請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96757完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝淑貞 | zh_TW |
| dc.contributor.advisor | Shu-Chen Hsieh | en |
| dc.contributor.author | 魏灩蘋 | zh_TW |
| dc.contributor.author | Yen-Pin Wei | en |
| dc.date.accessioned | 2025-02-21T16:25:03Z | - |
| dc.date.available | 2025-02-22 | - |
| dc.date.copyright | 2025-02-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-19 | - |
| dc.identifier.citation | 1. 衛生福利部國民健康署, 中華民國 110 年癌症登記報告. 2023.
2. Siegel, R.L., et al., Colorectal cancer statistics, 2023. CA Cancer J Clin, 2023. 73(3): p. 233-254. 3. Menon, G., et al., Colon Cancer, in StatPearls. 2024, StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC.: Treasure Island (FL). 4. Fidler, I.J., The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer, 2003. 3(6): p. 453-8. 5. Chaffer, C.L. and R.A. Weinberg, A perspective on cancer cell metastasis. Science, 2011. 331(6024): p. 1559-64. 6. Shin, A.E., F.G. Giancotti, and A.K. Rustgi, Metastatic colorectal cancer: mechanisms and emerging therapeutics. Trends in pharmacological sciences, 2023. 44(4): p. 222-236. 7. Son, G.M., et al., Multidisciplinary Treatment Strategy for Early Colon Cancer: A Review-An English Version. Journal of the Anus Rectum and Colon, 2022. 6(4): p. 203-212. 8. Dongre, A. and R.A. Weinberg, New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nature reviews Molecular cell biology, 2019. 20(2): p. 69-84. 9. Nieto, M.A., et al., EMT: 2016. cell, 2016. 166(1): p. 21-45. 10. Ye, X. and R.A. Weinberg, Epithelial–mesenchymal plasticity: a central regulator of cancer progression. Trends in cell biology, 2015. 25(11): p. 675-686. 11. Aiello, N.M., et al., EMT subtype influences epithelial plasticity and mode of cell migration. Developmental cell, 2018. 45(6): p. 681-695. e4. 12. Friedl, P. and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer. Nature reviews Molecular cell biology, 2009. 10(7): p. 445-457. 13. Aceto, N., et al., Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 2014. 158(5): p. 1110-1122. 14. Hou, J.-M., et al., Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. Journal of clinical oncology, 2012. 30(5): p. 525-532. 15. Mayor, R. and S. Etienne-Manneville, The front and rear of collective cell migration. Nature reviews Molecular cell biology, 2016. 17(2): p. 97-109. 16. Zhang, Q., et al., Mechanical transmission enables EMT cancer cells to drive epithelial cancer cell migration to guide tumor spheroid disaggregation. Science China Life Sciences, 2022. 65(10): p. 2031-2049. 17. Konen, J., et al., Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nature communications, 2017. 8(1): p. 15078. 18. Cheung, K.J., et al., Collective invasion in breast cancer requires a conserved basal epithelial program. Cell, 2013. 155(7): p. 1639-1651. 19. Vilchez Mercedes, S.A., et al., Decoding leader cells in collective cancer invasion. Nat Rev Cancer, 2021. 21(9): p. 592-604. 20. Zoeller, E.L., et al., Genetic heterogeneity within collective invasion packs drives leader and follower cell phenotypes. J Cell Sci, 2019. 132(19). 21. Warburg, O., On the origin of cancer cells. Science, 1956. 123(3191): p. 309-14. 22. Finley, L.W.S., What is cancer metabolism? Cell, 2023. 186(8): p. 1670-1688. 23. Vander Heiden, M.G. and R.J. DeBerardinis, Understanding the intersections between metabolism and cancer biology. Cell, 2017. 168(4): p. 657-669. 24. Vander Heiden, M.G., L.C. Cantley, and C.B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009. 324(5930): p. 1029-33. 25. Martínez-Reyes, I., et al., Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature, 2020. 585(7824): p. 288-292. 26. Bergers, G. and S.M. Fendt, The metabolism of cancer cells during metastasis. Nat Rev Cancer, 2021. 21(3): p. 162-180. 27. Rios Garcia, M., et al., Acetyl-CoA Carboxylase 1-Dependent Protein Acetylation Controls Breast Cancer Metastasis and Recurrence. Cell Metab, 2017. 26(6): p. 842-855.e5. 28. Bonuccelli, G., et al., Ketones and lactate "fuel" tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle, 2010. 9(17): p. 3506-14. 29. Zhang, G., et al., MCT1 regulates aggressive and metabolic phenotypes in bladder cancer. J Cancer, 2018. 9(14): p. 2492-2501. 30. Parlani, M., C. Jorgez, and P. Friedl, Plasticity of cancer invasion and energy metabolism. Trends Cell Biol, 2023. 33(5): p. 388-402. 31. Zhang, J., et al., Energetic regulation of coordinated leader-follower dynamics during collective invasion of breast cancer cells. Proc Natl Acad Sci U S A, 2019. 116(16): p. 7867-7872. 32. Commander, R., et al., Subpopulation targeting of pyruvate dehydrogenase and GLUT1 decouples metabolic heterogeneity during collective cancer cell invasion. Nat Commun, 2020. 11(1): p. 1533. 33. Park, J.S., et al., Mechanical regulation of glycolysis via cytoskeleton architecture. Nature, 2020. 578(7796): p. 621-626. 34. <橄榄果肉营养成分的分析.pdf>. 35. He, Z. and W. Xia, Nutritional composition of the kernels from Canarium album L. Food chemistry, 2007. 102(3): p. 808-811. 36. Kuo, C.-T., et al., Antioxidant and antiglycation properties of different solvent extracts from Chinese olive (Canarium album L.) fruit. Asian Pacific Journal of Tropical Medicine, 2015. 8(12): p. 1013-1021. 37. He, Z. and W. Xia, Analysis of phenolic compounds in Chinese olive (Canarium album L.) fruit by RPHPLC–DAD–ESI–MS. Food chemistry, 2007. 105(3): p. 1307-1311. 38. He, Z., W. Xia, and J. Chen, Isolation and structure elucidation of phenolic compounds in Chinese olive (Canarium album L.) fruit. European Food Research and Technology, 2008. 226: p. 1191-1196. 39. He, Z., et al., Identification of a new phenolic compound from Chinese olive (Canarium album L.) fruit. European Food Research and Technology, 2009. 228: p. 339-343. 40. Yu, K., et al., Chinese olive (Canarium album Rauesch.): a critical review on its nutritional value, phytochemical composition, health benefits, and practical applications. Front Pharmacol, 2023. 14: p. 1275113. 41. Chung, H.Y., et al., Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev, 2009. 8(1): p. 18-30. 42. Kaneto, H., et al., Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm, 2010. 2010: p. 453892. 43. Lawrence, T., D.A. Willoughby, and D.W. Gilroy, Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol, 2002. 2(10): p. 787-95. 44. Valko, M., et al., Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 2007. 39(1): p. 44-84. 45. Guo, D.J., et al., Antioxidative activities and the total phenolic contents of tonic Chinese medicinal herbs. Inflammopharmacology, 2008. 16(5): p. 201-7. 46. Kuo, C.T., et al., Antioxidant and antiglycation properties of different solvent extracts from Chinese olive (Canarium album L.) fruit. Asian Pac J Trop Med, 2015. 8(12): p. 1013-1021. 47. Li, J., et al., Anti-Inflammatory Benzofuran Neolignans from the Fruits of Canarium album (Chinese Olive). J Agric Food Chem, 2022. 70(4): p. 1122-1133. 48. Zhang, S., et al., Anti-neuroinflammatory and antioxidant phenylpropanoids from Chinese olive. Food Chem, 2019. 286: p. 421-427. 49. Kuo, Y.H., et al., Identification and Structural Elucidation of Anti-Inflammatory Compounds from Chinese Olive (Canarium Album L.) Fruit Extracts. Foods, 2019. 8(10). 50. Yan, J., et al., In-vitro anti-Helicobacter pylori activity and preliminary mechanism of action of Canarium album Raeusch. fruit extracts. J Ethnopharmacol, 2022. 283: p. 114578. 51. Xiao, M., et al., Anti-influenza mechanism of phenolic phytochemicals from Canarium album (Lour.) DC. leaf extract. J Ethnopharmacol, 2022. 292: p. 115175. 52. Yeh, Y.T., A.N. Chiang, and S.C. Hsieh, Chinese Olive (Canarium album L.) Fruit Extract Attenuates Metabolic Dysfunction in Diabetic Rats. Nutrients, 2017. 9(10). 53. Yeh, Y.T., et al., Chinese olive extract ameliorates hepatic lipid accumulation in vitro and in vivo by regulating lipid metabolism. Sci Rep, 2018. 8(1): p. 1057. 54. Hsieh, S.C., et al., The methanol-ethyl acetate partitioned fraction from Chinese olive fruits inhibits cancer cell proliferation and tumor growth by promoting apoptosis through the suppression of the NF-κB signaling pathway. Food Funct, 2016. 7(12): p. 4797-4803. 55. 練冠霆, 運用熱穩定分析探討中國橄欖萃取物在大腸直腸癌細胞株的蛋白質標的與促進細胞凋亡機制, in 食品科技研究所. 2020, 國立臺灣大學. p. 1-105. 56. 彭芝皜, 中國橄欖萃取物於不同葡萄糖濃度下造成人類大腸癌細胞生長情形差異及其相關機制之探討, in 食品科技研究所. 2019, 國立臺灣大學. p. 1-68. 57. 龍孟專, 中國橄欖萃取物及其主要成分對大腸直腸癌細胞的抑制功效, in 食品科技研究所. 2021, 國立臺灣大學. p. 1-88. 58. Rapanan, J.L., et al., Collective cell migration of primary zebrafish keratocytes. Exp Cell Res, 2014. 326(1): p. 155-65. 59. Sullivan, M.R., et al., Quantification of microenvironmental metabolites in murine cancers reveals determinants of tumor nutrient availability. Elife, 2019. 8. 60. Bian, S., et al., [EFFECT OF FETAL BOVINE SERUM ON OSTEOGENIC GROWTH PEPTIDE PROMOTING BONE MARROW MESENCHYMAL STEM CELLS PROLIFERATION AND DIFFERENTIATION]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2015. 29(2): p. 221-6. 61. Rai, Y., et al., Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition. Scientific reports, 2018. 8(1): p. 1531. 62. Zweibaum, A., et al., Enterocytic differentiation of a subpopulation of the human colon tumor cell line HT-29 selected for growth in sugar-free medium and its inhibition by glucose. J Cell Physiol, 1985. 122(1): p. 21-9. 63. Yun, J., et al., Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science, 2009. 325(5947): p. 1555-9. 64. Davidson, S.M., et al., Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer. Cell Metab, 2016. 23(3): p. 517-28. 65. Vivanco, I. and C.L. Sawyers, The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer, 2002. 2(7): p. 489-501. 66. Lum, J.J., et al., Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell, 2005. 120(2): p. 237-48. 67. Vander Heiden, M.G., et al., Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol, 2001. 21(17): p. 5899-912. 68. Bernardini, C., et al., Relationship between serum concentration, functional parameters and cell bioenergetics in IPEC-J2 cell line. Histochem Cell Biol, 2021. 156(1): p. 59-67. 69. Caneba, C.A., et al., Pyruvate uptake is increased in highly invasive ovarian cancer cells under anoikis conditions for anaplerosis, mitochondrial function, and migration. Am J Physiol Endocrinol Metab, 2012. 303(8): p. E1036-52. 70. Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516. 71. Feron, O., Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol, 2009. 92(3): p. 329-33. 72. Schelch, K., et al., EGF Induces Migration Independent of EMT or Invasion in A549 Lung Adenocarcinoma Cells. Front Cell Dev Biol, 2021. 9: p. 634371. 73. Devreotes, P. and A.R. Horwitz, Signaling networks that regulate cell migration. Cold Spring Harb Perspect Biol, 2015. 7(8): p. a005959. 74. Hardie, D.G., F.A. Ross, and S.A. Hawley, AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol, 2012. 13(4): p. 251-62. 75. Kim, Y.H., et al., Senescent tumor cells lead the collective invasion in thyroid cancer. Nature communications, 2017. 8(1): p. 15208. 76. Mizukoshi, K., et al., Metastatic seeding of human colon cancer cell clusters expressing the hybrid epithelial/mesenchymal state. Int J Cancer, 2020. 146(9): p. 2547-2562. 77. Libanje, F., et al., ROCK2 inhibition triggers the collective invasion of colorectal adenocarcinomas. Embo j, 2019. 38(14): p. e99299. 78. Li, Y., et al., On the energy efficiency of cell migration in diverse physical environments. Proc Natl Acad Sci U S A, 2019. 116(48): p. 23894-23900. 79. Yao, L. and Y. Li, Effective Force Generation During Mammalian Cell Migration Under Different Molecular and Physical Mechanisms. Front Cell Dev Biol, 2022. 10: p. 903234. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96757 | - |
| dc.description.abstract | 根據衛生福利部民國110年癌症登記報告,大腸癌在台灣的發病率位居第二,死亡率則排名第三。當大腸癌轉移到其他器官時,患者的五年生存率急劇下降。研究指出,某些癌細胞在遷移過程中不會完全經歷上皮-間質轉化 (EMT),而是同時保留部分上皮和間質特徵,以集體遷移為主要方式遷移方式。集體遷移雖需要更多能量,但也增強了癌細胞的轉移能力。中國橄欖萃取物(COE)已知能干擾癌細胞能量代謝並抑制其生長。本研究旨在探討COE是否通過影響集體遷移來抑制癌細胞的遷移能力。結果顯示,COE在一般細胞培養環境下能有效抑制癌細胞的生長和遷移,而對EMT相關蛋白的表現無顯著影響。但其影響E-cadherin在細胞內的分佈,可能從而改變遷移邊緣細胞的形態。此外,在不同環境條件下實驗結果顯示,環境中的丙酮酸含量會影響COE對癌細胞生存率的抑制效果,而環境中的血清濃度則影響其對癌細胞遷移的抑制。這一差異可能源於細胞生存與遷移所需能量規模的不同。然而,透過本研究結果顯示環境中丙酮酸的含量(pyruvate)雖對COE引起的遷移邊緣細胞形態變化有影響,但並不改變COE抑制癌細胞遷移的效果。總結來看,在本研究模型中,COE 本身所造成的能量缺乏已足以抑制癌細胞遷移,丙酮酸所造成的能量變化無法干擾此一現象,但遷移邊緣細胞形態變化是否為COE抑制癌細胞遷移的重要因子仍需更進一步確認。 | zh_TW |
| dc.description.abstract | According to the 2021 Cancer Registry Annual Report by Taiwan's Ministry of Health and Welfare, colorectal cancer ranks second in incidence and third in mortality among all cancers in Taiwan. When colorectal cancer metastasizes to other organs, the five-year survival rate of patients markedly declines. Studies indicate that some type of cancer cells do not fully undergo epithelial-to-mesenchymal transition (EMT) during migration, but retain both epithelial and mesenchymal characteristics, primarily migrating in clusters. Although collective migration requires more energy, it also enhances the metastatic capability of cancer cells. Chinese olive extract (COE) is known to interfere with cancer cell energy metabolism and inhibit their growth. This study aims to explored whether COE inhibits cancer cell migration by affecting collective migration. The results showed that COE effectively inhibited cancer cell survival growth and migration in normal cell culture conditions without significantly affecting the expression of EMT-related proteins. However, it influences the distribution of E-cadherin within cells, potentially altering the morphology of cells at the migration edge. Additionally, the experimental results under different environmental conditions revealed that the pyruvate content in the environment affected COE's ability to inhibit cancer cell survival, while serum concentration influenced its ability to inhibit cancer cell migration. This difference may be due to the varying energy demands required for cell survival and migration. Nevertheless, the study results show that although the environmental pyruvate content affects COE-induced morphological changes of cells at the migration edge, it did not alter COE's inhibitory effect on cancer cell migration. In conclusion, in this study model, the energy deficiency caused by COE alone is sufficient to inhibit cancer cell migration, and the energy changes induced by pyruvate cannot disrupt this phenomenon. However, further investigation is needed to confirm whether the morphological changes in migration edge cells are a key factor in COE’s inhibition of cancer cell migration. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:25:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-21T16:25:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目次 IV 圖次 VII 縮寫表 VIII 第一章 文獻回顧 1 第一節 大腸直腸癌 1 1. 大腸直腸癌的流行病學 1 2. 大腸直腸癌的致病機制 1 3. 大腸直腸癌的轉移 2 4. 大腸直腸癌的治療 2 第二節 癌細胞轉移相關機制 4 1. 癌細胞轉移 4 2. 癌細胞的代謝調控 6 第三節 中國橄欖 10 1. 中國橄欖的成分分析 10 2. 中國橄欖的生理活性 10 第二章 研究目標與實驗架構 13 第一節 研究目標 13 第二節 實驗架構 14 第三章 材料與方法 15 第一節 實驗材料 15 1. 中國橄欖水萃物殘渣甲醇萃取乙酸乙酯層萃取物 (COE) 15 2. 細胞培養 16 3. 實驗藥品 17 4. 實驗耗材 18 5. 抗體 19 6. 商業套組 22 7. 儀器設備 23 8. 數據處理軟體 24 第二節 實驗方法 25 1. 細胞培養 25 2. 細胞存活率實驗 28 3. 細胞遷移試驗(2-well insert) 29 4. 群落生成試驗(clonogenic assay) 30 5. 細胞總蛋白質萃取 31 6. BCA 蛋白定量法 32 7. 十二烷基硫酸鈉聚丙烯酰胺凝膠電泳(SDS-PAGE) 33 8. 西方點墨法(Western blot) 35 9. 細胞總 RNA 萃取 37 10. 反轉錄 PCR(reverse transcription PCR, RT-PCR) 38 11. 即時聚合酶鏈反應(Real-time PCR, qPCR) 39 12. 免疫螢光染色(Immunofluorescence stain, IF stain) 40 第四章 實驗結果 42 第一節 COE 對於HCT 116的生長及遷移的影響 42 1. COE 對於HCT 116 生存率的影響 42 2. COE 對於 HCT 116 增殖的影響 43 3. COE 抑制 HCT 116 遷移的能力 43 第二節 COE 影響 leader cell 和 follower cell 的型態 45 第三節 在不同環境下 COE 對於 HCT 116的生長及遷移的影響 47 1. 環境對於 COE 抑制 HCT 116 生存的影響 47 2. 環境對於 COE 抑制 HCT 116 遷移能力的影響 48 第四節 Pyruvate 對於COE抑制 HCT 116 細胞遷移的影響 50 第五節 COE 對於 HCT116 遷移的抑制與脂質代謝的關聯 52 第五章 討論 53 第一節 常見細胞培養環境下COE 對於HCT116 的效力確認 53 第二節 不同的環境條件下改變COE 對於HCT116 的效力影響 54 第三節 COE 抑制 HCT116 集體遷移可能的機制探討 56 1. COE對HCT116細胞遷移模式的影響不依賴於EMT相關蛋白表現的改變 56 2. 透過影響能量 57 3. 其他可能的機制 58 第六章 結論 59 第七章 圖 60 第八章 參考文獻 90 第九章 附錄 96 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 中國橄欖 | zh_TW |
| dc.subject | 大腸癌 | zh_TW |
| dc.subject | 集體遷移 | zh_TW |
| dc.subject | EMT | zh_TW |
| dc.subject | 癌細胞代謝 | zh_TW |
| dc.subject | Cancer metabolism | en |
| dc.subject | Colon cancer | en |
| dc.subject | Chinese olive | en |
| dc.subject | Collective migration | en |
| dc.subject | EMT | en |
| dc.title | 探討中國橄欖萃取物於不同培養條件下造成大腸癌細胞生長及集體遷移狀態的影響 | zh_TW |
| dc.title | The Effects of Chinese Olive (Canarium album L.) Extract on Colorectal Cancer Cell Growth and Collective Migration Under Different Culture Conditions | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蘇純立;廖憶純;劉瑋文 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Li Su;Yi-Chun Liao;Wei-Wen Liu | en |
| dc.subject.keyword | 大腸癌,中國橄欖,集體遷移,EMT,癌細胞代謝, | zh_TW |
| dc.subject.keyword | Colon cancer,Chinese olive,Collective migration,EMT,Cancer metabolism, | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202404733 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-12-20 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 4.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
