Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96624
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 關肇正 | zh_TW |
dc.contributor.advisor | Chao-Cheng Kaun | en |
dc.contributor.author | 彭冠瑋 | zh_TW |
dc.contributor.author | Guan-Wei Peng | en |
dc.date.accessioned | 2025-02-20T16:15:25Z | - |
dc.date.available | 2025-02-21 | - |
dc.date.copyright | 2025-02-20 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2025-01-17 | - |
dc.identifier.citation | [1] G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev.B, 47:558–561, Jan 1993.
[2] G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations formetals and semiconductors using a plane-wave basis set. Computational MaterialsScience, 6(1):15–50, 1996. [3] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energycalculations using a plane-wave basis set. Phys. Rev. B, 54:11169–11186, Oct 1996. [4] G. Kresse and D. Joubert.From ultrasoft pseudopotentials to the projectoraugmented-wave method. Phys. Rev. B, 59:1758–1775, Jan 1999. [5] Hung-Chin Wang. Origin of intrinsic biquadratic magnetic exchange coupling ingiant-magnetoresistance system. Master’s thesis, National Cheng Kung University,2024. [6] H. Mirhosseini, J. Henk, A. Ernst, S. Ostanin, C.-T. Chiang, P. Yu, A. Winkelmann,and J. Kirschner. Unconventional spin topology in surface alloys with rashba-typespin splitting. Phys. Rev. B, 79:245428, Jun 2009. [7] Amir Ziv, Abhijit Saha, Hen Alpern, Nir Sukenik, Lech Tomasz Baczewski, ShiraYochelis, Meital Reches, and Yossi Paltiel. Afm-based spin-exchange microscopyusing chiral molecules. Advanced Materials, 31(40):1904206, 2019. [8] E. Schrödinger. An undulatory theory of the mechanics of atoms and molecules.Phys. Rev., 28:1049–1070, Dec 1926. [9] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correla-tion effects. Phys. Rev., 140:A1133–A1138, Nov 1965. [10] What is Density Functional Theory?, chapter 1, pages 1–33. John Wiley & Sons,Ltd, 2009. [11] Joo-Von Kim. Spin-torque oscillators. In Solid State Physics, volume 63, pages217–294. Elsevier, 2012. [12] Tingsu Chen, Randy K Dumas, Anders Eklund, Pranaba K Muduli, AfshinHoushang, Ahmad A Awad, Philipp Dürrenfeld, B Gunnar Malm, Ana Rusu, andJohan Åkerman.Spin-torque and spin-hall nano-oscillators.Proceedings of theIEEE, 104(10):1919–1945, 2016. [13] Ricardo C Sousa and I Lucian Prejbeanu. Non-volatile magnetic random accessmemories (mram). Comptes Rendus Physique, 6(9):1013–1021, 2005. [14] Andrew D Kent and Daniel C Worledge. A new spin on magnetic memories. NatureNanotechnology, 10(3):187–191, 2015. [15] Sabpreet Bhatti, Rachid Sbiaa, Atsufumi Hirohata, Hideo Ohno, Shunsuke Fukami,and SN Piramanayagam.Spintronics based random access memory: a review.Materials Today, 20(9):530–548, 2017. [16] Roland Weiss, Roland Mattheis, and Günter Reiss.Advanced giant magnetore-sistance technology for measurement applications.Measurement Science andTechnology, 24(8):082001, 2013. [17] Mohammed Asadullah Khan, Jian Sun, Bodong Li, Alexander Przybysz, and JürgenKosel. Magnetic sensors-a review and recent technologies. Engineering ResearchExpress, 3(2):022005, 2021. [18] Stuart SP Parkin, Masamitsu Hayashi, and Luc Thomas. Magnetic domain-wallracetrack memory. science, 320(5873):190–194, 2008. [19] Stuart Parkin and See-Hun Yang. Memory on the racetrack. Nature Nanotechnology,10(3):195–198, 2015. [20] See-Hun Yang, Kwang-Su Ryu, and Stuart Parkin. Domain-wall velocities of up to750 m s- 1 driven by exchange-coupling torque in synthetic antiferromagnets. NatureNanotechnology, 10(3):221–226, 2015. [21] Kang Wang, Vineetha Bheemarasetty, and Gang Xiao. Spin textures in syntheticantiferromagnets: Challenges, opportunities, and future directions. APL Materials,11(7), 2023. [22] See-Hun Yang and Stuart Parkin. Novel domain wall dynamics in synthetic antifer-romagnets. Journal of Physics: Condensed Matter, 29(30):303001, 2017. [23] ZQ Qiu and NV Smith. Quantum well states and oscillatory magnetic interlayercoupling. Journal of Physics: Condensed Matter, 14(8):R169, 2002. [24] RA Duine, Kyung-Jin Lee, Stuart SP Parkin, and Mark D Stiles. Synthetic antifer-romagnetic spintronics. Nature physics, 14(3):217–219, 2018. [25] Ching-Hao Chang, Kun-Peng Dou, Guang-Yu Guo, and Chao-Cheng Kaun.Quantum-well-induced engineering of magnetocrystalline anisotropy in ferromag-netic films. NPG Asia Materials, 9(8):e424–e424, 2017. [26] Ching-Hao Chang, Angus Huang, Sujit Das, Horng-Tay Jeng, Sanjeev Kumar, andR Ganesh. Carrier-driven coupling in ferromagnetic oxide heterostructures. PhysicalReview B, 96(18):184408, 2017. [27] Juliana Lisik, Spencer Myrtle, and Erol Girt.Noncollinear interlayer exchangecoupling across irfe spacer layers. Journal of Magnetism and Magnetic Materials,585:171109, 2023. [28] Zachary R Nunn, Claas Abert, Dieter Suess, and Erol Girt. Control of the non-collinear interlayer exchange coupling. Science Advances, 6(48):eabd8861, 2020. [29] B Heinrich, JF Cochran, M Kowalewski, J Kirschner, Z Celinski, AS Arrott, andK Myrtle. Magnetic anisotropies and exchange coupling in ultrathin fcc co (001)structures. Physical Review B, 44(17):9348, 1991. [30] M Rührig, R Schäfer, A Hubert, R Mosler, JA Wolf, S Demokritov, and P Grünberg.Domain observations on fe-cr-fe layered structures. evidence for a biquadratic cou-pling effect. physica status solidi (a), 125(2):635–656, 1991. [31] A Azevedo, C Chesman, SM Rezende, FM De Aguiar, X Bian, and SSP Parkin.Biquadratic exchange coupling in sputtered (100) fe/cr/fe. Physical review letters,76(25):4837, 1996. [32] JC Slonczewski. Origin of biquadratic exchange in magnetic multilayers. Journal ofApplied Physics, 73(10):5957–5962, 1993. [33] SO Demokritov.Biquadratic interlayer coupling in layered magnetic systems.Journal of Physics D: Applied Physics, 31(8):925, 1998. [34] Ching-Hao Chang and Tzay-Ming Hong. Interlayer coupling enhanced by the inter-face roughness: A perturbative method. Physical Review B, 79(5):054415, 2009. [35] Y. Yafet. Ruderman-kittel-kasuya-yosida range function of a one-dimensional free-electron gas. Phys. Rev. B, 36:3948–3949, Sep 1987. [36] R. Coehoorn. Period of oscillatory exchange interactions in co/cu and fe/cu multi-layer systems. Phys. Rev. B, 44:9331–9337, Nov 1991. [37] P. Bruno and C. Chappert. Oscillatory coupling between ferromagnetic layers sepa-rated by a nonmagnetic metal spacer. Phys. Rev. Lett., 67:1602–1605, Sep 1991. [38] P. Bruno and Patrick Bruno.Theory of interlayer magnetic coupling.PhysicalReview B, 52(1):411–439, July 1995. [39] Ching-Hao Chang, Kun-Peng Dou, Ying-Chin Chen, Tzay-Ming Hong, and Chao-Cheng Kaun. Engineering the interlayer exchange coupling in magnetic trilayers.Scientific reports, 5(1):16844, 2015. [40] Patrick Bruno. Theory of interlayer exchange interactions in magnetic multilayers.Journal of Physics: Condensed Matter, 11(48):9403–9419, December 1999. [41] Ching-Hao Chang and Tzay-Ming Hong. Switching off the magnetic exchange cou-pling by quantum resonances. Physical Review B, 85(21):214415, 2012. [42] Koichi Momma and Fujio Izumi.VESTA 3 for three-dimensional visualizationof crystal, volumetric and morphology data. Journal of Applied Crystallography,44(6):1272–1276, December 2011. [43] Georg Kresse and Jurgen Hafner.Norm-conserving and ultrasoft pseudopoten-tials for first-row and transition elements. Journal of Physics: Condensed Matter,6(40):8245, 1994. [44] Georg Kresse and Daniel Joubert. From ultrasoft pseudopotentials to the projectoraugmented-wave method. Physical Review B, 59(3):1758, 1999. [45] Guan-Wei Peng, Hung-Chin Wang, Yu-Jie Zhong, Chao-Cheng Kaun, and Ching-Hao Chang. Driving noncollinear interlayer exchange coupling intrinsically in mag-netic trilayers. Materials Today Physics, 48:101544, 2024. [46] RK Kawakami, E Rotenberg, Ernesto J Escorcia-Aparicio, Hyuk J Choi, JH Wolfe,NV Smith, and ZQ Qiu. Determination of the magnetic coupling in the co/cu/co(100) system with momentum-resolved quantum well states. Physical review letters,82(20):4098, 1999. [47] Guan-Yu Chen, Angus Huang, Yen-Hui Lin, Chia-Ju Chen, Deng-Sung Lin, Po-Yao Chang, Horng-Tay Jeng, Gustav Bihlmayer, and Pin-Jui Hsu. Orbital-enhancedwarping effect in px, p y-derived rashba spin splitting of monatomic bismuth surfacealloy. npj Quantum Materials, 5(1):89, 2020. [48] Y. Girard, C. Chacon, G. de Abreu, J. Lagoute, V. Repain, and S. Rousset. Growth ofbi on cu(111): Alloying and dealloying transitions. Surface Science, 617:118–123,2013. [49] D. Kaminski, P. Poodt, E. Aret, N. Radenovic, and E. Vlieg. Surface alloys, overlayerand incommensurate structures of bi on cu(111). Surface Science, 575(3):233–246,2005. [50] J Henk, M Hoesch, J Osterwalder, A Ernst, and P Bruno. Spin–orbit coupling inthe l-gap surface states of au(111): spin-resolved photoemission experiments andfirst-principles calculations. Journal of Physics: Condensed Matter, 16(43):7581,oct 2004. [51] Sergiy Grytsyuk and Udo Schwingenschlögl. First-principles modeling of magneticmisfit interfaces. Phys. Rev. B, 88:165414, Oct 2013. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96624 | - |
dc.description.abstract | 這篇論文使用基於泛含密度理論的第一原理計算分子與金屬材料介面或金屬與金屬介面間的物理性質,特別著重在不同磁性組態的行為,旨在了解一些特殊物理性質背後的物理原理。文章研究的系統有三種:1. 由兩層磁性金屬夾著一層非磁性金屬構成的巨磁阻系統;2. 將銅沉積在鉍表面形成的合金;3. 具有手性的胜肽(peptide)分子在帶磁性的鈷鍍金表面的吸附力研究。
早期的巨磁阻系統研究發現,該系統兩側金屬的磁性方向可能不是整齊的相互平行或相互反平行,而是帶有部分垂直分量。為此,我們計算了不同厚度的中間非磁性金屬層的層間交換耦合(interlayer exchange coupling),以了解兩側磁性金屬磁矩方向選擇的特性。此外,在兩側磁矩相互垂直的系統中,我們發現了成對出現的特殊能帶,這些能帶在實空間的磁矩沿垂直介面方向呈現順時針方向和逆時針方向旋轉。 實驗發現,銅在鉍表面沉積後形成的二銅一鉍(BiCu$_2$)合金,在施加特定偏壓时,该合金的電導會突然大幅上升。我們嘗試通過第一原理計算此系統的能帶結構及態密度,以材料的物理性質從理論上理解電導大幅上升的原因。 實驗測量了具有手性的胜肽分子在磁性表面的吸附力,發現不同磁性方向(進表面或出表面)之間存在相當強度的差距。利用第一原理計算,我們計算此系統的能量,試圖探討吸附力差距的來源及其物理機制。 | zh_TW |
dc.description.abstract | This dissertation employed first-principles calculations to study molecule-metal and metal-metal interfaces, with a particular focus on their configurations and magnetic properties. The objective was to elucidate the physical mechanisms underlying unusual phenomena. Three systems are studied in this research: 1. a giant magnetoresistive system consisting of two layers of magnetic metal sandwiching a non-magnetic metal spacer; 2. an alloy formed by depositing Cu on a Bi surface; and 3. the adsorption of a chiral peptide molecule on Au/Co surfaces with magnetic moment.
Initial studies of the giant magnetoresistive system indicated that the direction of metallic magnetism in both side layers may not be perfectly parallel or antiparallel, but may have a partially perpendicular component. To address this, we calculate the interlayer exchange coupling (IEC) of the system with different thicknesses of the non-magnetic spacer to improve our understanding of its properties concerning the orientations of the magnetic moments on both sides. Furthermore, in configurations where the magnetic moments are perpendicular to each other, we observed a pair of stripes of magnetic moments rotating clockwise and counterclockwise in real space along a direction perpendicular to the interface. The deposition of Cu on the Bi surface results in the formation of the BiCu$_2$ alloy, which exhibits a sudden and significant increase in conductivity at a specific bias voltage. To comprehend the underlying physical mechanism responsible for this dramatic increase in conductivity, we have calculated the band structure and density of states of this system from first principles. The adsorption of chiral molecules on magnetic surfaces was measured and the results showed significant differences in magnetic orientation attraction (in-plane vs. out-of-plane). To understand the physics behind this difference, we performed ab initio calculations to determine the energy of the system. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-20T16:15:25Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-20T16:15:25Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Contents
Page Acknowledgements (i) 摘要 (iii) Abstract (v) Contents (vii) List of Figures (ix) List of Tables (xiii) Chapter 1 Introduction (1) Chapter 2 Method (3) 2.1 Density Functional Theory (3) 2.2 Exchange-Correlation Functional (5) 2.3 The Self-Consistent Cycle (6) Chapter 3 Driving Noncollinear Interlayer Exchange Coupling Intrinsically in Magnetic Trilayers (9) 3.1 Introduction (9) 3.2 Quantum-well model (11) 3.3 Unit Cell and Calculation Parameters (13) 3.4 Convergence Tests (13) 3.5 Results and Disscussion (15) 3.6 Conclusion (23) Chapter 4 Electronic properties of BiCu2/Cu(111) (25) 4.1 Introduction (25) 4.2 BiCu2 (26) 4.3 Rashiba Effect (27) 4.4 Result and Discussion (29) Chapter 5 Adsorption Energies of Chiral Peptides on an Au/Co Surface (35) 5.1 Introduction (35) 5.2 Chiral Induced Spin Selectivity Effect (36) 5.3 Unit Cell of peptide on Au/Co (36) 5.4 Result and Discussion (38) Chapter 6 Summary and Conclusion (43) References (45) | - |
dc.language.iso | en | - |
dc.title | 分子與金屬介面的組態與磁性之第一原理研究 | zh_TW |
dc.title | First-principles study on the configurations and magnetic properties of molecules and metal interfaces | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.coadvisor | 張允崇 | zh_TW |
dc.contributor.coadvisor | Yun-Chorng Chang | en |
dc.contributor.oralexamcommittee | 蔡政達;郭錦龍;薛宏中;張景皓 | zh_TW |
dc.contributor.oralexamcommittee | Jeng-Da Chai;Chin-Lung Kuo;Hung-chung Hsueh;Ching-Hao Chang | en |
dc.subject.keyword | 第一原理,磁矩,層間交換耦合,非共線排列,巨磁阻系統,拉什巴效應,手性誘導自旋選擇性, | zh_TW |
dc.subject.keyword | first-principles,magnetic moment,interlayer exchange coupling,noncollinear alignment,metallic trilayer,Rashiba effect,Chirality-induced spin selectivity (CISS), | en |
dc.relation.page | 51 | - |
dc.identifier.doi | 10.6342/NTU202404801 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-01-17 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 物理學系 | - |
dc.date.embargo-lift | 2025-02-21 | - |
Appears in Collections: | 物理學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-113-1.pdf | 3.37 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.