Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96736
標題: 低GWP冷媒應用於高溫熱泵之設計與分析
Design and Analysis of Low GWP Refrigerants used in High Temperature Heat Pumps
作者: 林祐緯
You-Wei Lin
指導教授: 陳希立
Sih-Li Chen
關鍵字: 高溫熱泵,低GWP冷媒,機械式蒸汽再壓縮,性能係數,體積加熱能力,
high temperature heat pump,low-GWP refrigerants,MVR(Mechanical Vapor Recompression),COP(Coefficient of Performance),VHC(Volumetric Heating Capacity),
出版年 : 2024
學位: 碩士
摘要: 本研究主要為開發一利用電力驅動而產生高溫蒸汽的系統,以取代傳統鍋爐,系統架構主要包含低溫熱泵系統、高溫熱泵系統以及機械式蒸汽再壓縮系統。低溫熱泵可採用一般熱泵或使用廢熱進行替代,而高溫熱泵則自低溫熱泵取得熱量後,進而產生80 ~ 90°C的熱水,再經由閃蒸桶與MVR系統進行再壓縮,產生高溫之蒸汽。除此之外,亦探討低GWP冷媒在高溫熱泵中的應用及可行性,透過系統性能的分析與設計,解決現有技術應用中面臨的挑戰,從而推動高溫熱泵技術的綠色發展。
高溫熱泵系統配置對於其性能有相當之影響力,若使用單級系統,亦造成壓縮機壓縮比過大而功耗上升,因而降低COP,因此本研究除了進行單級系統的分析外,亦比較雙級與級聯系統性能,結果顯示使用雙級與級聯的配置可明顯提升COP,在較低熱源溫度下COP都可達到3以上,而HFO-1234ze(Z)、HCFO-1224yd(Z)、HCFO-1233zd(E)、HC-601、HC-601a及HFO-1336mzz(Z)更是相比HFC-245fa有所提升,而在蒸發溫度35°C時,雙級系統使用HC-601的COP可達4.64、級聯系統使用HC-601也可達4.35。在本研究中,同時探討評估熱泵的重要指標參數-體積加熱能力(VHC),此參數對於選用壓縮機有著直接關聯性,而結果指出,雖然HC-601、HC-601a與HFO-1336mzz(Z)在性能上有優異的表現,但其VHC過小為致命缺點,這會導致選用壓縮機尺寸過大,亦同時造成成本提升,建置意願降低,因此在評估性能時,同時也需兼顧VHC,以達到雙贏的局面。
另外,若利用冷凝器出口作廢熱回收,利用廢熱進行補給水的預熱,可提升整體COP,在單級系統中,平均可提升4.0%,若在雙級系統平均可提升3.0%,在級聯系統平均可提升1.7%,而若將過冷度提高,整體COP提升幅度會增加更多。
This study primarily focuses on developing a system that generates high-temperature steam using electric power to replace traditional boilers. The system architecture mainly includes a low-temperature heat pump system, a high-temperature heat pump system, and a mechanical vapor recompression (MVR) system. The low-temperature heat pump can use either a conventional heat pump or utilize waste heat as a substitute, while the high-temperature heat pump obtains heat from the low-temperature heat pump to produce hot water at 80-90°C. This hot water is then compressed again through a flash tank and the MVR system to produce high-temperature steam. In addition, the study explores the application and feasibility of low-GWP (Global Warming Potential) refrigerants in high-temperature heat pumps. Through the analysis and design of system performance, the study addresses challenges in the application of current technologies, thereby promoting the green development of high-temperature heat pump technology.
The configuration of the high-temperature heat pump system significantly impacts its performance. If a single-stage system is used, it results in an excessive compression ratio for the compressor, which increases power consumption and reduces the Coefficient of Performance (COP). Therefore, this study not only analyzes the single-stage system but also compares the performance of two-stage and cascade systems. The results show that using two-stage and cascade configurations can significantly improve the COP, achieving a COP of over 3 even at lower heat source temperatures. Furthermore, refrigerants such as HFO-1234ze(Z), HCFO-1224yd(Z), HCFO-1233zd(E), HC-601, HC-601a, and HFO-1336mzz(Z) perform better compared to HFC-245fa. At an evaporation temperature of 35°C, the two stage system using HC-601 achieves a COP of 4.64, and the cascade system using HC-601 also achieves a COP of 4.35. This study also evaluates an important performance indicator for heat pumps: Volumetric Heating Capacity (VHC). This parameter is directly related to the selection of the compressor. The results indicate that although HC-601, HC-601a, and HFO-1336mzz(Z) exhibit excellent performance, their low VHC is a critical drawback, leading to the selection of larger compressor sizes, which in turn increases costs and reduces the willingness to implement the system. Therefore, when evaluating performance, it is necessary to consider VHC to achieve a win-win scenario.
Furthermore, if waste heat recovery is employed at the condenser outlet to preheat the feed-water using waste heat, the overall COP can be improved. In a single-stage system, this can result in an average improvement of 4.0%. In a two-stage system, the average improvement can be 3.0%, while in a cascade system, it can be 1.7%. Moreover, if the subcooling degree is increased, the overall improvement in COP will be even greater.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96736
DOI: 10.6342/NTU202404745
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2029-12-05
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
7.09 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved