Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96530
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 戴尚年 | zh_TW |
dc.contributor.advisor | Shagnik Das | en |
dc.contributor.author | 林楷庭 | zh_TW |
dc.contributor.author | Kai-Ting Lin | en |
dc.date.accessioned | 2025-02-19T16:23:05Z | - |
dc.date.available | 2025-02-20 | - |
dc.date.copyright | 2025-02-19 | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-01-30 | - |
dc.identifier.citation | Ahlswede, R. and Khachatrian, L. H. (1997), ‘The complete intersection theorem for systems of finite sets’, European Journal of Combinatorics 18(2), 125–136.
Ahlswede, R. and Khachatrian, L. H. (1998), ‘The diametric theorem in hamming spaces optimal anticodes’, Advances in Applied mathematics 20(4), 429–449. Alon, N., Balogh, J., Keevash, P. and Sudakov, B. (2004), ‘The number of edge colorings with no monochromatic cliques’, Journal of the London Mathematical Society 70(2), 273–288. Balogh, J., Das, S., Delcourt, M., Liu, H. and Sharifzadeh, M. (2015), ‘Intersecting families of discrete structures are typically trivial’, Journal of Combinatorial Theory, Series A 132, 224–245. Bey, C. (1999), ‘The erdős-ko-rado bound for the function lattice’, Discrete applied mathematics 95(1-3), 115–125. Borg, P. (2007), ‘Intersecting systems of signed sets’, the electronic journal of combinatorics pp. R41–R41. Borg, P. (2009), ‘On t-intersecting families of signed sets and permutations’, Discrete mathematics 309(10), 3310–3317. Borg, P. (2011a), ‘Intersecting families of sets and permutations: a survey’, arXiv preprint arXiv:1106.6144 . Borg, P. (2011b), ‘On chvátal's conjecture and a conjecture on families of signed sets’, European Journal of Combinatorics 32(1), 140–145. Cary, J. (2024), ‘Kleitman’s conjecture for central families’. Chvátal, V. (1974), Intersecting families of edges in hypergraphs having the hereditary property, in C. Berge and D. Ray-Chaudhuri, eds, ‘Hypergraph Seminar’, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 61–66. Clemens, D., Das, S. and Tran, T. (2018), ‘Colourings without monochromatic disjoint pairs’, European Journal of Combinatorics (1). Erdős, P. (1961), ‘Intersection theorems for systems op finite sets’, Quart. J. Math. Oxford Ser.(2) 12, 313–320. Erdős, P. L. (n.d.), ‘Some new applications ok probability methods to combinatorial analysis and graph theory’. Feghali, C. (2019), ‘Intersecting families, signed sets, and injection’, arXiv preprint arXiv:1912.10324 . Frankl, P. and Tokushige, N. (1999), ‘The erdos-ko-rado theorem for integer sequences’, Combinatorica 19(1), 55–64. Frankl, P. and Wilson, R. M. (1981), ‘Intersection theorems with geometric consequences’, Combinatorica 1, 357–368. Friedgut, E., Kahn, J., Kalai, G. and Keller, N. (2018), ‘Chvátal’s conjecture and correlation inequalities’, Journal of Combinatorial Theory, Series A 156, 22–43. Füredi, Z., Gerbner, D. and Vizer, M. (2015), ‘A discrete isodiametric result: the erdős–ko–rado theorem for multisets’, European Journal of Combinatorics 48, 224–233. Kleitman, D. (1979), ‘Extremal hypergraph problems’, Surveys in combinatorics pp. 44–65. Mantel, W. (1907), ‘Vraagstuk xxviii’, Wiskundige Opgaven met de Oplossingen 10(2), 60–1. Meagher, K. and Purdy, A. (2016), ‘Intersection theorems for multisets’, European Journal of Combinatorics 52, 120–135. Snevily, H. (1992), ‘A new result on chvátal’s conjecture’, Journal of Combinatorial Theory, Series A 61(1), 137–141. Yao, T., Lv, B. and Wang, K. (2021), ‘Large non-trivial t-intersecting families for signed sets’, arXiv preprint arXiv:2104.13089 . Yuster, R. (1996), ‘The number of edge colorings with no monochromatic triangle’, Journal of Graph Theory 21(4), 441–452. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96530 | - |
dc.description.abstract | 給定一個整數 t,如果一個集合族中的任意兩個集合的交集大小至少為 t,則稱該集合族為 t 交叉的(t-intersecting ),當 t = 1 時,則簡稱為交叉的(intersecting)。
考慮 {1, 2, ..., n} 的所有大小為 k 的集合所形成的集合族。跟據Erdős–Ko–Rado 定理,如果 n 小於等於 2k,那麼在該集合族所有的交叉的集合子族中,平凡的集合族(即包含一個單點的所有集合所形成的集合族)的大小會達到最大值。在本文中,我們介紹了關於該定理的兩類相關推廣問題。 第一類是討論 r 標記集合(r-signed sets )上的問題。給定整數 r,一個 r 標記集合由一個集合 F 和一個定義在其上,取值為 1 至 r 的函數組成。我們將探討 Borg 提出的兩個相關猜想,並解釋其與 Chvátal 和 Kleitman 猜想的關係。 第二部分當中,我們引入了另一個擴展該問題的方向,也就是將Erdős–Rothschild 問題的核心想法引入交叉集合族中。在這一問題裡,需要最大化的目標從集合族的大小變為集合族的 3 著色(3-coloring)數量,且要求每個種顏色的集合族都是 t 交叉的。 | zh_TW |
dc.description.abstract | Given an integer t, a set family is called t-intersecting if any two sets in it have an intersection of size at least t and is abbreviated as intersecting if t = 1.
Let ([n]k) denote all subsets of {1, 2, . . . , n} with size k. The Erdős–Ko–Rado theorem says that if n is at least 2k, then the size of an intersecting family in ([n]k) is maximized by the trivial one, which means an intersecting family consisting of a common element. There are many different ways of generalizing the theorem, and we introduce two related problems in this thesis. The first is to consider the question on the r-signed sets, which is a pair of a set F and a function on it with values ranging from 1 to r, where r is a given integer. We will discuss two related conjectures proposed by Borg and explain the relation with Chvátal’s and Kleitman’s Conjectures. In the second part, we introduce another variant problem extended with the idea of the Erdős–Rothschild problem. In this question, the target that should be maximized is changed from the size of a set family to the number of 3colorings of a set family such that each monochromatic part is t-intersecting. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:23:05Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2025-02-19T16:23:05Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v Contents vii Chapter 1 Introduction 1 1.1 Basic definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 r-signed sets and Borg’s Conjecture . . . . . . . . . . . . . . . . . . 3 1.3 Erdős–Rothschild type extension . . . . . . . . . . . . . . . . . . . . 4 1.4 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chapter 2 The Erdős-Ko-Rado Theorem for signed set family 7 2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Proof of improved bound on r0 . . . . . . . . . . . . . . . . . . . . . 9 2.3 Proof of Lemma 2.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . 12 Chapter 3 Relation with Chvátal’s and Kleitman’s Conjectures 15 3.1 Another related conjecture . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter 4 The Erdős-Rothschild Type Extension 19 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Proof of Theorem 4.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.3 Erdős-Rothschild problem on k-uniform multiset family . . . . . . . 23 4.4 Erdős-Rothschild problem on k-uniform r-signed sets . . . . . . . . 27 Chapter 5 Conclusion and further extension 31 References 33 | - |
dc.language.iso | en | - |
dc.title | Erdős-Ko-Rado 定理的變體:Borg 和 Erdős-Rothschild 問題 | zh_TW |
dc.title | Variations of the Erdős-Ko-Rado theorem: Borg and Erdős-Rothschild Problem | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 俞韋亘;林延輯 | zh_TW |
dc.contributor.oralexamcommittee | Wei-Hsuan Yu;Yen-chi Lin | en |
dc.subject.keyword | Erdős–Ko–Rado 定理,標記集合,交叉集合族,Erdős–Rothschild 定理,集合著色, | zh_TW |
dc.subject.keyword | Erdős–Ko–Rado,signed sets,intersecting family,Erdős–Rothschild,set colouring, | en |
dc.relation.page | 35 | - |
dc.identifier.doi | 10.6342/NTU202500207 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2025-01-30 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 數學系 | - |
dc.date.embargo-lift | 2025-02-20 | - |
Appears in Collections: | 數學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-113-1.pdf | 373.6 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.