuning. Due to the high feedback cost for training, this baseline is considered

only for the hand anomaly correction task directly adopted from their work.

Success rates are reported as presented in the original paper.
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Figure 2.6: Hand anomaly correction success rates. The performance of methods

except D3PO is an average of 8 seeds, where each seed is evaluated on 128 images

per epoch. DB, SD-P, and SD-E are DreamBooth, SD-pretrained, and SD-enhanced,

respectively.

Hand Deformation Correction

Following the problem setup of D3PO [43], we use the prompt “1 hand” for image

generation and use human discretion to evaluate the normalcy of the generated hand

images. Parameters such as sampling steps are set to be consistent with D3PO.

In each epoch of HERO, feedback on 128 images is collected, and the human

evaluator provides a total of 1152 feedback over 9 epochs. Performance of HERO

in comparison to the baselines is shown in Figure 2.6. As shown in Figure 2.6,

the pretrained SD model struggles on this task, with a normalcy rate of 11.9%

(SD-pretrained) and 7.5% (SD-enhanced), and DB achieves 28%. D3PO reaches

33.3% normalcy rate at 5K feedback, while HERO achieves a comparable success

rate of 34.2% with only 1152 feedback (over 4× more feedback efficient).
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Demonstration on the Variety of Tasks

Table 2.2: Task summary

Task Name Prompt Task Categories

hand “1 hand” correction, feasibility

blue-rose “photo of one blue rose in a vase” reasoning, counting

black-cat “a black cat sitting inside a cardboard box” reasoning, feasibility, functionality

narcissus “narcissus by a quiet spring and its reflection in the water” feasibility, homonym distinction

mountain “beautiful mountains viewed from a train window” reasoning, functionality, personalization

We further demonstrate the effectivity of HERO on a variety of tasks involv-

ing reasoning, correction, feasibility and functionality quality enhancement, and

personalization. Tasks are listed in Table 2.2, and descriptions of task success

conditions and task categories are found in Section 2.2.7. For each task, human

evaluators are presented with 64 images per epoch and provide a total of 512 feed-

back over 8 epochs. We report the average and standard deviation of the success

rates across three seeds, where success is evaluated on 64 images generated in

the final epoch. For methods that require human feedback (DB and HERO), three

different human evaluators were each assigned a different seed to provide feedback

on. Each evaluator was also responsible for evaluating the success rates of all

methods for their assigned seed. Results are shown in Table 2.3. For all tasks,

HERO achieves a success rate at or above 75%, outperforming all baselines. This

trend is consistent for all three human evaluators, suggesting HERO’s robustness

to individual differences among human evaluators. Sample images generated by

SD-pretrained, DB, and HERO are shown in Figure 2.7. While the baselines

often struggle in attribute reasoning (e.g., color, count), spatial reasoning (e.g.,

inside), and feasibility (e.g., reflection consistent with the subject), HERO models

consistently capture these aspects correctly.
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Figure 2.7: Qualitative results. The randomly generated samples for the four

tasks are shown, with denoting successful samples and for failures. In the

blue-rose task, the pretrained SD model often omits the vase, while DB gen-

erates roses with incorrect color or count. In narcissus, SD frequently fails

to capture the subject or produces inconsistent reflections. For black-cat,

baseline models exhibit more issues (e.g., the cat’s body penetrating the box). In

mountain, baseline images often miss the window frame or depict impossible

views. Our fine-tuned models mitigate these issues and show significantly higher

success rates across all tasks.
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Table 2.3: Task performance. Mean and standard deviation of success rates of

different methods on the four tasks. HERO achieves a success rate at or above 75%

and outperforms all baselines, demonstrating effectiveness on a variety of tasks.

Method blue-rose black-cat narcissus mountain

SD-Pretrained 0.354 (0.020) 0.422 (0.092) 0.406 (0.077) 0.412 (0.063)

SD-Enhanced 0.479 (0.030) 0.365 (0.134) 0.276 (0.041) 0.938 (0.022)

DB 0.479 (0.085) 0.453 (0.142) 0.854 (0.092) 0.922 (0.059)

HERO (ours) 0.807 (0.115) 0.750 (0.130) 0.912 (0.007) 0.995 (0.007)

2.2.6 Ablations

This section presents ablation studies illustrating the roles of each component

of HERO. In regards to Feedback-Aligned Representation Learning, we investi-

gate the effects of (1) computation of rewards using learnable feedback-aligned

representations and (2) “similarity-to-best” design for reward computation. For

Feedback-Guided Image Generation, the effect of best image ratio is explored.

Effect of Feedback-Aligned Representation Learning and Reward Design

Table 2.4: Representation learning and reward design ablation

Method Success rate

SD-Pretrained 0.40

HERO-binary 0.78

HERO-noEmbed 0.76

HERO-positives 0.82

HERO 0.91

The effects of using learned feedback-aligned representations and our reward

design are investigated through three ablation experiments. Firstly, we demonstrate

the benefit of converting discrete human feedback into continuous reward signal by

investigating HERO-binary, a variant of HERO using binary rewards for training.

Secondly, we explore the effect of learned representations by replacing the learned



doi:10.6342/NTU202404722

2.2. Human-Feedback Efficient Online Diffusion Model Finetuning 41

representations in HERO with SD image latents Z+
0 (HERO-noEmbed). Finally,

we explain our choice for the “similarity-to-best” reward design by discussing

an alternative reward design using similarity to the average of all Z+
0 and zbest

0

(HERO-positives). For each setting, we test on the narcissus task with 512

feedback for training and 200 images generated by the finetuned model for success

rate evaluation. HERO outperforms all other settings, and results are summarized

in Table 2.4.

Directly using human labels as binary rewards. An intuitive way to extract a

reward signal from binary human feedback is to directly convert the feedback into

a binary reward. To investigate the effect of similarity-based conversion of human

feedback to continuous rewards, we test HERO-binary, a variant where the reward

in HERO is replaced with a binary reward. Images labeled as “good” or “best”

receive a reward of 1.0, and all other images receive a reward of 0.0. HERO-binary

only reaches 78% success rate while HERO reaches 91%. This may be because the

continuous rewards contain additional information beneficial for DDPO training:

While the binary reward only labels images as “good” or “bad”, the continuous

reward additionally captures a gradation of human ratings within the “good” and

“bad” categories, supplying additional information such as which “good” images

are nearly “best”, and which are barely “good”.

Computing rewards from pretrained image representations. Experiments

with binary rewards showed the benefit of using continuous rewards in the learned

representation space. To further understand HERO’s use of feedback-aligned

learned representations, we replace the learned representations Eθ(Z0) with SD’s

clean latents Z0, obtained by denoising SD’s initial noises ZT , and call this setup

HERO-noEmbed. Without embedding map training, Z+
0 no longer cluster around

zbest
0 , making a “similarity-to-best” reward design impractical. Thus, we only

consider the “similarity-to-positives” reward design for this ablation. While HERO-

positives reach 82% success, HERO-noEmbed reaches 76%, suggesting the benefit

of learned representations. Training the embedding map additionally offers the
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Figure 2.8: Effect of best image ratio β evaluated on the black-cat task.

Three iterations with different seeds are performed for each setting, and the mean

and standard deviation of the success rate are reported separately for clearer

visualization. “random” refers to the case where random noise latents are used for

sampling (good and best noises latents are not used).

“similarity-to-best” reward design option that gives superior performance.

Computing reward as similarity to average of all “good” representations.

The reward in HERO is computed as the similarity to zbest
0 . However, another

natural choice is to compute similarity to the average of all Z+
0 . Comparing

this “similarity-to-positives” design to the “similarity-to-best” design employed in

HERO, we find that the “similarity-to-best” design achieves 91% success, while

the “similarity-to-positives” design reaches 82%. We adopt the “similarity-to-best”

design, which empirically gives superior performance.

Effect of Best Image Ratio in Feedback-Guided Image Generation

To investigate the effect of the best image ratio, we compare the performance

of the black-cat task for β = 0.0, 0.5, 1.0. Further, we compare to the case

where the images are sampled from random SD noise latents to demonstrate the

benefit of using Z+
T and zbest

T as initial noises for image generation. Results are

shown in Figure 2.8. Sampling all images from the zbest
T (β = 1.0) reaches an

average of 70.8% success at the end of the training. However, as the high standard

deviation in the initial stage of training suggests, over-exploiting a single “best”
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noise latent can cause instability in training, potentially causing the model to settle

on a suboptimal output. Sampling uniformly from Z+
T and zbest

T (β = 0.0) results

in a similar success rate as β = 1.0, but is less likely to converge to a suboptimal

point. We empirically find that, for our tasks, β = 0.5 results in the highest success

rate while avoiding the risks of fully relying on the single “best” noise latent, thus

using β = 0.5 for our experiments. When images are sampled from random SD

noise latents, the task success rate does not grow significantly slower in the given

amount of feedback, demonstrating the benefit of using Z+
T and zbest

T for efficient

fine-tuning.

Transferability

While HERO is trained to optimize for a single input prompt, we observe that some

personal preferences and general concepts learned from one prompt can generalize

to other related prompts in some cases.

Transfer of personal preference. In the mountain task, we observe the

transfer of learned individual preferences. Two human evaluators trained two

separate models for the mountain task, where one evaluator preferred green

scenery while the other preferred snowy scenery. Each evaluator’s trained model as

well as the corresponding Z+
T and zbest

T are used to generate images for a related task

“hiker watching beautiful mountains from the top of a hill”. As shown in Figure 2.9,

the preference for green or snowy scenery transfers to this new task.

Transfer of content safety. To further investigate whether a general concept,

such as content safety, learned through one task can transfer to another, we prompt

the SD model using the prompt “sexy” and train it to reduce NSFW content in

the generated images. The fine-tuned model (as well as the saved Z+
T and zbest

T )

are used to generate images from a set of 14 potentially-unsafe prompts used in

D3PO’s content safety task. Utilizing the finetuned model and the saved SD noise

latents significantly improves the content safety rate from 57.5% of the pretrained

SD model to 87.0%, demonstrating HERO-finetuned model’s potential to transfer
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a general concept learned from one prompt to a set of related, unseen prompts.

Visual results are shown in Figure 2.10.

Figure 2.9: Demonstration of personal preference transferability. Models

trained with two distinct personal preferences (green and snowy) generate images

that inherit these preferences when prompted with a similar task (“hiker watching

beautiful mountains from the top of a hill”).

2.2.7 Details of Tasks and Task Categories

Here, we provide the detailed success conditions the human evaluators were

provided with and explanations of each task category.

Detailed Task Success Conditions

• hand: A hand has exactly five fingers with exactly one thumb, and the pose is

physically feasible.

• blue-rose: The generated subject is a rose and has the correct color (blue),

count (one), and context (inside a vase).

• black-cat: A single cat with the correct color (black) and action (sitting

inside a box) is generated. The cat’s pose is feasible, with no parts of the body
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Figure 2.10: Qualitative results for the NSFW content hidden task showcas-

ing transferability of HERO. The images were randomly generated using the

potentially unsafe prompt set provided by [43]. The model is the HERO-finetuned

version, trained with the “sexy” prompt to reduce nudity. The safety rate improves

from 57.5% (pretrained SD) to 87.0% (HERO), showing HERO’s ability to transfer

the concept of safety to unseen, potentially unsafe prompts.

penetrating the box. The cardboard is shaped like a functional box.

• narcissus: The image correctly captures the narcissus flower, rather than

the mythological figure, as the subject. Reflection in the water contains, and

only contains, subjects present in the scene, and the appearance of reflections is

consistent with the subject(s).

• mountain: View of the mountains is from a train window. The body of the

train the mountain is seen from is not in the view. If other trains or rails are in

view, they are not oriented in a way that may cause collision. Any rails in the

view are functional (do not make 90-degree turns, for instance).

Description of Task Categories

• Correction: Removing distortions or defects in the generated image. For example,

generating non-distorted human limbs.

• Reasoning: Capturing object attributes (e.g., color or texture), spatial relation-
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ships (e.g., on top of, next to), and non-spatial relationships (e.g., looking at,

wearing).

• Counting: Generating the correct number of specified objects.

• Feasibility: Whether the characteristics of generated images are attainable in the

real world. For example, the pose of articulated objects is physically possible, or

reflections are consistent with the subject.

• Functionality: For objects with certain functionalities (such as boxes or rails),

the object is shaped in a way that makes the object usable for this function.

• Homonym Distinction: Understanding the desired subject among input prompts

containing homonyms.

• Personalization: Aligning to personal preferences, such as preference for certain

colors, styles, or compositions.

2.2.8 HERO Implementation

HERO consists of four main steps: Online human feedback, representation learning

for reward value computation, finetuning of SD, and image sampling from human-

chosen SD latents. In πHERO, we choose its variance as ε2
0 = 0.1 accross all

experiments. Table 2.5 lists the parameters used in each step.

Representation learning network architecture. The embedding map is

an embedding network Eθ(·) followed by a classifier head gθ(·). The embedding

networkEθ(·) consists of three convolutional layers with ReLU activation followed

by a fully connected layer. The kernel size is 3, and the convolutional layers map the

SD latents to 8 × 8 × 64 intermediate features. The fully connected layer maps the

flattened intermediate features to a 4096-dimensional learned representation. The

classifier head gθ(·) consists of three fully connected layers with ReLU activation,

where the dimensions are [4096, 2048, 1024, 512].
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Table 2.5: HERO training parameters

Embedding Network Eθ(·) and Classifier Head gθ(·)

Learning rate 1e−5

Optimizer
Adam [70] (β1 = 0.9, β2 =

0.999, weight decay = 0)

Batch size 2048

Triplet margin α 0.5

SD Finetuning

Learning rate 3e−4

Optimizer
Adam [70] (β1 = 0.9, β2 =

0.999, weight decay = 1e−4)

Batch size 2

Gradient accumulation steps 4

DDPO clipping parameter 1e−4

Update steps for loss computation K 5

Image Sampling

Diffusion steps 50 (20 for hand)

DDIM sampler parameter η 1.0

Classifier free guidance weight 5.0

Best image ratio β 0.5

2.2.9 Conclusion

This work introduces HERO, an RLHF framework for fine-tuning SD using on-

line human feedback. By learning a feedback-aligned representation, we capture

implicit human preferences, converting simple human feedback into a contin-

uous reward signal that enhances DDPO fine-tuning. Using human-preferred

image noise latents as initial noise further accelerates alignment with preferences.

Combining these components, HERO achieves high efficiency in fine-tuning SD,

requiring 4× less feedback than the baseline. Additionally, it shows potential for

transferring personal preferences and concepts to related tasks.
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Chapter 3

Adaptation for Objective function

3.1 Diffusion Model-Augmented Behavioral Cloning

3.1.1 Introduction

Recently, the success of deep reinforcement learning (DRL) [71, 72, 73] has in-

spired the research community to develop DRL frameworks to control robots,

aiming to automate the process of designing sensing, planning, and control algo-

rithms by letting the robot learn in an end-to-end fashion. Yet, acquiring complex

skills through trial and error can still lead to undesired behaviors even with sophis-

ticated reward design [74, 75, 76]. Moreover, the exploring process could damage

expensive robotic platforms or even be dangerous to humans [77, 78].

To overcome this issue, imitation learning (i.e., learning from demonstra-

tion) [79, 80] has received growing attention, whose aim is to learn a policy

from expert demonstrations, which are often more accessible than appropriate

reward functions for reinforcement learning. Among various imitation learning

directions, adversarial imitation learning [81, 82, 83] and inverse reinforcement

learning [84, 85] have achieved encouraging results in a variety of domains. Yet,

these methods require interacting with environments, which can still be expensive

or even dangerous.

49
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On the other hand, behavioral cloning (BC) [86, 87] does not require interacting

with environments. BC formulates imitation learning as a supervised learning

problem — given an expert demonstration dataset, an agent policy takes states

sampled from the dataset as input and learns to replicate the corresponding expert

actions. One can view a BC policy as a discriminative model p(a|s) that models

the conditional probability of actions a given a state s. Due to its simplicity and

training stability, BC has been widely adopted for various applications. However,

BC struggles at generalizing to states unobserved during training [88].

To alleviate the generalization issue, we propose to augment BC by modeling

the joint probability p(s, a) of expert state-action pairs with a generative model (e.g.,

diffusion models). This approach is motivated by [89] and [90], who illustrate that

modeling joint probability allows for better generalizing to data points unobserved

during training. However, with a learned joint probability model p(s, a), retrieving

a desired action a requires actions sampling and optimization, i.e., arg max
a∈A

p(s, a),

which can be extremely inefficient with a large action space. Moreover, modeling

joint probabilities can suffer from manifold overfitting [91, 92] when observed

high-dimensional data lies on a low-dimensional manifold (e.g., state-action pairs

collected from a script expert policies).

This work proposes an imitation learning framework that combines both the

efficiency and stability of modeling the conditional probability and the generaliza-

tion ability of modeling the joint probability. Specifically, we propose to model

the expert state-action pairs using a state-of-the-art generative model, a diffusion

model, which learns to estimate how likely a state-action pair is sampled from the

expert dataset. Then, we train a policy to optimize both the BC objective and the

learning signals the trained diffusion model produces. Therefore, our proposed

framework not only can efficiently predict actions given states via capturing the

conditional probability p(a|s) but also enjoys the generalization ability induced by

modeling the joint probability p(s, a) and utilizing it to guide policy learning.

We evaluate our proposed framework and baselines in various continuous
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control domains, including navigation, robot arm manipulation, and locomotion.

The experimental results show that the proposed framework outperforms all the

baselines or achieves competitive performance on all tasks. Extensive ablation

studies compare our proposed method to its variants, justifying our design choices,

such as different generative models, and investigating the effect of hyperparameters.

3.1.2 Related Work

Imitation learning aims to learn by observing expert demonstrations without access

to rewards from environments. It has various applications such as robotics [79, 93,

94], autonomous driving [95], and game AI [96].

Behavioral Cloning (BC). BC and its extensions [86, 97, 98, 94] formulates

imitating an expert as a supervised learning problem. Due to its simplicity and

effectiveness, it has been widely adopted in various domains. Yet, it often struggles

at generalizing to states unobserved from the expert demonstrations. To alleviate

the above problem, [99] propose the DAgger algorithm that gradually accumulates

additional expert demonstrations to mitigate the deviation from the expert, which re-

lies on the availability of querying an expert; Implicit BC (IBC) [100] demonstrates

better generalization than BC by using an energy-based model for state-action pairs.

However, it requires time-consuming action sampling and optimization during

inference, which may not scale well to high-dimensional action spaces. In this

work, we improve the generalization ability of policies by augmenting BC with a

diffusion model that learns to capture the joint probability of expert state-action

pairs.

Adversarial Imitation Learning (AIL). AIL methods aim to match the state-

action distributions of an agent and an expert via adversarial training. Generative ad-

versarial imitation learning (GAIL) [81] and its extensions [101, 83, 82, 102, 103]

resemble the idea of generative adversarial networks [18], which trains a generator

policy to imitate expert behaviors and a discriminator to distinguish between the

expert and the learner’s state-action pair distributions. While modeling state-action
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distributions often leads to satisfactory performance, adversarial learning can be

unstable and inefficient [104]. Moreover, even though scholars like [102] propose

to improve the efficiency of GAIL with the BC loss, they still require online inter-

action with environments, which can be costly or even dangerous. In contrast, our

work does not require interacting with environments.

Inverse Reinforcement Learning (IRL). IRL methods [84, 85, 105, 106, 107,

108] are designed to infer the reward function that underlies the expert demonstra-

tions and then learn a policy using the inferred reward function. This allows for

learning tasks whose reward functions are difficult to specify manually. However,

due to its double-loop learning procedure, IRL methods are typically computation-

ally expensive and time-consuming. Additionally, obtaining accurate estimates of

the expert’s reward function can be difficult, especially when the expert’s behavior

is non-deterministic or when the expert’s demonstrations are sub-optimal.

Diffusion Policies. Recently, [109, 110, 111] propose to represent and learn an

imitation learning policy using a conditional diffusion model, which produces a

predicted action conditioning on a state and a sampled noise vector. These methods

achieve encouraging results in modeling stochastic and multimodal behaviors

from human experts or play data. In contrast, instead of representing a policy

using a diffusion model, our work employs a diffusion model trained on expert

demonstrations to guide a policy as a learning objective.

3.1.3 Preliminaries

Imitation Learning

In contrast to reinforcement learning, whose goal is to learn a policy π based

on rewards received while interacting with the environment, imitation learning

methods aim to learn the policy from an expert demonstration dataset containing

M trajectories, D = {τ1, ..., τM}, where τi represents a sequence of ni state-action

pairs {si
1, a

i
1, ..., s

i
ni
, ai

ni
}.

Modeling Conditional Probability p(a|s): To learn a policy π, behavioral
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cloning (BC) directly estimates the expert policy πE with maximum likelihood

estimation (MLE). Given a state-action pair (s, a) sampled from the dataset D,

BC optimizes max
θ

∑
(s,a)∈D

log(πθ(a|s)), where θ denotes the parameters of the

policy π. One can view a BC policy as a discriminative model p(a|s), capturing

the conditional probability of an action a given a state s. On the other hand,

Implicit BC [100, 112] propose to model the conditional probability with InfoNCE-

style [113] optimization. Despite their success in various applications, BC-based

methods tend to overfit and struggle at generalizing to states unseen during train-

ing [99, 114, 115].

Modeling Joint Probability p(s, a): In order to model the joint probability

p(s, a) of the expert dataset for improved generalization performance [89, 90], one

can employ explicit generative models, such as energy-based models [116, 117],

variational autoencoders [118], and flow-based models [119, 120]. However, these

methods can be extremely inefficient in retrieving actions with a large action space

during inference since sampling and optimizing actions (i.e., arg maxa∈A p(s, a))

are required. Moreover, they are known to struggle with modeling observed

high-dimensional data that lies on a low-dimensional manifold (i.e., manifold

overfitting) [91, 92]. As a result, these methods often perform poorly when learning

from demonstrations produced by script policies or PID controllers, as discussed

in Section 3.1.5.

We aim to develop an imitation learning framework that enjoys the advantages

of modeling the conditional probability p(a|s) and the joint probability p(s, a).

Specifically, we propose to model the joint probability of expert state-action pairs

using an explicit generative model ϕ, which learns to produce an estimate indicating

how likely a state-action pair is sampled from the expert dataset. Then, we train a

policy to model the conditional probability p(a|s) by optimizing the BC objective

and the estimate produced by the learned generative model ϕ. Hence, our method

can efficiently predict actions given states, generalize better to unseen states, and

suffer less from manifold overfitting.
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q(xn |xn−1)

ϕ(xn−1 |xn)
xn−1 xn xNx0

Forward diffusion process

Reverse diffusion process
Figure 3.1: Denoising Diffusion Probabilistic Model (DDPM). Latent variables

x1, ..., xN are produced from the data point x0 via the forward diffusion process,

i.e., gradually adding noises to the latent variables. The diffusion model ϕ learns to

reverse the diffusion process by denoising the noisy data to reconstruct the original

data point x0.

Diffusion Models

As described in the previous sections, this work aims to combine the advantages

of modeling the conditional probability p(a|s) and the joint probability p(s, a).

Hence, we leverage diffusion models to model the joint probability of expert

state-action pairs. The diffusion model is a recently developed class of generative

models and has achieved state-of-the-art performance on various tasks [121, 122,

123, 124, 125].

In this work, we utilize Denoising Diffusion Probabilistic Models (DDPMs) [126]

to model expert state-action pairs. Specifically, DDPM models gradually add noise

to data samples (i.e., concatenated state-action pairs) until they become isotropic

Gaussian (forward diffusion process), and then learn to denoise each step and

restore the original data samples (reverse diffusion process), as illustrated in Figure

3.1. In other words, DDPM learns to recognize a data distribution by learning to

denoise noisy sampled data.

3.1.4 Approach

Our goal is to design an imitation learning framework that enjoys both the advan-

tages of modeling the conditional probability and the joint probability of expert

behaviors. To this end, we first adopt behavioral cloning (BC) for modeling the
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(a) Learning a Diffusion Model (b) Learning a Policy with the Learned Diffusion Model
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Figure 3.2: Diffusion Model-Augmented Behavioral Cloning (DBC ). Our proposed

framework augments behavioral cloning (BC) by employing a diffusion model. (a) Learn-

ing a Diffusion Model: the diffusion model ϕ learns to model the distribution of concate-

nated state-action pairs sampled from the demonstration dataset D. It learns to reverse the

diffusion process (i.e., denoise) by optimizing Ldiff in Eq. 3.2. (b) Learning a Policy with

the Learned Diffusion Model: we propose a diffusion model objective LDM for policy

learning and jointly optimize it with the BC objective LBC. Specifically, LDM is computed

based on processing a sampled state-action pair (s, a) and a state-action pair (s, â) with

the action â predicted by the policy π with Ldiff.

conditional probability from expert state-action pairs, as described in Section 3.1.4.

To capture the joint probability of expert state-action pairs, we employ a diffusion

model that learns to produce an estimate indicating how likely a state-action pair

is sampled from the expert state-action pair distribution, as presented in Section

3.1.4. Then, we propose to guide the policy learning by optimizing this estimate

provided by a learned diffusion model, encouraging the policy to produce actions

similar to expert actions, as discussed in Section 3.1.4. Finally, in Section 3.1.4,

we introduce the framework that combines the BC loss and our proposed diffusion

model loss, allowing for learning a policy that benefits from modeling both the

conditional probability and the joint probability of expert behaviors. An overview

of our proposed framework is illustrated in Figure 3.2.
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Behavioral Cloning Loss

The behavioral cloning (BC) model aims to imitate expert behaviors with super-

vision learning. BC learns to capture the conditional probability p(a|s) of expert

state-action pairs. A BC policy π(a|s) learns by optimizing

LBC = E(s,a)∼D,â∼π(s)[d(a, â)], (3.1)

where d(·, ·) denotes a distance measure between a pair of actions. For example,

we can adopt the mean-square error (MSE) loss ||a− â||2 for most continuous

control tasks.

Learning a Diffusion Model and Guiding Policy Learning

Instead of directly learning the conditional probability p(a|s), this section discusses

how to model the joint probability p(s, a) of expert behaviors with a diffusion

model in Section 3.1.4 and presents how to leverage the learned diffusion model to

guide policy learning in Section 3.1.4.

Learning a Diffusion Model

We propose to model the joint probability of expert state-action pairs with a diffu-

sion model ϕ. Specifically, we create a joint distribution by simply concatenating a

state vector s and an action vector a from a state-action pair (s, a). To model such

distribution by learning a denoising diffusion probabilistic model (DDPM) [126],

we inject noise ϵ(n) into sampled state-action pairs, where n indicates the number

of steps of the Markov procedure, which can be viewed as a variable of the level of

noise, and the total number of steps is notated as N . Then, we train the diffusion

model ϕ to predict the injected noises by optimizing

Ldiff(s, a, ϕ) = En∼N,(s,a)∼D

[
||ϵ̂(s, a, n) − ϵ(n)||2

]
= En∼N,(s,a)∼D

[
||ϕ(s, a, ϵ(n)) − ϵ(n)||2

]
,

(3.2)

where ϵ̂ is the noise predicted by the diffusion model ϕ. Once optimized, the

diffusion model can recognize the expert distribution by perfectly predicting the
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noise injected into state-action pairs sampled from the expert distribution. On the

other hand, predicting the noise injected into state-action pairs sampled from any

other distribution should yield a higher loss value. Therefore, we propose to view

Ldiff(s, a, ϕ) as an estimate of how well the state-action pair (s, a) fits the expert

distribution that ϕ learns from and serve this estimate as a learning signal for the

policy learning.

Learning a Policy with Diffusion Model Loss

A diffusion model ϕ trained on an expert dataset can produce an estimate Ldiff(s, a, ϕ)

indicating how well a state-action pair (s, a) fits the expert distribution. We propose

to leverage this signal to guide a policy π predicting actions â to imitate the expert.

Specifically, the policy π learns by optimizing

Lagent
diff = Ldiff(s, â, ϕ) = Es∼D,â∼π(s)

[
||ϵ̂(s, â, n) − ϵ||2

]
. (3.3)

Intuitively, the policy π learns to predict actions â that are indistinguishable from

the expert actions a for the diffusion model conditioning on the same set of states.

Note that the injected noise ϵ is drawn from a Gaussian distribution G(0, 1), and

the diffusion step n is drawn from the uniform distribution U(0, N). We omit these

terms for simplicity in the equation and the following.

We hypothesize that learning a policy to optimize Eq. 3.3 can be unstable,

especially for state-action pairs that are not well-modeled by the diffusion model,

which yield a high value of Ldiff even with expert state-action pairs. Therefore, we

propose to normalize the agent diffusion loss Lagent
diff with an expert diffusion loss

Lexpert
diff , which can be computed with expert state-action pairs (s, a) as follows:

Lexpert
diff = Ldiff(s, a, ϕ) = E(s,a)∼D

[
||ϵ̂(s, a, n) − ϵ||2

]
. (3.4)

We propose to optimize the diffusion model loss LDM for the policy based on

calculating the difference between the above agent and expert diffusion losses:

LDM = E(s,a)∼D,â∼π(s)
[
max

(
Lagent

diff − Lexpert
diff , 0

)]
. (3.5)
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Combining the Two Objectives

Our goal is to learn a policy that benefits from both modeling the conditional

probability and the joint probability of expert behaviors. To this end, we propose to

augment a BC policy, which optimizes the BC loss LBC in Eq. 3.1, by combining

LBC with the proposed diffusion model loss LDM in Eq. 3.5. By optimizing

them together, we encourage the policy to predict actions that fit the expert joint

probability captured by diffusion models. To learn from both the BC loss and the

diffusion model loss, we train the policy to optimize

Ltotal = LBC + λLDM, (3.6)

where λ is a coefficient that determines the importance of the diffusion model loss

relative to the BC loss.

3.1.5 Experiments

We design experiments in various continuous control domains, including naviga-

tion, robot arm manipulation, dexterous manipulation, and locomotion, to compare

our proposed framework (DBC) to its variants and baselines.
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(a) MAZE (b) FETCHPICK (c) HANDROTATE

(d) CHEETAH (e) WALKER (f) ANTREACH

Figure 3.3: Environments & Tasks. (a) MAZE: A point-mass agent (green) in

a 2D maze learns to navigate from its start location to a goal location (red). (b)

FETCHPICK: The robot arm manipulation tasks employ a 7-DoF Fetch robotics

arm to pick up an object (yellow cube) from the table and move it to a target

location (red). (c) HANDROTATE: This dexterous manipulation task requires a

Shadow Dexterous Hand to in-hand rotate a block to a target orientation. (d)-(e)

CHEETAH and WALKER: These locomotion tasks require learning agents to walk

as fast as possible while maintaining their balance. (f) ANTREACH: This task

combines locomotion and navigation, instructing an ant robot with four legs to

reach a goal location while maintaining balance.
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Experimental Setup

This section describes the environments, tasks, and expert demonstrations used for

learning and evaluation.

Navigation. To evaluate our method on a navigation task, we choose MAZE, a

maze environment proposed in [127] (maze2d-medium-v2), as illustrated in Figure

3.3a. This task features a point-mass agent in a 2D maze learning to navigate from

its start location to a goal location by iteratively predicting its x and y acceleration.

The agent’s beginning and final locations are chosen randomly. We collect 100

demonstrations with 18,525 transitions using a controller.

Robot Arm Manipulation. We evaluate our method in FETCHPICK, a robot

arm manipulation domain with a 7-DoF Fetch task, as illustrated in Figure 3.3b.

FETCHPICK requires picking up an object from the table and lifting it to a target

location. We use the demonstrations, consisting of 10k transitions (303 trajectories),

provided by [107] for these tasks.

Dexterous Manipulation. In HANDROTATE, we further evaluate our method on a

challenging environment proposed in [128], where a 24-DoF Shadow Dexterous

Hand learns to in-hand rotate a block to a target orientation, as illustrated in Figure

3.3c. This environment has a state space (68D) and action space (20D), which

is high dimensional compared to the commonly-used environments in IL. We

collected 10k transitions (515 trajectories) from a SAC [129] expert policy trained

for 10M environment steps.

Locomotion. For locomotion, we leverage the CHEETAH and WALKER [130]

environments. Both CHEETAH and WALKER require a bipedal agent (with different

structures) to travel as fast as possible while maintaining its balance, as illustrated

in Figure 3.3d and Figure 3.3e, respectively. We use the demonstrations provided

by [131], which contains 5 trajectories with 5k state-action pairs for both the

CHEETAH and WALKER environments.

Locomotion + Navigation. We further explore our method on the challenging

ANTREACH environment. In the environment, the quadruped ant aims to reach
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a randomly generated target located along the boundary of a semicircle centered

around the ant, as illustrated in Figure 3.3f. ANTREACH environment combines

the properties of locomotion and goal-directed navigation tasks, which require

robot controlling and path planning to reach the goal. We use the demonstrations

provided by [107], which contains 500 trajectories with 25k state-action pairs in

ANTREACH.

Baselines

This work focuses on imitation learning problem without environment interactions.

Therefore, approaches that require environmental interactions, such as GAIL-based

methods, are not applicable. Instead, we extensively compared our proposed

method to state-of-the-art imitation learning methods that do not require interaction

with the environment, including Implicit BC [100] and Diffusion Policy [110, 111].

• BC learns to imitate an expert by modeling the conditional probability p(a|s)

of the expert behaviors via optimizing the BC loss LBC in Eq. 3.1.

• Implicit BC (IBC) [100] models expert state-action pairs with an energy-

based model. For inference, we implement the derivative-free optimization

algorithm proposed in IBC, which samples actions iteratively and selects the

desired action according to the predicted energies.

• Diffusion policy refers to the methods that learn a conditional diffusion

model as a policy [110, 111]. Specifically, we implement this baseline based

on [109]. We include this baseline to analyze the effectiveness of using

diffusion models as a policy or as a learning objective (ours).

Multimodality of Environments

In this section, we aim to quantitatively evaluate the multimodality of expert

trajectories of each environment we use in the paper. IBC and DP are well-known
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Table 3.1: Multimodality of Environments. We evaluate the multimodality of

expert trajectories of each environment by measuring if the states in the same

cluster share actions from the same clusters. The ratio ranges from 0.1 to 1,

indicating whether states within the same cluster perform actions that are either

randomly distributed (1/10) or consistently identical (1/1), respectively.

Environment Majority Ratio

MAZE 0.184

FETCHPICK 0.604

HANDROTATE 0.331

CHEETAH 0.594

WALKER 0.582

ANTREACH 0.511

Table 3.2: Experimental Result. We report the mean and the standard deviation

of success rate (MAZE, FETCHPICK, HANDROTATE, ANTREACH) and return

(CHEETAH, WALKER), evaluated over three random seeds. Our proposed method

(DBC) outperforms or performs competitively against the best baseline over all

environments.

Method MAZE FETCHPICK HANDROTATE CHEETAH WALKER ANTREACH

BC 92.1% ± 3.6% 91.6% ± 5.8% 57.5% ± 4.7% 4873.3 ± 69.7 6954.4 ± 73.5 56.2% ± 4.9%

Implicit BC 78.3% ± 6.0% 69.4% ± 7.3% 13.8% ± 3.7% 1563.6 ± 486.8 839.8 ± 104.2 23.7% ± 4.9%

Diffusion Policy 95.5% ± 1.9% 83.9% ± 3.4% 61.7% ± 4.1% 4650.3 ± 59.9 6479.1 ± 238.6 61.8% ± 4.0%

DBC (Ours) 95.4% ± 1.7% 97.5% ± 1.9% 60.1% ± 4.4% 4909.5 ± 73.0 7034.6 ± 33.7 70.1% ± 4.9%
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for their ability to handle multimodal data, and understanding the multimodality

in each environment can help us better compare with these baselines. In imitation

learning, multimodality may arise from either the nature of the task, e.g., different

goals with arbitrary orders, or the expert demonstrations, e.g., achieving the same

goal with various paths. For each task, we create 10 clusters of states and 10

clusters of actions from expert demonstrations. Then, we measure if the states in

the same cluster share actions from the same clusters. Specifically, we calculate

the major action class for each state cluster and compute the ratio of states with

the class. The ratio ranges from 0.1 to 1, indicating whether states within the same

cluster perform actions that are either randomly distributed (1/10) or consistently

identical (1/1), respectively.

The results of all the tasks are reported in Table 3.1. We observe that robot

arm manipulation (FETCHPICK) and locomotion (CHEETAH and WALKER) tasks

result in higher majority ratios, which indicates that the expert behaviors are more

unimodal. On the other hand, navigation (MAZE) and dexterous manipulation

(HANDROTATE) tasks result in lower majority ratios, which means the demonstra-

tions contain more multimodal paths for similar goals and ANTREACH results in an

intermediate majority ratio since it is a combination of navigation and locomotion.

Experimental Results

We report the experimental results in terms of success rate (MAZE, FETCHPICK,

HANDROTATE, and ANTREACH), and return (CHEETAH and WALKER) in Table

3.2.

Overall Task Performance. In navigation (MAZE) and dexterous manipulation

(HANDROTATE) tasks, our DBC performs competitively, i.e., within a standard

deviation, against the Diffusion Policy and outperforms the other baselines. As

discussed in Section 3.1.5, these tasks require the agent to learn from multimodal

demonstrations of various behaviors. Diffusion policy has shown promising perfor-

mance for capturing multi-modality distribution, while our DBC can also generalize
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well with the guidance of the diffusion models, so both methods achieve satisfactory

results.

In locomotion tasks, i.e., CHEETAH and WALKER, our DBC outperforms Dif-

fusion Policy and performs competitively against the simple BC baseline. We

hypothesize that this is because locomotion tasks with sufficient expert demonstra-

tions and little randomness do not require generalization during inference, which

results in lower majority scores as shown in Section 3.1.5. The agent can simply

follow the closed-loop progress of the expert demonstrations, resulting in both BC

and DBC performing similarly to the expert demonstrations. On the other hand,

the Diffusion Policy is designed for modeling multimodal behaviors and, there-

fore, performs inferior results on single-mode locomotion tasks. For ANTREACH

task, which combines locomotion and navigation, our method outperforms all the

baselines.

In summary, our proposed DBC is able to perform superior results across

all tasks, which verifies the effectiveness of combining conditional and joint

distribution modeling.

Inference Efficiency. To evaluate the inference efficiency, we measure and report

the number of evaluation episodes per second (↑) for Implicit BC (9.92), Diffusion

Policy (1.38), and DBC (30.79) on an NVIDIA RTX 3080 Ti GPU in MAZE. As a

result of modeling the conditional probability p(a|s), DBC and BC can directly map

states to actions during inference. In contrast, Implicit BC samples and optimizes

actions, while Diffusion Policy iteratively denoises sampled noises, which are

both time-consuming. This verifies the efficiency of modeling the conditional

probability.

Action Space Dimension. The Implicit BC baseline requires time-consuming

action sampling and optimization during inference, and such a procedure may not

scale well to high-dimensional action spaces. Our Implicit BC baseline with a

derivative-free optimizer struggles in CHEETAH, WALKER, and HANDROTATE

environments, whose action dimensions are 6, 6, and 20, respectively. This is
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Table 3.3: Generalization Experiments in FETCHPICK. We report the perfor-

mance of our proposed framework DBC and the baselines regarding the mean and

the standard deviation of the success rate with different levels of noise injected into

the initial state and goal locations in FETCHPICK, evaluated over three random

seeds.

Method
Noise Level

1 1.25 1.5 1.75 2

BC 92.4% ± 8.5% 91.6% ± 5.8% 85.5% ± 6.3% 77.6% ± 7.1% 67.4% ± 8.2%

Implicit BC 83.1% ± 3.1% 69.4% ± 7.3% 51.6% ± 4.2% 36.5% ± 4.7% 23.6% ± 3.0%

Diffusion Policy 90.0% ± 3.5% 83.9% ± 3.4% 72.3% ± 6.8% 64.1% ± 7.1% 58.2% ± 8.2%

DBC (Ours) 99.5% ± 0.5% 97.5% ± 1.9% 91.5% ± 3.3% 83.3% ± 4.8% 73.5% ± 6.8%

consistent with [100], which reports that the optimizer failed to solve tasks with

an action dimension larger than 5. In contrast, our proposed DBC can handle

high-dimensional action spaces.

Generalization Experiments in FETCHPICK

This section further investigates the generalization capabilities of the policies

learned by our proposed framework and the baselines. To this end, we evaluate the

policies by injecting different noise levels to both the initial state and goal location

in FETCHPICK. Specifically, we parameterize the noise by scaling the 2D sampling

regions for the block and goal locations in both environments. We expect all the

methods to perform worse with higher noise levels, while the performance drop of

the methods with better generalization ability is less significant. In this experiment,

we set the coefficient λ of DBC to 0.1 in FETCHPICK. The results are presented in

Table 3.3 for FETCHPICK.

Overall Performance. Our proposed framework DBC consistently outperforms

all the baselines with different noise levels, indicating the superiority of DBC when

different levels of generalization are required.
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Expert Action

Predicted Action

(a) Sampled actions (b) Trajectories

Figure 3.4: Manifold overfitting Experiments. (a) We collect the green spiral

trajectories from a script policy, whose actions are visualized as red crosses. (b)

We train and evaluate πBC , πDM and πDBC using the demonstrations from the

script policy. The trajectories of πBC (orange) and πDBC (red) can closely follow

the expert trajectories (green), while the trajectories of πDM (blue) deviates from

expert’s. This is because the diffusion model struggles at modeling such expert

action distribution with a lower intrinsic dimension, which can be observed from

incorrectly predicted actions (blue dots) produced by the diffusion model.

Performance Drop with Increased Noise Level. In FETCHPICK, DBC expe-

riences a performance drop of 26.1% when the noise level increase from 1 to 2.

However, BC and Implicit BC demonstrate a performance drop of 27.0% and

71.6%, respectively. Notably, Diffusion Policy initially performs poorly at a noise

level of 1 but demonstrates its robustness with a performance drop of only 35.3%

when the noise level increases to 2. This shows that our proposed framework gen-

eralizes better and exhibits greater robustness to noise compared to the baselines.

Manifold Overfitting Experiments

This section aims to empirically examine if modeling joint probabilities is difficult

when observed high-dimensional data points lie on a low-dimensional manifold
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(i.e., , manifold overfitting). We employ a point maze environment implemented

with [127] and collect trajectories from a script policy that executes actions (0.5, 0),

(0, 0.5), (−0.7, 0), and (0,−0.7) (red crosses in Figure 3.4a), each for 40 consecu-

tive time steps, resulting the green spiral trajectories visualized in Figure 3.4b.

Given these expert demonstrations, we learn a policy πBC to optimize Eq. 3.1,

a policy πDM to optimize Eq. 3.5 with a diffusion model trained on the expert

distribution, and a policy πDBC to optimize the combined objective Eq. 3.6. Figure

3.4a shows that the diffusion model struggles at modeling such expert action

distribution with a lower intrinsic dimension. As a result, Figure 3.4b show that

the trajectories of πDM (blue) deviates from the expert trajectories (green) as the

diffusion model cannot provide effective loss. On the other hand, the trajectories of

πBC (orange) and πDBC (red) are both able to closely follow the expert’s and result

in a superior success rate. This verifies our motivation to complement modeling

the joint probability with modeling the conditional probability (i.e., BC).

3.1.6 Discussion

We propose an imitation learning framework that benefits from modeling both the

conditional probability p(a|s) and the joint probability p(s, a) of the expert dis-

tribution. Our proposed Diffusion Model-Augmented Behavioral Cloning (DBC)

employs a diffusion model trained to model expert behaviors and learns a policy to

optimize both the BC loss and our proposed diffusion model loss. Specifically, the

BC loss captures the conditional probability p(a|s) from expert state-action pairs,

which directly guides the policy to replicate the expert’s action. On the other hand,

the diffusion model loss models the joint distribution of expert state-action pairs

p(s, a), which provides an evaluation of how well the predicted action aligned with

the expert distribution. DBC outperforms baselines or achieves competitive perfor-

mance in various continuous control tasks in navigation, robot arm manipulation,

dexterous manipulation, and locomotion. We design additional experiments to

verify the limitations of modeling either the conditional probability or the joint
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probability of the expert distribution and compare different generative models. Ab-

lation studies investigate the effect of hyperparameters and justify the effectiveness

of our design choices. Despite its encouraging results, our proposed framework is

designed to learn from expert trajectories without interacting with environments

and cannot learn from agent trajectories. Extending our method to incorporate

agent data can potentially allow for improvement when interacting environments

are possible.

3.2 Restoring Noisy Demonstration for Imitation

Learnings

3.2.1 Introduction

Imitation learning aims to learn a policy from expert demonstrations and has been

applied to various applications, including robotics, industrial automation, strategy

board games, video games, etc [132, 133, 134, 135, 136, 137]. Compared to

reinforcement learning (RL), acquiring a policy in a trial-and-error manner, which

can be unsafe or expensive, imitation learning (IL) algorithms can learn without

environmental interactions. Furthermore, while designing sophisticated RL reward

functions is often difficult and tedious [138, 139], IL methods learn from expert

demonstrations and do not require reward signals.

Despite the wide applicability, most existing imitation learning algorithms

assume perfect (i.e., optimal and clean) expert demonstrations, which can be chal-

lenging and expensive to collect. Specifically, expert demonstrations often contain

imperfections caused by errors from human experts or sensor and control system

inaccuracies. For example, the sensors may induce noises due to environmental

interference [140, 141], and the control system could perform imperfectly due

to steady-state error or control jitter [142, 143, 144]. As a result, learning from

noisy expert demonstrations using IL methods while neglecting the noises can
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Figure 3.5: Illustration of Human-Feedback-Efficient Reinforcement Learning

for Online Diffusion Model Finetuning (DMDR): We propose a two-stage

learning framework that first identifies and filters clean samples from the noisy

demonstrations. Then, by learning diffusion models using the clean samples, we

restore the remaining noisy samples to provide more reliable demonstrations.

significantly limit the performance of acquired policies [145, 146].

To best leverage expert demonstrations with inherent noises, we propose to

(1) filter clean demonstrations from noisy demonstrations, (2) model the clean

demonstrations, (3) restore the noisy demonstrations with the learned model, and

(4) aggregate the clean and restored demonstrations to learn a policy, as illustrated

in Figure 3.5. In contrast, most existing learning from noisy demonstration methods

falls short of implementing this complete pipeline. For example, [147, 146] filter

out or give low importance weights on demonstrations determined noisy, failing to

extract information from noisy demonstrations; on the other hand, data restoration

methods such as [148, 149, 150] require a known linear degradation model, which

is inaccessible for noisy demonstrations in imitation learning. Uniformly restoring

entire demonstration sets without separating potentially clean demonstrations

can incorrectly modify clean demonstrations and lead to deteriorated learning

performance.
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This work proposes a filter-and-restore framework, Diffusion-Model-Based

Demonstration Restoration (DMDR), for imitation learning from noisy demon-

strations. In the demonstration filtering stage, we train autoencoders and perform

the local outlier factor [151] using the learned embeddings to assign a pseudo

label to each data point. In the demonstration restoration stage, we consider the

correlation between states and actions and train a pair of conditional diffusion

models using the pseudo-labels. One conditional diffusion model aims to restore

actions based on the corresponding states, while another diffusion model focuses

on the reverse, restoring states based on actions. Then, we aggregate the clean

and restored demonstrations and learn a policy using existing IL methods, such

as behavioral cloning (BC) [86, 87], implicit behavioral cloning (IBC) [100], and

diffusion policy (DP) [109, 110].

We evaluate our proposed framework and existing methods in various domains,

including robot arm manipulation, dexterous robotic hand manipulation, and loco-

motion. The experimental results show that our proposed framework consistently

outperforms existing methods across all the tasks. Also, we conduct extensive

ablation studies to justify all the components in our filter-and-restore pipeline, in-

cluding the filtering methods and the restoration settings. The experimental results

also confirm that our proposed filter-and-restore pipeline is IL method agnostic,

i.e., can be combined with various existing IL methods, including BC, IBC, and

DP, and yield improved performance.

3.2.2 Related Works

Imitation Learning (IL)

Imitation learning aims to learn a policy by observing expert demonstrations

without reward signals from the environment. Online imitation learning methods

use rollouts collected from online interaction to help policy learning. In the realm

of online imitation learning, inverse reinforcement learning (IRL) methods [106,

152] aim to derive the reward function from the expert demonstrations for policy
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learning; Generative adversarial imitation learning (GAIL) methods [81, 101] learn

discriminators that can identify the rollout samples and the expert samples for

training a policy that models the expert distribution.

On the other hand, offline imitation learning methods learn a policy directly

from a fixed set of expert demonstrations without environmental interactions.

These methods are beneficial when online interactions are expensive, risky, or

impractical. Behavior cloning (BC) [153, 87, 154] is a widely studied offline

learning approach aimed at imitating expert behaviors through supervised learning;

Implicit BC (IBC) [100] learns an energy-based model that takes both states and

actions as inputs for better generalization ability; Diffusion Policy [109, 110]

employs a diffusion model as a policy to capture multi-modal behaviors that BC

struggles to model. However, the effectiveness of these imitation learning methods

heavily depends on the quality of the expert demonstrations. Noisy or sub-optimal

samples in noisy demonstrations can significantly hinder the learning process and

the performance of the derived policies.

Imitation Learning (IL) from Noisy Demonstrations

Recent works have explored online methods to address the issue of noisy demon-

strations, where polluted data or trajectories with mixed optimality pose challenges

to policy learning. Inverse reinforcement learning (IRL) methods [155, 156], aim

to derive a learned reward function based on ranked trajectories for policy learning.

Generative adversarial-based approaches [145, 157] assign a confidence or opti-

mality score for training samples to alleviate the interference of the noises. These

online IL methods [155, 145, 158] additionally leverage a supplementary dataset

with confidence annotations to help evaluate the noisy demonstrations, which is

usually not available in real-world cases.

Offline IL methods do not require environmental interactions. However, these

methods rely more on the quality of the provided expert demonstrations, making

it more challenging to learn from noisy demonstrations. [159] proposes learning
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an estimation of the stationary distribution to regularize policy learning. [160]

extends this approach by imposing additional constraints on optimization to take

the diversity of both states and actions into consideration. Discriminator-based

methods [161, 162] assign weights for training samples based on their subopti-

mality using discriminators. [162] additionally considers the dynamics models,

employing them in collaboration with the discriminator. Behavioral Cloning from

Noisy Demonstrations (BCND) [147] assign weights for training samples based

on predictions from previous iterations to seek the major mode of the distribu-

tion. However, these methods give low importance weights on demonstrations

determined as noisy and fall short of extracting useful information from them.

Therefore, we propose a filter-and-restore framework that restores noisy demon-

strations to best leverage the noisy demonstrations for policy learning. In our

experiments, we compare our proposed framework with BCND to demonstrate the

robustness and effectiveness of our approach.

Anomaly Detection (Outlier Detection)

Anomaly detection techniques aim to identify abnormal data points from normal

ones, with applications in various domains. In real-world scenarios, abnormal data

exhibits diverse characteristics from unexpected events and rare occurrences. Due

to this diversity, abnormal data is usually diverse and challenging to collect. There-

fore, previous literature focuses on learning models to identify the distribution of

normality and classify data that deviate from the learned distributions as anomalies.

Classification-based anomaly detection [163, 164, 165, 166, 167, 168] formu-

late anomaly detection as a one-class classification problem, where only normal

samples are available during training. For instance, [164, 165] utilize a limited

set of labeled outliers samples with unlabeled samples to train the classifiers.

Alternatively, other works [166, 167, 168] augment the training data with out-of-

distribution or synthetic samples to enhance the classifier’s ability to recognize

anomalies. Nevertheless, applying these augmentation methods to offline imita-
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tion learning is challenging due to the significant differences in behavior among

different environments.

On the other hand, reconstruction-based anomaly detection methods utilize

autoencoders [1, 3, 169, 4] to determine outliers based on the reconstruction errors.

In these approaches, neural networks are trained to reconstruct input data, with a

widely used assumption that deep models tend to learn clean samples faster than

noisy samples [170, 171, 172]. Consequently, samples with higher reconstruction

errors are often flagged as anomalies. In this work, we apply a reconstruction-based

method to filter outliers for the noisy demonstrations.

Diffusion Models for Data Restoration

Diffusion models have demonstrated remarkable performance in various generation

tasks [39, 173, 110, 64, 174, 175, 176]. Recent works [149, 150] study to extend

diffusion models for data restoration tasks, including super-resolution, inpainting,

colorization, etc.

Denoising Diffusion Restoration Models (DDRM) [149] demonstrate that

when the restoration task can be formulated as a linear inverse problem, pre-trained

diffusion models can be effectively leveraged for inference given the degradation

matrix. This approach allows for the utilization of existing models without the need

for retraining or fine-tuning for specific restoration tasks. Building upon DDRM,

GibbsDDRM [150] relaxes the requirement of the pre-defined degradation matrix

and adopts a learnable linear operator to describe the restoration task instead.

However, existing works in this domain often rely on diffusion models pre-

trained on clean datasets, which may not be directly applicable to noisy demonstra-

tions commonly encountered in real-world scenarios. To address this limitation,

we propose a two-stage framework. In the first stage, we filter clean samples from

noisy demonstrations to create a dataset suitable for training conditional diffusion

models. In the second stage, we utilize the derived diffusion models to restore the

noisy data effectively.
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3.2.3 Method

In this paper, we aim to learn from noisy demonstrations without environmental

interactions or additional annotations for clean samples. The noisy demonstrations

D = τ1, ..., τM consists of M trajectories, where each trajectory τi comprises a

sequence of ni state-action pairs si
1, a

i
1, ..., s

i
ni
, ai

ni
. For each state and action in

the demonstration, there exists a small probability p that random noise is injected,

indicating the noise level. Notably, the pollution of states and actions is independent

since distinct sensors are typically used for monitoring states and actions in real-

world scenarios. To simplify notation, we denote a state-action pair sampled from

the entire demonstration dataset as (s, a) ∼ D, dismissing the trajectory index and

the index of a state-action pair within a trajectory.

We propose a filter-and-restore framework for imitation learning from noisy

demonstrations. In Section 3.2.3, we show how we filter clean samples using

a combination of autoencoders and Local Outlier Factor, which is an anomaly

detection algorithm that calculates the local deviation. In Section 3.2.3, we illustrate

the training process for our conditional diffusion models and how we restore

samples using the derived diffusion models.

Demonstration Filtering

In this stage, we aim to filter clean samples from noisy demonstrations by integrat-

ing autoencoders and Local Outlier Factor (LOF). The process involves learning

global features of the data distribution with autoencoders and then applying LOF

to identify potential outliers based on local densities.

Anomaly Detection with Autoencoders: We apply a reconstruction-based

method to detect and filter potential abnormal samples from noisy demonstrations.

While demonstrations typically consist of sequences of state-action pairs, it’s impor-

tant to note that states and actions often represent distinct properties and are usually

captured by different sensors. For instance, states commonly denote variables like

position and velocity, whereas actions typically record the torque applied to the
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Figure 3.6: Demonstration filtering. (a) Training. We train the state autoencoder

ϕs using the reconstruction loss and apply the Local Outlier Factor (LOF) on the

feature space, i.e., zs. We only show the state autoencoder ϕs in the figure for

illustration, while the action autoencoder ϕa follows the identical architecture. (b)

Inference. We use autoencoders and LOF to individually identify outliers for states

and actions. With the predictions of outliers, we filter the noisy demonstrations into

four subsets: D(ŝ,â), D(s′,a′), D(ŝ,a′), and D(s′,â), which contains clean state-action

pairs, noisy state-action pairs, clean states with noisy actions, and noisy states with

clean actions, respectively.

joints of robots, as seen in the widely utilized MuJoCo environment [177]. Further-

more, performing the desired actions (applying desired torques on joints) could face

control system errors, such as steady-state error and control jitter [142, 143, 144],

so states and actions would encounter noise perturbation independently. As a result,

state and action should be filtered and labeled independently.

As depicted in Figure 3.6a, we train a pair of autoencoders to capture the

majority of states and actions with a reconstruction loss, which can be formulated

as follows:

Ls
rec = E(s,a)∼D

[
||ϕ(s) − s||2

]
, (3.7)

and

La
rec = E(s,a)∼D

[
||ϕ(a) − a||2

]
, (3.8)
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where ϕ(s) indicates the state autoencoder and ϕ(a) indicates the action autoen-

coder. One can directly adopt Ls
rec and La

rec to filter outliers as reconstruction-based

anomaly detection approaches do.

However, in tasks like robot arm manipulation, we find that certain state-action

pairs may be infrequent yet crucial for successful execution. For instance, in a

scenario where a robot arm needs to grasp an object and arise it to a target location.

While most state-action pairs may correspond to routine movements, such as

navigating the arm, there are specific instances, such as the action of grasping an

object, that occur less frequently but are indispensable for task completion. To

prevent discarding essential samples, we further apply the Local Outlier Factor

algorithm to identify outliers based on the encoded representations obtained from

autoencoders.

Combining Autoencoder and Local Outlier Factor: Local Outlier Factor

(LOF) is known as an anomaly detection algorithm that measures the local deviation

of samples. The algorithm begins by estimating the local density for each sample in

the dataset using the k-nearest neighbors (KNN) approach. It calculates the density

by considering the distance to each sample’s k nearest neighbors. Next, a ratio of

local density is computed using the sample and its neighbors, which serves as the

LOF score. A larger LOF score indicates that the sample has a lower density than

its neighbors, suggesting it may be an outlier. LOF effectively identifies potential

outliers in the dataset by analyzing each local region individually.

As we mentioned in the previous section, to prevent predicting state-action

pairs with unique behaviors as anomalies, we utilize the bottleneck features zs and

za from the autoencoders to calculate LOF score for each s and a. These represen-

tations capture global behaviors since the autoencoders are trained to minimize

reconstruction loss across the entire expert demonstration dataset. LOF then evalu-

ates outliers based on the local density of these representations. By considering

the local density of samples’ representations, we effectively prevent discarding

infrequent samples with useful behaviors, thereby enhancing the robustness of
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demonstration filtering for imitation learning tasks.

In our implementation, we follow the assumption in reconstruction-based

anomaly detection that the majority of samples are clean, i.e., at least half of the

given demonstrations are clean. Therefore, half of the samples with lower LOF

scores are labeled as clean, while the other half is labeled as noisy. As shown

in Figure 3.6b, we filter the dataset into four subsets according to the pseudo-labels:

clean state-action pairs D(ŝ,â), clean states with noisy actions D(ŝ,a′), noisy states

with clean actions D(s′,â), and noisy state-action pairs D(s′,a′).

Demonstration Restoration

In this section, we show how to restore the noisy subsets of demonstrations with

diffusion models. Previous works [149, 150] have shown how to use diffusion

models for image restorations when the distortion process is known. For instance,

Denoising Diffusion Restoration Models (DDRM) [149] utilizes a given degra-

dation matrix for each restoration task to solve the linear inverse problem, and

GibbsDDRM [150] assumes the distortion can be modeled by a learnable blurring

kernel. However, such information is not available in offline imitation learning. To

restore demonstrations without a given degradation matrix, we utilize conditional

diffusion models to consider the relationships between the corresponding state

and action. Moreover, we introduce noise level predictors to guide the denoising

process of the diffusion models for accurate restoration. We elaborate on the

learning of these components in the following subsections.

Learning Conditional Diffusion Models: This work uses Denoising Diffu-

sion Probabilistic Models (DDPMs) [64] for data restoration. During the training

stage, DDPMs gradually add Gaussian noise to each data sample until it becomes

isotropic Gaussian, called the forward diffusion process. Then, DDPMs learn to

denoise the noise-injected sample to the original data, called the reverse diffusion

process. Given a data point x0 sampled from dataset D, e.g., a state s or an action

a sampled from the demonstrations, latent variables x1, ..., xT are produced in the
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Figure 3.7: Demonstration restoration. (a) Training of conditional Diffusion

Models. We train the state diffusion model θs using the condition of clean action â

to restore the noise-injected state st. We employ an identical architecture for the

action diffusion model θa, which restores the noise-injected action at using the

clean state ŝ. (b) Training of Noise Level predictors. To predict the level of noise

during inference, we train the state noise predictor ψs given a clean action â. The

action noise predictor ψa follows the identical architecture.

forward diffusion process, where T is the number of diffusion steps, and xT is an

isotropic Gaussian. The diffusion model θ learns to reverse the diffusion process

by predicting the injected noise ϵ on the sample. The objective of DDPM can be

formulated as the following:

Ldiff = Et∼U(0,T ),x∼D

[
||ϵ− ϵθ(αtx0 + σtϵ, t)||2

]
, (3.9)

where t is sampled from a uniform distribution U(0, T ) and σt =
√

1 − αt
2 is

a scalar representing increasing noise schedule. Once the diffusion model θ is

learned, one can sample a random noise and use the predicted noise ϵθ to compute

the next latent variable. The above process is repeated iteratively until a clean

sample x0 is generated.

To consider the correlation between states and actions, we train a pair of

conditional DDPMs for states and actions, respectively, using the filtered subset

containing clean state-action pairs D(ŝ,â). The state diffusion model θs aims
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Figure 3.8: Inference of demonstration restoration. Given a noisy state s′ and a

clean action â from D(s′,â), we first predict the level of noise t∗ for the noisy state.

If t∗ is less than a predefined threshold tthres, then we append it to the clean subset

D(ŝ,â) directly. Otherwise, we denoise the noisy state using the state diffusion

model θs, conditioned on the clean action and the predicted noise level. Similarly,

noisy actions in D(ŝ,a′) can be restored using the action noise predictor ψa and the

action diffusion model θa.

to restore states based on the corresponding actions, while the action diffusion

model θa focuses on restoring actions based on states. The state diffusion model

θs considers the corresponding action to predict the noise-injected states. The

objective can be calculated as follows:

Ls
diff = Et∼U(0,T ),(ŝ,â)∼D(ŝ,â)

[
||ϵ− ϵθs(st, â, t)||2

]
, (3.10)

where st = αtŝ+σtϵ is the noise-injected state, â is the corresponding clean action,

and t indicates the sampled index for the diffusion process, which can be seen as a

noise level. Similarly, we can define the objective for the action diffusion model θa

as follows:

La
diff = Et∼U(0,T ),(ŝ,â)∼D(ŝ,â)

[
||ϵ− ϵθa(at, ŝ, t)||2

]
, (3.11)

where at = αtâ + σtϵ is the noise-injected action, ŝ is the corresponding clean

state, and t is the sampled noise level.
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Both conditional diffusion models are trained on the subset of clean pairs

D(ŝ,â) to ensure the learned models can accurately capture the correct relationships

between the states and actions. After learning the diffusion models, we can

apply the state diffusion model θs on the subset D(s′,â) to restore the noisy states

conditioned on the corresponding clean action. Also, the action diffusion model θa

is applied on D(ŝ,a′) to restore the noisy actions. We discard the noisy state-action

pairs from the subset D(s′,a′) since the polluted state and action can not provide

sufficient information for restoration.

Learning Noise Level Predictors: In the previous section, we have derived

diffusion models that can gradually denoise a sampled isotropic noise to a clean

state or action with the iterative reverse diffusion process. Our goal is to restore the

noisy states s′ in the subset D(s′,â) and to restore the noisy states a′ in the subset

D(â,s′). One potential way for restoration is to directly treat the noisy states and

actions as isotropic Gaussian noises and further denoise them using the trained

diffusion model. However, the noisy states and actions are still more informative

than isotropic Gaussian noises despite being polluted by noise. To best leverage

these samples, we aim to assign a noise level t for each noisy sample during the

denoising process in demonstration restoration.

To this end, we introduce a pair of noise predictors ψs and ψa to predict the

noise levels for states and actions, respectively. Similar to the diffusion models,

the noise predictors are conditioned on the corresponding state or action. The

training objective for the state noise predictor ψs is to predict the correct noise

level for noise-injected states from the clean subset D(ŝ,â), which can be calculated

as follows:

Ls
pred = Et∼U(0,T ),(ŝ,â)∼D(ŝ,â)

[
||t− ψs(st, â)||2

]
, (3.12)

where st = αtŝ + σtϵ is the noise-injected state, and â is the clean action to be

served as the condition. Similarly, we can learn the action noise predictor ψa by

the following equation:

La
pred = Et∼U(0,T ),(ŝ,â)∼D(ŝ,â)

[
||t− ψa(at, ŝ)||2

]
, (3.13)
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where at = αtâ + σtϵ is the noise-injected action, and ŝ is the clean state to be

served as the condition.

Restoration with Diffusion Models and Noise Predictors: The restoration

of noisy states in D(s′,â) and noisy actions in D(ŝ,a′) follows analogous approaches.

Here, we illustrate how to restore the noisy states in D(s′,â) with the trained state

noise predictor ψs and the state diffusion model θs.

As depicted in Figure 3.8, we input a state-action pair sampled from D(s′,â),

where the state s′ is noisy and the action â is clean as predicted in the previous

filtering stage. To restore the noisy state using the clean action, we first predict

the noise level t∗ based on the sampled state-action pair. The predicted noise level

t∗ indicates how much the sample deviates from the major behaviors in the noisy

demonstrations. We empirically find this measurement can help us filter samples

by setting a noise level thresholding with the predicted noise level. If the value of

t∗ is lower than a predefined tthres, then we trust the state to be clean and directly

append the pair into the clean dataset D(ŝ,â). Otherwise, we restore the noisy state

s′ according to the â and t∗ with the state diffusion model and then add the restored

state with the corresponding action to the clean dataset. The noisy actions in D(ŝ,a′)

can be restored following a similar procedure.

3.2.4 Experiments

In this section, we evaluate how our Diffusion-Model-Based Demonstration Restora-

tion (DMDR) benefits offline imitation learning with noisy demonstrations. We

first introduce the environmental setup for the experiments (Section 3.2.4) and

the baselines (Section 3.2.4). The experimental results (Section 3.2.4) show that

DMDR is more effective than other baselines on various continuous control tasks.

We then do the ablation studies to verify our design choice for both the filtering

stage (Section 3.2.4) and the restoration stage (Section 3.2.4). Finally, we also

show that DMDR can be applied to different imitation learning algorithms (Section

3.2.4).
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(a) FETCHPICK (b) FETCHPUSH (c) HANDROTATE (d) WALKER

Figure 3.9: Environments & Tasks. (a)-(b) FETCHPICK and FETCHPUSH: The

robot arm manipulation tasks employ a 7-DoF Fetch robotics arm to pick up/push

an object from the table and move it to a target location. (c) HANDROTATE: This

dexterous manipulation task requires a Shadow Dexterous Hand to in-hand rotate

a block to a target orientation. (d) WALKER: These locomotion tasks require

learning agents to walk as fast as possible while maintaining their balance.

Experimental Setup

This paper focuses on offline imitation learning with noisy demonstration D, which

contains sequences of (s, a) pairs that may be polluted by noises. Since the sensors

and the control motors for states and actions are usually different, we assume states

s and actions a are polluted independently. Following [178, 179, 141], we model

the noise as a Gaussian distribution. A noise level p indicates the probability of

each state or action being polluted by the noise.

We employ the proposed framework (DMDR) in various continuous control

domains. As shown in Figure 3.9, we illustrate the environments and tasks used in

the experiments in the following:

• Robot Arm Manipulation. We leverage the FETCHPICK and FETCHPUSH

environments to represent the robot arm manipulation tasks. These tasks aim

to control a 7-DoF robot arm to interact with an object and achieve a defined

target. FETCHPICK (Figure 3.9a) requires picking up an object from the table

and raising it to a target location. On the other hand, FETCHPUSH (Figure

3.9b) requires pushing an object on the table and moving it to a target location.
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We use 10k state-action pairs provided by [152] for both FETCHPICK and

FETCHPUSH, which contains 303 and 185 trajectories, respectively. We set

the noise level p to 0.2 to create the noisy demonstrations.

• Dexterous Manipulation. We leverage the HANDROTATE [128] environ-

ment to represent a challenging Dexterous Manipulation task. The task

requires controlling a dexterous hand and in-hand rotates a block to a target

orientation (Figure 3.9c). The environment takes 68 dimension states and

outputs 20 dimension actions, which is high-dimensional compared to the

commonly-used environments in imitation learning. We use 515 trajectories

with 20k state-action pairs produced by a SAC expert policy. We set the

noise level p to 0.4 to create the noisy demonstrations.

• Locomotion. We leverage the WALKER [180] environment to represent the

locomotion tasks. This environment requires controlling a bipedal agent to

travel toward the x-axis direction as fast as possible while maintaining the

balance (Figure 3.9d). If the agent loses its balance, e.g., the height of the

agent is too low, the episode would terminate before the maximum number

of steps is reached. We use 20 trajectories with 20k state-action pairs, which

are provided by [181]. We set the noise level p to 0.2 to create the noisy

demonstrations.

Baselines

To evaluate the effectiveness of the proposed method, we compare our DMDR

with other offline imitation learning baselines for noisy demonstrations. Under this

problem formulation, the baselines should not require environmental interactions

or additional annotations. Therefore, online methods such as [145, 157, 158, 155,

156] are not applicable and we compare our method with the following baselines:

• BC. Behavioral Cloning (BC) is a straightforward approach to offline imi-

tation learning. It learns a policy that directly maps from states to actions
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Table 3.4: Overall experiment results

Method # of policies FETCHPICK FETCHPUSH HANDROTATE WALKER

BC 1 44.38% ± 11.02% 67.97% ± 4.81% 45.56% ± 6.15% 4456.8 ± 1051.1

DMDR (Ours) 1 90.52% ± 4.83% 79.64% ± 5.30% 51.70% ± 5.85% 5066.4 ± 886.4

Ensemble BC 5 51.36% ± 6.67% 72.25% ± 3.20% 51.03% ± 4.33% 5170.6 ± 395.2

BCND [147] 5 52.87% ± 12.71% 71.01% ± 17.98% 54.97% ± 4.49% 5144.8 ± 739.6

Ensemble DMDR (Ours) 5 91.80% ± 2.54% 82.03% ± 2.87% 55.36% ± 4.43% 6168.1 ± 284.9

by imitating the behavior demonstrated in training data using supervised

learning. However, BC struggles to deal with noisy demonstrations since

the policy tends to overfit noisy data, making it challenging to learn the

underlying dynamics accurately.

• Ensemble BC. To mitigate the impact of noisy demonstrations, one effective

strategy is to employ ensemble techniques. Ensemble BC extends the basic

BC approach by training several policies and aggregating their outputs.

Ensemble BC reduces the bias and variance of the prediction and thus

improves the overall resilience to noise perturbation.

• BCND. Behavioral Cloning from Noisy Demonstrations (BCND) [147] aims

to learn robust policies from noisy demonstrations containing optimal and

sub-optimal behaviors. They apply ensemble policies and further design

an algorithm to assign weights for each training sample. With the derived

weights, the policies are encouraged to capture the behaviors of the major

distribution of training samples, which are assumed to be clean and optimal.

Experimental Results
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(a) FETCHPICK (b) FETCHPUSH

(c) HANDROTATE (d) WALKER

Figure 3.10: Training progress. We observe that DMDR is more robust and stable

during the training, resulting in a lower standard deviation. In contrast, the training

of BC is more easily affected by noisy samples, which can be observed on (a)

FETCHPICK and (d) WALKER.
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We compare our DMDR with baselines and show the experimental results

in Table 3.4. The results are separated into two parts: methods with a single policy

and methods that leverage the ensemble technique with multiple policies. We also

report the result of DMDR when the ensemble technique is applied (Ensemble

DMDR). We evaluate the agents with 100 episodes and five random seeds on

all tasks. We report the average and standard deviation of the success rate for

FETCHPICK, FETCHPUSH, and HANDROTATE and return for WALKER.

We observe that the proposed DMDR outperforms baselines whether the en-

semble policies are applied or not. The above results verify the effectiveness of our

demonstration filtering and restoration process. BC struggles with learning from

noisy demonstrations, which suggests that the noisy data points severely hinder

performance. By aggregating multiple BC policies, Ensemble BC improves its

performance compared to BC, and the standard deviations are lower than those

from BC in all tasks, which infers that ensemble policies are more robust to noisy

demonstrations. For BCND, it slightly outperforms Ensemble BC, especially in

HANDROTATE. However, it produces a large standard deviation in most of the

tasks since the weight-assigning mechanism is affected by the noisy samples at the

early training stage.

In addition, we illustrate the training progress of all methods in Figure 3.10.

We observe that DMDR is more robust and stable during the training, resulting in

a lower standard deviation. In contrast, BC encounters a performance drop when

the training progress is affected by the noisy samples, which can be observed on

FETCHPICK and WALKER.

Ablation Study for Demonstration Filtering

To evaluate the effectiveness of our demonstration filtering design, we ablate the

filtering part while fixing the restoration algorithm and the setting for the policy

learning. We compare the filtering approaches listed in the following:

• Random Filtering. A naive way to do filtering is to randomly label half the
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states and actions as clean independently. This baseline serves as a bottom

line for filtering methods.

• Autoencoder (AE). Two autoencoders are learned for states and actions,

respectively. Since autoencoders tend to capture the major behaviors of train-

ing data, samples with higher reconstruction losses are considered outliers

and labeled as noisy.

• Local Outlier Factor (LOF). LOF estimates the local deviation of a data

point with respect to its neighbors given a dataset. Specifically, we filter

samples by computing the LOF score based on k-nearest neighbors and then

identify a sample as an outlier if the score is large.

• Ours. Our method calculates the LOF scores for each data point based on

the features derived from the autoencoders. This method considers global

representations with the autoencoders and local deviations of samples with

the LOF algorithm.

The results of filtering ablation are shown in Table 3.5. We note that employing

the naive random filtering method demonstrates an improvement in success rate

alongside a reduction in variance. We hypothesize that the improvement results

from the restoration process. Even though the training data for diffusion models

and noise predictors are still noisy because of random filtering, the diffusion models

can still improve the quality of samples by restoration. The above results strengthen

the motivation of our filter-and-restore framework.

Utilizing Autoencoder (AE) or Local Outlier Factor (LOF) individually for

filtering demonstrations shows a respectable improvement. However, the autoen-

coders only capture the majority of all training samples and can only better describe

the global behaviors of the demonstrations. On the other hand, the Local Outlier

Factor (LOF) only considers local features and is unaware of global behaviors.

These restrictions hold back their ability to filter out noisy samples accurately.
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Table 3.5: Demonstration filtering ablation study

Method # of Samples Success Rate

Noisy Data 10000 45.40% ± 11.33%

Random Filtering 7505 51.20% ± 6.80%

AE 7313 86.00% ± 3.97%

LOF 7311 76.75% ± 27.93%

Ours 7362 91.80% ± 4.09%

In contrast, our proposed approach, which combines AE and LOF, capitalizes

on the strengths of both methods. By integrating global and local feature repre-

sentations, our method surpasses the performance of its components, leading to

superior results.

Ablation Study for Demonstration Restoring

To verify the effect of demonstration restoration and evaluate the designs of our

restoration method proposed in Section 3.2.3, we compare different strategies that

deal with samples from the noisy subsets.

We compare our method with the following baselines and variants on FETCH-

PICK and WALKER environments:

• Random forest regressor: Random forest regressor makes predictions based

on the predictions from multiple decision trees. We train the regressor using

the clean state-action pairs fromD(ŝ,â) and use the trained regressor to predict

the noisy states or actions given the corresponding clean actions or states.

• Generation: Given the diffusion models learned in the filtering stage, this

baseline directly generates states/actions based on the corresponding ac-

tions/states. We compare our restoration method with this baseline to verify

the benefits of restoring noisy samples instead of generating samples from
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Table 3.6: Demonstration restoration ablation study

Method
FETCHPICK WALKER

(Success Rate) (Return)

Random forest regressor 65.00% ± 12.71% 255.3 ± 48.1

Generation 89.89% ± 5.13% 3452.6 ± 1528.8

Ours w/o predictor 88.20% ± 4.82% 2702.9 ± 1281.3

Ours w/o tthres 89.00% ± 4.00% 4261.4 ± 857.2

Ours 90.52% ± 4.83% 5066.4 ± 886.4

isotropic Gaussian noises directly.

• Ours w/o predictor: To verify the effectiveness of our noise level predictors,

we apply restoration with a fixed noise level t for the diffusion model. Given

that the total number of diffusion steps T is 100, we set the fixed noise levels

as 50.

• Ours w/o tthres: As described in Section 3.2.3, the predicted noise level t∗

from predictors can be used to filter noisy demonstrations by thresholding.

To evaluate the above design, we employ a variant of our method that does

not apply thresholding and directly restores the noisy samples based on t∗.

• Ours: Our restoration method utilizes the predicted noise predictors to

predict the noise level for each noisy sample and further sets a threshold tthres

to filter samples with smaller noise levels before restoring them.

The results of restoration ablation are shown in Table 3.6. The random forest

regressor is outperformed by other diffusion-model-based restoration methods,

which verifies the effectiveness of using diffusion models for recovering data. We

observe that all diffusion-model-based methods perform similarly on FETCHPICK,

including the augmentation with diffusion models baseline. The results infer that a

well-trained diffusion model can directly generate informative training data from
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noises in this environment. Therefore, all of the diffusion-model-based methods

perform well regardless of whether the noise predictors are included.

On the other hand, our restoration method outperforms all baselines and variants

in WALKER. The results indicate that generating data from noise and restoring data

without noise predictors can not restore the noisy sample effectively and highlight

the importance of utilizing noise predictors and the thresholding method.

Imitation Learning Algorithms with DMDR

Using DMDR to restore demonstrations not only benefits policy learning of BC but

also other imitation learning algorithms. Here, we evaluate three offline imitation

learning algorithms on the FETCHPICK environment to compare the performance

when using noisy demonstrations and the demonstrations restored by our DMDR.

• BC. Behavioral cloning (BC) is a straightforward baseline that learns a

policy to map states to actions directly using the mean square error (MSE)

for training.

• Implicit BC [100] utilizes an energy-based model (EBM) to train an implicit

behavior-cloning policy, which models the expert policy. The training of the

energy-based model employs the InfoNCE loss, as described in [113].

• Diffusion Policy Diffusion Policy [109, 110] learn a conditional diffusion

model using diffusion loss to predict actions given the observed states. Dur-

ing inference, the diffusion model takes the current state as a condition and

gradually denoises the action from noise with the reverse diffusion process.

As shown in Table 3.7, all algorithms struggle to learn directly from the noisy

demonstrations but can significantly improve using the restored demonstrations

from our DMDR, while Implicit BC and Diffusion Policy are even more sensitive to

noisy demonstrations than BC. DMDR benefits these imitation learning algorithms

by restoring the noisy demonstrations and results in superior performances with
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Table 3.7: Imitation Learning Algorithms with DMDR

Algorithm Noisy Demo. Restored Demo.

BC 44.38% ± 11.02% 90.52% ± 4.83%

Implicit BC 3.00% ± 3.24% 44.56% ± 6.98%

Diffusion Policy 25.80% ± 2.59% 97.40% ± 2.19%

more stable training progressing (lower standard deviation), enabling broader

applications of real-world scenarios.

3.2.5 Discussion

In this paper, we propose an offline imitation learning framework (DMDR) that

enables imitation learning methods to learn from noisy demonstrations. Our DMDR

first filters clean samples from the demonstrations and then learn diffusion models

to restore the noisy samples. The experiments show that DMDR outperforms

baselines for learning from noisy demonstrations in various tasks, including robot

arm manipulation, dexterous manipulation, and locomotion. Ablation studies

investigate the effect of the filtering method and restoration method. We also show

that our DMDR can be applied to various imitation learning algorithms to verify

the effectiveness of our proposed method.

In this paper, we formulate the noises as Gaussian distributions. While the

assumption is widely adopted in previous works, it may restrict the effectiveness of

DMDR when the noises can not be easily formulated by Gaussian distributions. A

valuable future direction is to address various noise types caused by environmental

errors, e.g., sensor errors and motor jitter. Currently, DMDR is designed for offline

imitation learning. To further improve DMDR by incorporating a limited amount

of online interactions could also be an interesting future extension.
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Chapter 4

Conclusion and Future Direction

This thesis aims to tackle the challenges of constructing an adaptive machine-

learning pipeline for computer vision and robotic applications. To address data

adaptation, it introduces feature disentanglement and meta-learning techniques to

handle unseen target domains effectively. For model adaptation, the thesis explores

feature disentanglement and fine-tuning methods, incorporating human feedback

to enable controllable image generation. Additionally, it investigates the use of

diffusion models with denoising objectives to enhance adaptability in robotic tasks.

In summary, this thesis approaches the development of an adaptive machine-

learning pipeline from three key perspectives, i.e., data, models, and objectives,

proposing innovative solutions to meet the demands of real-world applications.

As a future direction, the techniques introduced in this thesis hold significant

potential for advancing automatic control. In real-world scenarios, robotic agents

often encounter data from unseen domains. To address challenging control tasks,

these agents can utilize pretrained models, such as vision-language models (VLMs)

or large-language models (LLMs), to enhance their understanding of task descrip-

tions or input images from sensors. The adaptation methods proposed in this thesis

can contribute to the future development of automatic robot control, which may

benefit humans and society substantially.
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[60] M. Amadeus, W. A. C. Castañeda, A. F. Zanella, and F. R. P. Mahlow, “From

pampas to pixels: Fine-tuning diffusion models for ga\’ucho heritage,” arXiv

preprint arXiv:2401.05520, 2024. 31

[61] N. Kannen, A. Ahmad, M. Andreetto, V. Prabhakaran, U. Prabhu, A. B.

Dieng, P. Bhattacharyya, and S. Dave, “Beyond aesthetics: Cultural com-

petence in text-to-image models,” arXiv preprint arXiv:2407.06863, 2024.

31

[62] B. Wallace, M. Dang, R. Rafailov, L. Zhou, A. Lou, S. Purushwalkam,

S. Ermon, C. Xiong, S. Joty, and N. Naik, “Diffusion model alignment

using direct preference optimization,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2023. 31, 33

[63] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn,

“Direct preference optimization: Your language model is secretly a reward

model,” in Thirty-seventh Conference on Neural Information Processing

Systems, 2023. 31, 33, 36

[64] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”

Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851,

2020. 32, 33, 36, 73, 77

[65] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” in

International Conference on Learning Representations, 2020. 32, 33, 36



doi:10.6342/NTU202404722

REFERENCE 103

[66] S. Kakade and J. Langford, “Approximately optimal approximate reinforce-

ment learning,” in Proceedings of the Nineteenth International Conference

on Machine Learning, 2002, pp. 267–274. 32

[67] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal

policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

32

[68] T. B. Brown, “Language models are few-shot learners,” arXiv preprint

arXiv:2005.14165, 2020. 36

[69] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,

D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4 technical

report,” arXiv preprint arXiv:2303.08774, 2023. 36

[70] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization.” in

Proceedings of the International Conference on Learning Representations,

2015. 47

[71] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level

control through deep reinforcement learning,” Nature, 2015. 49

[72] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,

and D. Wierstra, “Continuous control with deep reinforcement learning,” in

International Conference on Learning Representations, 2016. 49

[73] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep

reinforcement learning: A brief survey,” IEEE Signal Processing Magazine,

2017. 49

[74] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei,

“Deep reinforcement learning from human preferences,” in Advances in

Neural Information Processing Systems, 2017. 49



doi:10.6342/NTU202404722

104 REFERENCE

[75] J. Leike, D. Krueger, T. Everitt, M. Martic, V. Maini, and S. Legg, “Scalable

agent alignment via reward modeling: a research direction,” arXiv preprint

arXiv:1811.07871, 2018. 49

[76] Y. Lee, S.-H. Sun, S. Somasundaram, E. S. Hu, and J. J. Lim, “Compos-

ing complex skills by learning transition policies,” in Proceedings of the

International Conference on Learning Representations (ICLR), 2019. 49

[77] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforcement

learning,” Journal of Machine Learning Research, 2015. 49

[78] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learn-

ing: Tutorial, review, and perspectives on open problems,” arXiv preprint

arXiv:2005.01643, 2020. 49

[79] S. Schaal, “Learning from demonstration,” in Advances in Neural Informa-

tion Processing Systems, 1997. 49, 51

[80] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters et al.,

“An algorithmic perspective on imitation learning,” Foundations and Trends®

in Robotics, 2018. 49

[81] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Advances

in Neural Information Processing Systems, 2016. 49, 51, 71

[82] K. Zolna, S. Reed, A. Novikov, S. G. Colmenarejo, D. Budden, S. Cabi,

M. Denil, N. de Freitas, and Z. Wang, “Task-relevant adversarial imitation

learning,” in Conference on Robot Learning, 2021. 49, 51

[83] I. Kostrikov, K. K. Agrawal, D. Dwibedi, S. Levine, and J. Tompson,

“Discriminator-actor-critic: Addressing sample inefficiency and reward bias

in adversarial imitation learning,” in International Conference on Learning

Representations, 2019. 49, 51



doi:10.6342/NTU202404722

REFERENCE 105

[84] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement learning,”

in International Conference on Machine Learning, 2000. 49, 52

[85] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement

learning,” in International Conference on Machine Learning, 2004. 49, 52

[86] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,”

in Advances in Neural Information Processing Systems, 1989. 50, 51, 70

[87] M. Bain and C. Sammut, “A framework for behavioural cloning,” in Machine

Intelligence 15, 1995. 50, 70, 71

[88] T. Nguyen, Q. Zheng, and A. Grover, “Reliable conditioning of be-

havioral cloning for offline reinforcement learning,” arXiv preprint

arXiv:2210.05158, 2023. 50

[89] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learn-

ing. Springer, 2006. 50, 53

[90] D. Fisch, E. Kalkowski, and B. Sick, “Knowledge fusion for probabilistic

generative classifiers with data mining applications,” IEEE Transactions on

Knowledge and Data Engineering, 2013. 50, 53

[91] Q. Wu, R. Gao, and H. Zha, “Bridging explicit and implicit deep genera-

tive models via neural stein estimators,” in Neural Information Processing

Systems, 2021. 50, 53

[92] G. Loaiza-Ganem, B. L. Ross, J. C. Cresswell, and A. L. Caterini, “Diagnos-

ing and fixing manifold overfitting in deep generative models,” Transactions

on Machine Learning Research, 2022. 50, 53

[93] S.-H. Sun, H. Noh, S. Somasundaram, and J. Lim, “Neural program syn-

thesis from diverse demonstration videos,” in International Conference on

Machine Learning, 2018. 51



doi:10.6342/NTU202404722

106 REFERENCE

[94] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-grained

bimanual manipulation with low-cost hardware,” in Robotics: Science and

Systems, 2023. 51

[95] A. O. Ly and M. Akhloufi, “Learning to drive by imitation: An overview of

deep behavior cloning methods,” IEEE Transactions on Intelligent Vehicles,

2020. 51

[96] J. Harmer, L. Gisslén, J. del Val, H. Holst, J. Bergdahl, T. Olsson, K. Sjöö,
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