請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96799完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭錦龍 | zh_TW |
| dc.contributor.advisor | Chin-Lung Kuo | en |
| dc.contributor.author | 陳怡安 | zh_TW |
| dc.contributor.author | Yi-An Chen | en |
| dc.date.accessioned | 2025-02-21T16:36:18Z | - |
| dc.date.available | 2025-02-22 | - |
| dc.date.copyright | 2025-02-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-25 | - |
| dc.identifier.citation | 1 C. A. Randall, Z. Fan I. Reaney, L. Q. Chen, and S. Trolier-McKinstry. Antiferroelectrics: History, fundamentals, crystal chemistry, crystal structures, size effects, and applications. Journal of the American Ceramic Society, 104(8):3775–3810, 2021.
2 J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Letters, 12(8):4318–4323, 2012. PMID: 22812909. 3 S. H. Yi, B. T. Lin, T. Y. Hsu, J. Shieh, and M. J. Chen. Modulation of ferroelectricity and antiferroelectricity of nanoscale ZrO2 thin films using ultrathin interfacial layers. Journal of the European Ceramic Society, 39(14):4038–4045, 2019. 4 T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger. Ferroelectricity in hafnium oxide thin films. Applied Physics Letters, 99(10):102903, 09 2011. 5 M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 64:1045–1097, 10 1992. 6 UMET. Nudged elastic band computation of a reaction path: The neb method, 2024. Accessed: 2024-11-18. 7 S. Y. Hsieh. 11 2024. Unpublished manuscript. 8 J. Valasek. Piezo-electric and allied phenomena in rochelle salt. Physical Review, 17:475–481, 04 1921. 9 G. Shirane, E. Sawaguchi, and Y. Takagi. Dielectric properties of lead zirconate. Physical Review, 84:476–481, 11 1951. 10 A. F. Devonshire. XCVI. Theory of barium titanate. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 40(309):1040–1063, 1949. 11 C. Kittel. Theory of antiferroelectric crystals. Physical Review, 82:729–732, 06 1951. 12 L. D. Landau and E. M. Lifshitz. Statistical Physics: Part 1. Pergamon Press, 3rd edition, 1980. 13 J. Müller, T. S. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, and L. Frey. Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Applied Physics Letters, 99(11):112901, 2011. 14 J. F. Scott and C. A. P. de Araujo. Ferroelectric memories. Science, 246(4936):1400–1405, 1989. 15 V. Garcia and M. Bibes. Ferroelectric tunnel junctions for information storage and processing. Nature Communications, 5:4289, 2014. 16 M. Takahashi and S. Sakai. Self-aligned-gate metal/ferroelectric/insulator/semiconductor field-effect transistors with long memory retention. Japanese Journal of Applied Physics, 44(6L):L800, 06 2005. 17 T. Mikolajick, S. Slesazeck, H. Mulaosmanovic, M. H. Park, P. D. Lomenzo S. Fichtner, M. Hoffmann, and U. Schröder. Next generation ferroelectric materials for semiconductor process and device applications. Journal of Applied Physics, 129:100901, 2021. 18 M. Pešić, U. Schröder, S. Slesazeck, and T. Mikolajick. Comparative study of reliability of ferroelectric and anti-ferroelectric memories. IEEE Transactions on Device and Materials Reliability, 18(2):154–162, 2018. 19 M. Pesic, S. Knebel, M. Hoffmann, C. Richter, T. Mikolajick, and U. Schröder. How to make DRAM non-volatile? Anti-ferroelectrics: A new paradigm for universal memories. In 2016 IEEE International Electron Devices Meeting (IEDM), pages 11.6.1–11.6.4, 2016. 20 M. Pešić, M. Hoffmann, C. Richter, T. Mikolajick, and U. Schröder. Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO2. Advanced Functional Materials, 26(41):7486–7494, 2016. 21 C. H. Ahn, K. M. Rabe, and J. M. Triscone. Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures. Science, 303(5657):488–491, 2004. 22 M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Müller, A. Kersch, U. Schröder, T. Mikolajick, and Cheol Seong C. S. Hwang. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Advanced Materials, 27(11):1811–1831, 2015. 23 J. E. Bailey and L. Rotherham. The monoclinic-tetragonal transformation and associated twinning in thin films of zirconia. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 279(1378):395–412, 1964. 24 J. Wang, H. P. Li, and R. Stevens. Hafnia and hafnia-toughened ceramics. Journal of Materials Science, 27:5397–5430, 1992. 25 G. M. Wolten. Diffusionless phase transformations in zirconia and hafnia. Journal of the American Ceramic Society, 46(9):418–422, 1963. 26 Y. Masatomo, T. Heishiro, O. Katsuya, H. Teruo, K. Masato, A. Haruo, I. Yasuro, S. Yasuo, and Y. Masahiro. Formation of metastable forms by quenching of the HfO2-RO1.5 melts (R = Gd, Y and Yb). Journal of Physics and Chemistry of Solids, 57(3):289–295, 03 1996. 27 J. Robertson. High dielectric constant gate oxides for metal oxide Si transistors. Reports on Progress in Physics, 69(2):327, 12 2005. 28 G. D. Wilk, R. M. Wallace, and J. M. Anthony. High-κ gate dielectrics: Current status and materials properties considerations. Journal of Applied Physics, 89(10):5243–5275, 05 2001. 29 M. L. Urquiza, M. M. Islam, A. C. T. van Duin, X. Cartoixa, and A. Stracha. Atomistic insights on the full operation cycle of a HfO2-based resistive random access memory cell from molecular dynamics. ACS Nano, 15(8):12945–12954, 2021. PMID: 34329560. 30 M. Copel, M. Gribelyuk, and E. Gusev. Structure and stability of ultrathin zirconium oxide layers on Si(001). Applied Physics Letters, 76(4):436–438, 01 2000. 31 J. Liu, J. Li, J. Wu, and J. Sun. Structure and dielectric property of high-k ZrO2 films grown by atomic layer deposition using tetrakis(dimethylamido)zirconium and ozone. Nanoscale Research Letters, 14(1):154, 2019. 32 D. G. Schlom and J. H. Haeni. A thermodynamic approach to selecting alternative gate dielectrics. MRS Bulletin, 27:198–204, 2002. 33 B. C. Muddle and R. H. J. Hannink. Crystallography of the tetragonal to monoclinic transformation in MgO-partially-stabilized zirconia. Journal of the American Ceramic Society, 69(7):547–555, 1986. 34 E. H. Kisi and C. J. Howard. Crystal structures of zirconia phases and their inter-relation. Key Engineering Materials, 153-154:1–36, 1998. 35 E. H. Kisi, C. J. Howard, and R. J. Hill. Crystal structure of orthorhombic zirconia in partially stabilized zirconia. Journal of the American Ceramic Society, 72(9):1757–1760, 1989. 36 T. S. Böscke, St. Teichert, D. Bräuhaus, J. Müller, U. Schröder, U. Böttger, and T. Mikolajick. Phase transitions in ferroelectric silicon doped hafnium oxide. Applied Physics Letters, 99(11):112904, 2011. 37 D. Zhou, J. Müller, J. Xu, S. Knebel, D. Bräuhaus, and U. Schröder. Insights into electrical characteristics of silicon doped hafnium oxide ferroelectric thin films. Applied Physics Letters, 100(8):082905, 02 2012. 38 B. Xu, P. D. Lomenzo, A. Kersch, T. Mikolajick, and U. Schröder. Influence of Si-doping on 45 nm thick ferroelectric ZrO2 films. ACS Applied Electronic Materials, 4(7):3648–3654, 2022. 39 S. Müeller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist. U. Schröder, and T. Mikolajick. Incipient Ferroelectricity in Al-Doped HfO2 Thin Films. Advanced Functional Materials, 22(11):2412–2417, 2012. 40 A. Payne, H. A. Hsain, Y. Lee, N. A. Strnad, J. L. Jones, and B. Hanrahan. Thermal stability of antiferroelectric-like Al:HfO2 thin films with TiN or Pt electrodes. Applied Physics Letters, 120(23):232901, 06 2022. 41 P. D. Lomenzo, Q. Takmeel C. Zhou, C. C. Chung, S. Moghaddam, J. L. Jones, and T. Nishida. Mixed al and si doping in ferroelectric HfO2 thin films. Applied Physics Letters, 107(24):242903, 12 2015. 42 S. Mueller, C. Adelmann, A. Singh, S. Van Elshocht, U. Schröder, and T. Mikolajick. Ferroelectricity in Gd-doped HfO2 Thin Films. ECS Journal of Solid State Science and Technology, 1(6):N123, 10 2012. 43 U. Schröder T. Schenk M. Hoffmann, T. Shimizu, H. Funakubo O. Sakata, D. Pohl, M. Drescher C. Adelmann, R. Materlik, and A. Kersch T. Mikolajick. Stabilizing the ferroelectric phase in doped hafnium oxide. Journal of Applied Physics, 118(7):072006, 08 2015. 44 Z. Weng, Y. Qu, Z. Lan, J. Liu, M. Su, J. Li, Y. Ding, C. H. Lee, L. Zhao, and Y. Zhao. Wake-Up Free La-Doped HfO2− ZrO2 Ferroelectrics Achieved With an Atomic Layer-Specific Doping Technique. IEEE Electron Device Letters, 43(10):1665–1668, 2022. 45 T. Schenk, S. Mueller, U. Schröder, R. Materlik, A. Kersch, M. Popovici, C. Adelmann, S. van Elshocht, and T. Mikolajick. Strontium doped hafnium oxide thin films: Wide process window for ferroelectric memories. In 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC), pages 260–263, 2013. 46 J. Müller, U. Schröder, T. S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, and L. Frey. Ferroelectricity in yttrium-doped hafnium oxide. Journal of Applied Physics, 110(11):114113, 2011. 47 X. Xu, F. T. Huang, Y. Qi, S. Singh, K. M. Rabe, D. Obeysekera, J. Yang, M. W. Chu, and S. W. Cheong. Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2 ∶ Y. Nature Materials, 20(6):826–832, 2021. 48 L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita, and A. Toriumi. Ferroelectric phase stabilization of HfO2 by nitrogen doping. Applied Physics Express, 9(9), September 2016. Publisher Copyright: © 2016 The Japan Society of Applied Physics. 49 L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita, and A. Toriumi. Kinetic pathway of the ferroelectric phase formation in doped HfO2 films. Journal of Applied Physics, 122(12):124104, 09 2017. 50 B. T. Lin, Y. W. Lu, J. Shieh, and M. J. Chen. Induction of ferroelectricity in nanoscale ZrO2 thin films on pt electrode without post-annealing. Journal of the European Ceramic Society, 37(3):1135–1139, 2017. 51 T. Mimura, T. Shimizu, O. Sakata, and H. Funakubo. Thickness dependence of phase stability in epitaxial (HfxZr1−x)O2 films. Physical Review Materials, 5:114407, 11 2021. 52 M. H. Park, H. J. Kim, Y. J. Kim, W. Lee, T. Moon, and C. S. Hwang. Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Applied Physics Letters, 102(24):242905, 2013. 53 S. S. Cheema, D. Kwon, N. Shanker, R. dos Reis, S. L. Hsu, J. Xiao, H. Zhang, R. Wagner, A. Datar, M. R. McCarter, C. R. Serrao, A. K. Yadav, G. Karbasian, C. H. Hsu, A. J. Tan, L. C. Wang, V. Thakare, X. Zhang, A. Mehta, E. Karapetrova, R. V. Chopdekar, P. Shafer, E. Arenholz, C. Hu, R. Proksch, R. Ramesh, J. Ciston, and S. Salahuddin. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature, 580(7803):478–482, 2020. 54 M. Pešić, F. P. G. Fengler, L. Larcher, A. Padovani, T. Schenk, E. D. Grimley, X. Sang, J. M. LeBeau, S. Slesazeck, U. Schröder, and T. Mikolajick. Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Advanced Functional Materials, 26(25):4601–4612, 2016. 55 S. E. Reyes-Lillo, K. F. Garrity, and K. M. Rabe. Antiferroelectricity in thin-film ZrO2 from first principles. Physical Review B, 90:140103, 10 2014. 56 R. Batra, T. D. Huan, J. L. Jones, Jr. G. A. Rossetti, and R. Ramprasad. Factors favoring ferroelectricity in hafnia: A first-principles computational study. The Journal of Physical Chemistry C, 121(8):4139–4145, 2017. 57 H. G. Scott. Phase relationships in the zirconia-yttria system. Journal of Materials Science, 10:1527–1535, 1975. 58 R. Materlik, C. Künneth, and A. Kersch. The origin of ferroelectricity in Hf1−xZrxO2: A computational investigation and a surface energy model. Journal of Applied Physics, 117(13):134109, 04 2015. 59 R. Batra, H. D. Tran, and R. Ramprasad. Stabilization of metastable phases in hafnia owing to surface energy effects. Applied Physics Letters, 108(17):172902, 04 2016. 60 Y. W. Chen and C. W. Liu. Boost of orthorhombic population with amorphous SiO2 interfacial layer—a dft study. Semiconductor Science and Technology, 37(5):05LT01, 03 2022. 61 S. T. Fan, Y. W. Chen, and C. W. Liu. Strain effect on the stability in ferroelectric HfO2 simulated by first-principles calculations. Journal of Physics D: Applied Physics, 53(23):23LT01, 04 2020. 62 B. Xu, P. D. Lomenzo, A. Kersch, T. Schenk, C. Richter, C. M. Fancher, S. Starschich, F. Berg, P. Reinig, K. M. Holsgrove, T. Kiguchi, T. Mikolajick, U. Boettger, and U. Schröder. Strain as a global factor in stabilizing the ferroelectric properties of ZrO2. Advanced Functional Materials, 34(8):2311825, 2024. 63 E. H. Kisi. Influence of hydrostatic pressure on the t→o transformation in mg-psz studied by in situ neutron diffraction. Journal of the American Ceramic Society, 81(3):741–745, 1998. 64 M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, S. D. Hyun, T. Mikolajick, U. Schröder, and C. S. Hwang. Understanding the formation of the metastable ferroelectric phase in hafnia– zirconia solid solution thin films. Nanoscale, 10:716–725, 2018. 65 E. Schrödinger. An undulatory theory of the mechanics of atoms and molecules. Physical Review, 28(6):1049–1070, 1926. 66 F. Giustino. Materials Modelling Using Density Functional Theory: Properties and Predictions. Oxford University Press, Oxford, 2014. 67 M. Born and R. Oppenheimer. Zur quantentheorie der molekeln. Annalen der Physik, 389:457 – 484, 03 2006. 68 D. J. Griffiths and D. F. Schroeter. Introduction to Quantum Mechanics. Cambridge University Press, Cambridge; New York, NY, 3rd edition, 2018. 69 J. C. Slater. The theory of complex spectra. Physical Review, 34:1293, 1929. 70 J. C. Slater. A simplification of the hartree-fock method. Phys. Rev., 81:385–390, 2 1951. 71 W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Physical Review, 140:A1133–A1138, 11 1965. 72 W. Kohn P. Hohenberg. Inhomogeneous electron gas. Physical Review, 136:B864–B871, 11 1964. 73 L. H. Thomas. The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society, 23(5):542– 548, 1927. 74 D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic method. Physical Review Letters, 45:566–569, 08 1980. 75 J. P. Perdew and A. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 23:5048–5079, 05 1981. 76 Y. Wang and J. P. Perdew. Spin scaling of the electron-gas correlation energy in the high-density limit. Physical Review B, 43:8911–8916, 04 1991. 77 J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 77:3865–3868, 10 1996. 78 A. Togo. First-principles phonon calculations with phonopy and phono3py. The Physical Society of Japan, 92(1):012001, 2023. 79 A. Togo, L. Chaput, T. Tadano, and I. Tanaka. Implementation strategies in phonopy and phono3py. Journal of Physics: Condensed Matter, 35(35):353001, 2023. 80 G. Henkelman, Blas P. B. P. Uberuaga, and H. Jónsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. The Journal of Chemical Physics, 113(22):9901–9904, 12 2000. 81 G. Henkelman and H. Jónsson. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of Chemical Physics, 113(22):9978–9985, 12 2000. 82 D. Sheppard, P. Xiao, W. Chemelewski, D. D. Johnson, and G. Henkelman. A generalized solid-state nudged elastic band method. The Journal of Chemical Physics, 136(7):074103, 02 2012. 83 A. E. Boutaybi, T. Maroutian, L. Largeau, N. Findling, J. B. Brubach, R. Cervasio, A. Degezelle, S. Matzen, L. Vivien, P. Roy, P. Karamanis, M. Rérat, and P. Lecoeur. Ferroelectricity in epitaxial tetragonal ZrO2 thin films. Advanced Electronic Materials, 10(1):2300516, 2024. 84 V. G. Bhide, K.G. Deshmukh, and M. S. Hegde. Ferroelectric properties of PbTiO3. Physica, 28(9):871–876, 1962. 85 D. G. Schlom, L. Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, and R. Uecker. Elastic strain engineering of ferroic oxides. MRS Bulletin, 39:118–130, 2014. 86 G. Kresse and J. Furthmüller. Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set. Physical Review B, 54:11169–11186, 10 1996. 87 J. P. Perdew, A. Ruzsinszky, Gábor I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke. Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100:136406, 04 2008. 88 K. Momma and F. Izumi. VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41(3):653–658, 01 2008. 89 A. Stukowski. Visualization and analysis of atomistic simulation data with ovito – the open visualization tool. Modelling and Simulation in Materials Science and Engineering, 18(1):015012, 12 2009. 90 M. Materano, P. Reinig, A. Kersch, M. Popov, M. Deluca, T. Mikolajick, U. Boettger, and U. Schröder. Raman spectroscopy as a key method to distinguish the ferroelectric orthorhombic phase in thin ZrO2-based films. physica status solidi (RRL)–Rapid Research Letters, 16(4):2100589, 2022. 91 M. H. Park, T. Schenk, C. M. Fancher, E. D. Grimley, C. Zhou, C. Richter, J. M. LeBeau, J. L. Jones, T. Mikolajick, and U. Schröder. A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants. Journal of Materials Chemistry C, 5:4677–4690, 2017. 92 S. Estandía, N. Dix, J. Gazquez, I. Fina, J. Lyu, M. F. Chisholm, J. Fontcuberta, and F. Sánchez. Engineering Ferroelectric Hf0.5Zr0.5O2 Thin Films by Epitaxial Stress. ACS Applied Electronic Materials, 1(8):1449–1457, 2019. 93 C. Xiao. Vasp opt axis: Fix lattice component(s) during relaxation in vasp, 2024. Accessed: 2024-09-23. 94 J. R. Brandon and R. Taylor. Phase stability of zirconia-based thermal barrier coatings part I. zirconia-yttria alloys. Surface and Coatings Technology, 46(1):75–90, 1991. 95 H. Ibégazène, S. A. Alperine, and C. Diot. Yttria-stabilized hafnia-zirconia thermal barrier coatings: The influence of hafnia addition on TBC structure and high-temperature behaviour. Journal of Materials Science, 30:938–951, 1995. 96 M. H. Park, J. K. Han, U. J. Kim, T. Moon, and C. S. Hwang. The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. Applied Physics Letters, 104(7):072901, 02 2014. 97 G. K. Bansal and A. H. Heuer. On a martensitic phase transformation in zirconia (ZrO2) — II. Crystallographic aspects. Acta Metallurgica, 22(4):409–417, 1974. 98 K. Negita and H. Takao. Condensations of phonons at the tetragonal to monoclinic phase transition in ZrO2. Journal of Physics and Chemistry of Solids, 50(3):325–331, 1989. 99 C. J. Howard, E. H. Kisi, R. B. Roberts, and R. J. Hill. Neutron diffraction studies of phase transformations between tetragonal and orthorhombic zirconia in magnesia-partially-stabilized zirconia. Journal of the American Ceramic Society, 73(10):2828–2833, 1990. 100 D. Simeone, G. BaldinozziD. Gosset, M. Dutheil A., Bulou, and T. Hansen. Monoclinic to tetragonal semireconstructive phase transition of zirconia. Physical Review B, 67:064111, 02 2003. 101 B. Ewald and R. Manfred. Twin boundaries in monoclinic ZrO2 particles confined in a mullite matrix. Journal of the American Ceramic Society, 66(2):123–127, 1983. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96799 | - |
| dc.description.abstract | 本論文以基於密度泛函理論之第一原理計算方法研究二氧化鋯之鐵電與反鐵電生成機制。論文的第一部分比較了導致鐵電性之極化正交晶相(空間群:Pca21)與反鐵電性的非極化四方晶相(空間群:P42/nmc)之間的熱力學穩定度。研究結果顯示兩者之極化與非極化構型不必然與晶胞之正交與四方形狀有關。本論文將在薄膜被基材限制時、由非極化相變至極化相之現象視為定體積之熱力學過程。透過聲子頻譜計算,兩相之振動自由能隨溫度之變化可用於尋找穩定極化與非極化相之晶胞特徵。可以得知兩相皆有常溫下穩定之晶胞尺寸範圍。兩相穩定度隨溫度的變化亦可解釋文獻所認為導致反鐵電性質的電場誘發相變。第二部分探討了動力學抑制熱力學較穩定之單斜晶相(空間群:P21/c)與反極化(antipolar)排列之正交晶相(空間群:Pbca)的效應。若只考慮熱力學穩定度,極化相即使晶格限制下也並非最穩相,然而晶格限制亦改變了各相之間的相變能障,使得具鐵電性之極化即使並非最穩相也得以形成並持續穩定存在。最後,本研究針對薄膜之自由表面對相穩定度的影響進行討論,結果表明僅以薄膜之表面效應並不足以解釋實驗所觀察之鐵電與反鐵電性質隨厚度之變化。相對地,晶格之束縛效應可從熱力學與動力學上解釋二氧化鋯薄膜隨厚度之性質變化並作出與
實驗結果相符之預測。 | zh_TW |
| dc.description.abstract | In this thesis, we explore the physical origin of ferroelectricity and antiferroelectricity in zirconium oxide (ZrO2) using first-principles calculation based on density function theory (DFT). In the first part, the relative stability between ferroelectric phase (orthorhombic phase, space group: Pca21) and antiferroelectric phase (tetragonal phase, space group: P42/nmc) is investigated. It is found that their polar and nonpolar configurations may not necessarily coupled to the shape of the cell. When the lattice of the thin film is confined by the substrate, phase transformation between polar and nonpolar phase can be described as a constant-volume thermodynamic process. Calculation of vibrational Helmholtz free energy obtained from phonon spectra is conducted to characterize the dimensions of lattice favoring stable ferroelectric and antiferroelectric behvaior is investigated. Antiferroelectircity is explained by thermodynamic stability between the polar and nonpolar phase under a fixed lattice and field-driven phase transformation under application of electric field. The second part focuses on the kinetic suppression of monoclinic phase (space group: P21/c) and the antipolar orthorhombic phase (space group: Pbca). It is shown that polar phase is never thermodynamically stable even with lattice confinement. Nevertheless, the change in energy barrier under confinement leads to the formation of polar phase with comparably long lifetime. At the end, the effect of free surface of thin film is discussed and found that the presence of free surface alone cannot result in the thickness-dependent ferroelectricity and antiferroelectricity. The confinement of lattice, on the other hand, successfully elucidates the thickness-dependence of properties of ZrO2 using in thermodynamics and kinetics and is consistent to the experimetal findings. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:36:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-21T16:36:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv Contents vi List of Figures ix List of Tables xiii Chapter 1. Introduction 1 1.1 Ferroelectricitiy and antiferroelectricity . . . . . . . . . . . . . . . . . 1 1.2 Fluorite-structure binary oxide ..................... 3 Chapter 2. Theoretical Background 8 2.1 First-principles calculation ........................ 8 2.1.1 Many-body Schrödinger equation................... 8 2.1.2 Born-Oppenheimer approximation .................. 9 2.1.3 Independent electron approximation ................. 10 2.1.4 Exchange energy ........................... 10 2.1.5 Mean-field approximation ...................... 11 2.2 Density funtional theory, DFT...................... 13 2.2.1 Hohenberg-Kohn theorem ...................... 13 2.2.2 Kohn-Sham equation ......................... 14 2.2.3 Exchange-correlation functional ................... 15 2.2.4 Self-consistent calculation ...................... 16 2.2.5 Pseudopotential method........................ 17 2.3 Phonon.................................. 18 2.3.1 Harmonic approximation ....................... 18 2.3.2 Phonon dispersion........................... 18 2.3.3 Thermodynamic properties ...................... 19 2.4 Search of minimumenergypathway .................. 20 2.4.1 Nudge elastic band (NEB) method .................. 20 2.4.2 Climbing image NEB(CINEB).................... 21 2.4.3 Generalized solid-state NEB(G-SSNEB) . . . . . . . . . . . . . . 22 Chapter 3. Effect of lattice confinement on ferroelectricity and antiferroelectricity in ZrO2 23 3.1 Introduction ............................... 23 3.2 Computational details .......................... 25 3.3 Results and Discussions ......................... 27 3.3.1 Structures of ZrO2 polymoprhs.................... 27 3.3.2 Lattice confinement on stability between polar and nonpolar phases 38 3.3.3 Polarization free energy........................ 40 3.3.4 Aspect ratio .............................. 42 3.3.5 Extensive search of Nonpolar/polar domain . . . . . . . . . . . . . 48 3.3.6 Case study on experimental findings on antiferroelectricity in ZrO2 thin film on TiO2 interfacial layer .................. 54 3.4 Summary................................. 58 Chapter 4. Effect of kinetics and thermodynamics on the phase stability in ZrO2 59 4.1 Introduction ............................... 59 4.2 Computational details .......................... 61 4.3 Results and discussions ......................... 66 4.3.1 Thermodynamic stability of monoclinic phase . . . . . . . . . . . . 66 4.3.2 Kinetics of phase transformations................... 70 4.3.2.1 Phase transformation of ZrO2 with no confinement . . . 70 4.3.2.2 Phase transformation of ZrO2 with confinement . . . . 76 4.3.2.3 Transformation into antipolar phase . . . . . . . . . . . 85 4.3.3 Free surface.............................. 89 4.4 Summary................................. 91 Chapter 5. Conclusion 93 References 95 | - |
| dc.language.iso | en | - |
| dc.subject | 密度泛函理論 | zh_TW |
| dc.subject | 反鐵電性 | zh_TW |
| dc.subject | 二氧化鋯 | zh_TW |
| dc.subject | 鐵電性 | zh_TW |
| dc.subject | Density-functional theory | en |
| dc.subject | zirconium oxide | en |
| dc.subject | antiferroelectricity | en |
| dc.subject | ferroelectricity | en |
| dc.subject | VASP | en |
| dc.title | 以第一原理計算探討二氧化鋯之鐵電與反鐵電性質之物理機制 | zh_TW |
| dc.title | First-Principles Study on Physical Origin of the Ferroelectricity and Antiferroelectricity in Zirconium Oxide | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李明憲;段維新;許文東;謝宗霖 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Hsien Lee;Wei-Hsing Tuan;Wen-Dung Hsu;Jay Shieh | en |
| dc.subject.keyword | 密度泛函理論,二氧化鋯,鐵電性,反鐵電性, | zh_TW |
| dc.subject.keyword | Density-functional theory,VASP,zirconium oxide,ferroelectricity,antiferroelectricity, | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202404765 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-12-25 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2025-02-22 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 68.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
