請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96736完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳希立 | zh_TW |
| dc.contributor.advisor | Sih-Li Chen | en |
| dc.contributor.author | 林祐緯 | zh_TW |
| dc.contributor.author | You-Wei Lin | en |
| dc.date.accessioned | 2025-02-21T16:19:17Z | - |
| dc.date.available | 2025-02-22 | - |
| dc.date.copyright | 2025-02-21 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-12-18 | - |
| dc.identifier.citation | [1] "經濟部能源署<2023年非生產性質行業能源查核年報.pdf>."
[2] D. Wu, B. Hu, and R. Wang, "Vapor compression heat pumps with pure Low-GWP refrigerants," Renewable and Sustainable Energy Reviews, vol. 138, p. 110571, 2021. [3] M. O. McLinden, A. F. Kazakov, J. S. Brown, and P. A. Domanski, "A thermodynamic analysis of refrigerants: Possibilities and tradeoffs for Low-GWP refrigerants," International Journal of Refrigeration, vol. 38, pp. 80-92, 2014. [4] N. Abas, A. R. Kalair, N. Khan, A. Haider, Z. Saleem, and M. S. Saleem, "Natural and synthetic refrigerants, global warming: A review," Renewable and Sustainable Energy Reviews, vol. 90, pp. 557-569, 2018. [5] O. Bamigbetan, T. M. Eikevik, P. Nekså, and M. Bantle, "Review of vapour compression heat pumps for high temperature heating using natural working fluids," International journal of refrigeration, vol. 80, pp. 197-211, 2017. [6] G. F. Frate, L. Ferrari, and U. Desideri, "Analysis of suitability ranges of high temperature heat pump working fluids," Applied Thermal Engineering, vol. 150, pp. 628-640, 2019. [7] P. A. Domanski, R. Brignoli, J. S. Brown, A. F. Kazakov, and M. O. McLinden, "Low-GWP refrigerants for medium and high-pressure applications," International Journal of Refrigeration, vol. 84, pp. 198-209, 2017. [8] B. Minor and M. Spatz, "HFO-1234yf low GWP refrigerant update," 2008. [9] J. S. Brown, C. Zilio, and A. Cavallini, "The fluorinated olefin R-1234ze (Z) as a high-temperature heat pumping refrigerant," International Journal of refrigeration, vol. 32, no. 6, pp. 1412-1422, 2009. [10] F. Dawo et al., "R1224yd (Z), R1233zd (E) and R1336mzz (Z) as replacements for R245fa: Experimental performance, interaction with lubricants and environmental impact," Applied Energy, vol. 288, p. 116661, 2021. [11] L. Pan, H. Wang, Q. Chen, and C. Chen, "Theoretical and experimental study on several refrigerants of moderately high temperature heat pump," Applied thermal engineering, vol. 31, no. 11-12, pp. 1886-1893, 2011. [12] O. Bamigbetan, T. M. Eikevik, P. Nekså, M. Bantle, and C. Schlemminger, "Theoretical analysis of suitable fluids for high temperature heat pumps up to 125 C heat delivery," International journal of refrigeration, vol. 92, pp. 185-195, 2018. [13] C. Mateu-Royo, J. Navarro-Esbrí, A. Mota-Babiloni, F. Molés, and M. Amat-Albuixech, "Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery," Applied Energy, vol. 253, p. 113504, 2019. [14] S. Fukuda, C. Kondou, N. Takata, and S. Koyama, "Low GWP refrigerants R1234ze (E) and R1234ze (Z) for high temperature heat pumps," International journal of Refrigeration, vol. 40, pp. 161-173, 2014. [15] A. Y. Sulaiman, D. F. Cotter, K. X. Le, M. J. Huang, and N. J. Hewitt, "Thermodynamic analysis of subcritical High-Temperature heat pump using low GWP Refrigerants: A theoretical evaluation," Energy Conversion and Management, vol. 268, p. 116034, 2022. [16] X. Wang, J. Yu, and M. Xing, "Performance analysis of a new ejector enhanced vapor injection heat pump cycle," Energy conversion and management, vol. 100, pp. 242-248, 2015. [17] C. Mateu-Royo, J. Navarro-Esbrí, A. Mota-Babiloni, M. Amat-Albuixech, and F. Molés, "Thermodynamic analysis of low GWP alternatives to HFC-245fa in high-temperature heat pumps: HCFO-1224yd (Z), HCFO-1233zd (E) and HFO-1336mzz (Z)," Applied thermal engineering, vol. 152, pp. 762-777, 2019. [18] C. Mateu-Royo, A. Mota-Babiloni, and J. Navarro-Esbrí, "Semi-empirical and environmental assessment of the low GWP refrigerant HCFO-1224yd (Z) to replace HFC-245fa in high temperature heat pumps," International Journal of Refrigeration, vol. 127, pp. 120-127, 2021. [19] M. Yilmaz, "Performance analysis of a vapor compression heat pump using zeotropic refrigerant mixtures," Energy conversion and Management, vol. 44, no. 2, pp. 267-282, 2003. [20] J. Yu, Z. Xu, and G. Tian, "A thermodynamic analysis of a transcritical cycle with refrigerant mixture R32/R290 for a small heat pump water heater," Energy and buildings, vol. 42, no. 12, pp. 2431-2436, 2010. [21] N. Rudonja, M. Gojak, I. Zlatanović, and R. Todorović, "Thermodynamic analysis of a cascade heat pump incorporated in high-temperature heating system," Strojniski Vestnik-Journal of Mechanical Engineering, vol. 66, no. 11, pp. 677-683, 2020. [22] Z. Lu, Y. Yao, G. Liu, W. Ma, and Y. Gong, "Thermodynamic and Economic Analysis of a High Temperature Cascade Heat Pump System for Steam Generation," Processes, vol. 10, no. 9, p. 1862, 2022. [23] P. Ganesan, T. M. Eikevik, K. Hamid, R. Wang, and H. Yan, "Thermodynamic analysis of cascade high-temperature heat pump using new natural zeotropic refrigerant mixtures: R744/R600 and R744/R601," International Journal of Refrigeration, vol. 154, pp. 215-230, 2023. [24] D. Mikielewicz and J. Wajs, "Performance of the very high-temperature heat pump with low GWP working fluids," Energy, vol. 182, pp. 460-470, 2019. [25] C. Baek, J. Heo, J. Jung, H. Cho, and Y. Kim, "Performance characteristics of a two-stage CO2 heat pump water heater adopting a sub-cooler vapor injection cycle at various operating conditions," Energy, vol. 77, pp. 570-578, 2014. [26] A. Mota-Babiloni, C. Mateu-Royo, J. Navarro-Esbrí, F. Molés, M. Amat-Albuixech, and Á. Barragán-Cervera, "Optimisation of high-temperature heat pump cascades with internal heat exchangers using refrigerants with low global warming potential," Energy, vol. 165, pp. 1248-1258, 2018. [27] S. M. Hosseinnia, L. Amiri, H. Nesreddine, D. Monney, and S. Poncet, "Thermodynamic analysis of high temperature cascade heat pump with R718 (high stage) and six different low-GWP refrigerants (low stage)," Case Studies in Thermal Engineering, vol. 53, p. 103812, 2024. [28] S. M. Hosseinnia, S. Poncet, H. Nesreddine, and D. Monney, "Technical-economic-environmental analysis of high temperature cascade heat pump with R718 (high stage) and six different low global warming potential refrigerants (low stage)," Energy Conversion and Management, vol. 292, p. 117356, 2023. [29] M. I. Alhamid, N. Aisyah, N. Nasruddin, and A. Lubis, "Thermodynamic and environmental analysis of a high-temperature heat pump using HCFO-1224yd (Z) and HCFO-1233zd (E)," International Journal of Technology, vol. 10, no. 8, p. 1585, 2019. [30] R. Bergamini, J. K. Jensen, and B. Elmegaard, "Thermodynamic competitiveness of high temperature vapor compression heat pumps for boiler substitution," Energy, vol. 182, pp. 110-121, 2019. [31] X.-Q. Cao, W.-W. Yang, F. Zhou, and Y.-L. He, "Performance analysis of different high-temperature heat pump systems for low-grade waste heat recovery," Applied thermal engineering, vol. 71, no. 1, pp. 291-300, 2014. [32] A. Redón, E. Navarro-Peris, M. Pitarch, J. Gonzálvez-Macia, and J. Corberán, "Analysis and optimization of subcritical two-stage vapor injection heat pump systems," Applied energy, vol. 124, pp. 231-240, 2014. [33] S. Jiang, S. Wang, X. Jin, and T. Zhang, "A general model for two-stage vapor compression heat pump systems," International Journal of Refrigeration, vol. 51, pp. 88-102, 2015. [34] B. Dai et al., "Dual-pressure condensation high temperature heat pump system for waste heat recovery: Energetic and exergetic assessment," Energy conversion and management, vol. 218, p. 112997, 2020. [35] G. Kosmadakis, C. Arpagaus, P. Neofytou, and S. Bertsch, "Techno-economic analysis of high-temperature heat pumps with low-global warming potential refrigerants for upgrading waste heat up to 150° C," Energy conversion and management, vol. 226, p. 113488, 2020. [36] C. Mateu-Royo, J. Navarro-Esbrí, A. Mota-Babiloni, M. Amat-Albuixech, and F. Molés, "Theoretical evaluation of different high-temperature heat pump configurations for low-grade waste heat recovery," International journal of refrigeration, vol. 90, pp. 229-237, 2018. [37] Y. Zhou, C. Shi, and G. Dong, "Analysis of a mechanical vapor recompression wastewater distillation system," Desalination, vol. 353, pp. 91-97, 2014. [38] L. Liang, D. Han, R. Ma, and T. Peng, "Treatment of high-concentration wastewater using double-effect mechanical vapor recompression," Desalination, vol. 314, pp. 139-146, 2013. [39] H. Ettouney, "Design of single-effect mechanical vapor compression," Desalination, vol. 190, no. 1-3, pp. 1-15, 2006. [40] H. Jiang, Z. Zhang, and W. Gong, "Design and evaluation of a parallel-connected double-effect mechanical vapor recompression evaporation crystallization system," Applied Thermal Engineering, vol. 179, p. 115646, 2020. [41] S. Ai, B. Wang, X. Li, and W. Shi, "Comparison of mechanical vapor recompression technology for solution regeneration in heat-source tower heat pumps," Building Services Engineering Research and Technology, vol. 40, no. 3, pp. 360-378, 2019. [42] B. Hu, D. Wu, L. Wang, and R. Wang, "Exergy analysis of R1234ze (Z) as high temperature heat pump working fluid with multi-stage compression," Frontiers in Energy, vol. 11, pp. 493-502, 2017. [43] C. Kondou and S. Koyama, "Thermodynamic assessment of high-temperature heat pumps using Low-GWP HFO refrigerants for heat recovery," International Journal of Refrigeration, vol. 53, pp. 126-141, 2015. [44] K. J. Chua, S. K. Chou, and W. Yang, "Advances in heat pump systems: A review," Applied energy, vol. 87, no. 12, pp. 3611-3624, 2010. [45] J. Jiang, B. Hu, R. Wang, N. Deng, F. Cao, and C.-C. Wang, "A review and perspective on industry high-temperature heat pumps," Renewable and sustainable energy reviews, vol. 161, p. 112106, 2022. [46] C. Arpagaus, F. Bless, J. Schiffmann, and S. S. Bertsch, "Multi-temperature heat pumps: A literature review," International Journal of Refrigeration, vol. 69, pp. 437-465, 2016. [47] C. Arpagaus, F. Bless, M. Uhlmann, J. Schiffmann, and S. S. Bertsch, "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, vol. 152, pp. 985-1010, 2018. [48] H. S. Moisi and R. Rieberer, "Refrigerant selection and cycle development for a high temperature vapor compression heat pump," in 12th IEA Heat Pump Conference, 2017. [49] S. A. Klein and F. Alvarado, "Engineering equation solver," F-Chart Software, Madison, WI, vol. 1, 2002. [50] G.-y. Ma and Q.-h. Chai, "Characteristics of an improved heat-pump cycle for cold regions," Applied Energy, vol. 77, no. 3, pp. 235-247, 2004. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96736 | - |
| dc.description.abstract | 本研究主要為開發一利用電力驅動而產生高溫蒸汽的系統,以取代傳統鍋爐,系統架構主要包含低溫熱泵系統、高溫熱泵系統以及機械式蒸汽再壓縮系統。低溫熱泵可採用一般熱泵或使用廢熱進行替代,而高溫熱泵則自低溫熱泵取得熱量後,進而產生80 ~ 90°C的熱水,再經由閃蒸桶與MVR系統進行再壓縮,產生高溫之蒸汽。除此之外,亦探討低GWP冷媒在高溫熱泵中的應用及可行性,透過系統性能的分析與設計,解決現有技術應用中面臨的挑戰,從而推動高溫熱泵技術的綠色發展。
高溫熱泵系統配置對於其性能有相當之影響力,若使用單級系統,亦造成壓縮機壓縮比過大而功耗上升,因而降低COP,因此本研究除了進行單級系統的分析外,亦比較雙級與級聯系統性能,結果顯示使用雙級與級聯的配置可明顯提升COP,在較低熱源溫度下COP都可達到3以上,而HFO-1234ze(Z)、HCFO-1224yd(Z)、HCFO-1233zd(E)、HC-601、HC-601a及HFO-1336mzz(Z)更是相比HFC-245fa有所提升,而在蒸發溫度35°C時,雙級系統使用HC-601的COP可達4.64、級聯系統使用HC-601也可達4.35。在本研究中,同時探討評估熱泵的重要指標參數-體積加熱能力(VHC),此參數對於選用壓縮機有著直接關聯性,而結果指出,雖然HC-601、HC-601a與HFO-1336mzz(Z)在性能上有優異的表現,但其VHC過小為致命缺點,這會導致選用壓縮機尺寸過大,亦同時造成成本提升,建置意願降低,因此在評估性能時,同時也需兼顧VHC,以達到雙贏的局面。 另外,若利用冷凝器出口作廢熱回收,利用廢熱進行補給水的預熱,可提升整體COP,在單級系統中,平均可提升4.0%,若在雙級系統平均可提升3.0%,在級聯系統平均可提升1.7%,而若將過冷度提高,整體COP提升幅度會增加更多。 | zh_TW |
| dc.description.abstract | This study primarily focuses on developing a system that generates high-temperature steam using electric power to replace traditional boilers. The system architecture mainly includes a low-temperature heat pump system, a high-temperature heat pump system, and a mechanical vapor recompression (MVR) system. The low-temperature heat pump can use either a conventional heat pump or utilize waste heat as a substitute, while the high-temperature heat pump obtains heat from the low-temperature heat pump to produce hot water at 80-90°C. This hot water is then compressed again through a flash tank and the MVR system to produce high-temperature steam. In addition, the study explores the application and feasibility of low-GWP (Global Warming Potential) refrigerants in high-temperature heat pumps. Through the analysis and design of system performance, the study addresses challenges in the application of current technologies, thereby promoting the green development of high-temperature heat pump technology.
The configuration of the high-temperature heat pump system significantly impacts its performance. If a single-stage system is used, it results in an excessive compression ratio for the compressor, which increases power consumption and reduces the Coefficient of Performance (COP). Therefore, this study not only analyzes the single-stage system but also compares the performance of two-stage and cascade systems. The results show that using two-stage and cascade configurations can significantly improve the COP, achieving a COP of over 3 even at lower heat source temperatures. Furthermore, refrigerants such as HFO-1234ze(Z), HCFO-1224yd(Z), HCFO-1233zd(E), HC-601, HC-601a, and HFO-1336mzz(Z) perform better compared to HFC-245fa. At an evaporation temperature of 35°C, the two stage system using HC-601 achieves a COP of 4.64, and the cascade system using HC-601 also achieves a COP of 4.35. This study also evaluates an important performance indicator for heat pumps: Volumetric Heating Capacity (VHC). This parameter is directly related to the selection of the compressor. The results indicate that although HC-601, HC-601a, and HFO-1336mzz(Z) exhibit excellent performance, their low VHC is a critical drawback, leading to the selection of larger compressor sizes, which in turn increases costs and reduces the willingness to implement the system. Therefore, when evaluating performance, it is necessary to consider VHC to achieve a win-win scenario. Furthermore, if waste heat recovery is employed at the condenser outlet to preheat the feed-water using waste heat, the overall COP can be improved. In a single-stage system, this can result in an average improvement of 4.0%. In a two-stage system, the average improvement can be 3.0%, while in a cascade system, it can be 1.7%. Moreover, if the subcooling degree is increased, the overall improvement in COP will be even greater. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-21T16:19:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-02-21T16:19:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ii
摘要 iii ABSTRACT v 目次 vii 圖次 xi 表次 xiv 符號彙編 xv 第一章 緒論 1 1.1前言 1 1.2文獻回顧 3 1.2.1冷媒研究 3 1.2.2單級循環 5 1.2.3雙級循環與級聯循環 6 1.2.4機械式蒸汽再壓縮(MVR) 9 1.2.5多級循環與綜合回顧 10 1.3研究動機與目的 12 第二章 基礎理論與分析 14 2.1蒸氣壓縮循環理論 14 2.1.1單級蒸氣壓縮循環系統 14 2.1.2具有IHX的單級循環系統 18 2.1.3具有閃蒸桶及IHX的雙級循環系統 22 2.1.4具有IHX的級聯循環系統 27 2.2冷媒特性簡介 32 2.2.1物理特性 32 2.2.2化學性質與安全性 32 2.2.3臭氧破壞潛勢(ODP) 32 2.2.4全球暖化潛勢(GWP) 33 第三章 研究方法 34 3.1工作流體 34 3.2系統模型假設 35 第四章 結果與討論 37 4.1 質量流率 38 4.1.1單級系統 38 4.1.2雙級系統 39 4.1.3級聯系統 40 4.2壓縮機功耗 44 4.2.1單級系統 44 4.2.2雙級系統 45 4.2.3級聯系統 46 4.3體積加熱能力(VHC) 50 4.3.1單級系統 50 4.3.2雙級系統 51 4.3.3級聯系統 52 4.4性能係數(COP) 54 4.4.1單級系統 54 4.4.2雙級系統 55 4.4.3級聯系統 56 4.4.4補水端預熱 59 4.5不可逆性 63 4.5.1單級系統 63 4.5.2雙級系統 64 4.5.3級聯系統 65 第五章 低GWP冷媒應用於高溫熱泵之級聯系統設計 70 5.1系統介紹與分析 70 5.2壓縮機 73 5.3熱交換器 74 5.4膨脹閥 77 5.5水泵 78 第六章 結論 79 6.1結論 79 6.2建議與未來展望 82 參考文獻 83 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 性能係數 | zh_TW |
| dc.subject | 體積加熱能力 | zh_TW |
| dc.subject | 機械式蒸汽再壓縮 | zh_TW |
| dc.subject | 低GWP冷媒 | zh_TW |
| dc.subject | 高溫熱泵 | zh_TW |
| dc.subject | VHC(Volumetric Heating Capacity) | en |
| dc.subject | high temperature heat pump | en |
| dc.subject | low-GWP refrigerants | en |
| dc.subject | MVR(Mechanical Vapor Recompression) | en |
| dc.subject | COP(Coefficient of Performance) | en |
| dc.title | 低GWP冷媒應用於高溫熱泵之設計與分析 | zh_TW |
| dc.title | Design and Analysis of Low GWP Refrigerants used in High Temperature Heat Pumps | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江沅晉;簡國祥 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Chin Chiang;Kuo-Hsiang Chien | en |
| dc.subject.keyword | 高溫熱泵,低GWP冷媒,機械式蒸汽再壓縮,性能係數,體積加熱能力, | zh_TW |
| dc.subject.keyword | high temperature heat pump,low-GWP refrigerants,MVR(Mechanical Vapor Recompression),COP(Coefficient of Performance),VHC(Volumetric Heating Capacity), | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202404745 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-12-18 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2029-12-05 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-1.pdf 未授權公開取用 | 7.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
