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Abstract

Given an integer ¢, a set family is called ¢-intersecting if any two sets in
it have an intersection of size at least ¢ and is abbreviated as intersecting if

t=1.

Let ([Z]) denote all subsets of {1,2, ..., n} with size k. The Erdés—Ko—
Rado theorem says that if n is at least 2k, then the size of an intersecting
family in ([Z]) 1s maximized by the trivial one, which means an intersect-
ing family consisting of a common element. There are many different ways
of generalizing the theorem, and we introduce two related problems in this

thesis.

The first is to consider the question on the r-signed sets, which is a pair
of a set /' and a function on it with values ranging from 1 to r, where 7 is a
given integer. We will discuss two related conjectures proposed by Borg and

explain the relation with Chvatal’s and Kleitman’s Conjectures.

In the second part, we introduce another variant problem extended with
the idea of the Erdds—Rothschild problem. In this question, the target that
should be maximized is changed from the size of a set family to the num-
ber of 3-colorings of a set family such that each monochromatic part is ¢-

intersecting.

Keywords: Erdés—Ko—Rado, signed sets, intersecting family, Erdés—Rothschild, set
colouring
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Chapter 1 Introduction

1.1 Basic definition

Let F be a family of sets, we say that F is an intersecting family if for any Fi, [} €
F, Fy N F, # (). There are many problems related to the intersection of sets, and one
of the most frequently asked questions is how large an intersecting subfamily can be in a
given family. We begin the discussion with the following example. Let [n] denote the set

{1,2,...,n} for the integer n.

Theorem 1.1.1. Let F C 2" be an intersecting family. Then |F| < 2"~

One can prove this result by observing that an intersecting family F cannot contain
a set A and its complement A¢ at the same time. Although this example seems a little bit
trivial, there is something to note. As can be easily seen, a star, which is a special type
of set family consisting of all sets containing a fixed element, attains the upper bound.
However, this is not the only family (up to permutations of the ground set [n]) that satisfies
the bound. For example, when n is odd, the family 7,/ := {F € F : 2 |[F| > n}
also has size 2"~! and one can verify that 7, is an intersecting family by using the

Pigeonhole principle.
Next, we introduce the first cornerstone for intersection-related problems, the Erdds-
Ko-Rado theorem.

Theorem 1.1.2 (Erdés-Ko-Rado, Erdés (1961)). Let n > 2k and (") denote the family

of all subsets in [n] with size k. If F C ([Z}) is an intersecting family, then

n—1
< .
7l < (k—l)
1
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Moreover, if n > 2k, then stars are the only families of sets that reach the bound.

There are many different ways to generalize the result. For instance, Erdds et al,
considered and gave some partial result of the following one in the same paper: fixing
an integer ¢, one can define the ¢-intersecting family / by requiring every pair of sets to

have an intersection of size at least ¢ and ask how large a ¢-intersecting family can be.

As in the intersecting case, we define a ¢-star to the family that contains ¢ common
elements. Once again, the ¢-star family beats all other possible families in terms of size

when n is sufficiently large.

Theorem 1.1.3 (Erdds (1961)). Let ([Z]) denote the family of all subsets in [n| with size k.

There exists an integer ng = no(k,t) such that if n > ng, then

n—t
< .
512 (1)

Moreover, the equality holds if and only if F is a family consisting of all k-subsets con-

taining t common elements.

The reason why we said this result is partial is due to the bound n is not optimal.
It was until 20 years later when Frankl and Wilson gave the exact bound ny = (k — t +
1)(t + 1) in Frankl and Wilson (1981). In fact, in these EKR type questions, determining
the exact bound is much harder than showing the growth rate of a star family beats all

other intersecting families in terms of sizes.

The t-intersecting EKR theorem is later generalized to a beautiful result, the complete

intersection theorem, proven by Ahlswede and Khachatrian (1997).

Theorem 1.1.4 (Ahlswede and Khachatrian (1997)). For integer 0 < r < k —t, let

t—1
n.=(k—t+1)- :
r

with convention 5t = co. Then, if

ny <N < Ny,

2
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the size of the largest t-intersecting family in ([Z]) is maximized by the family

F.={F € ([Z]> FN[E+2r] >t +r}

Although we have this ultimate intersecting theorem for set families, there are still
many open problems extended from the EKR problem that remain unsolved. In this thesis,

we introduce two related problems of this kind.

1.2 r-signed sets and Borg’s Conjecture

One common extension is to ask the EKR type question for different combinatorial

objects and here we consider this question on the r-signed set family.

Definition 1.2.1. Let r be an integer, F' be a subset of [n|. We define the r-signed set on

F by a pair of set with a function on F with range [r]. i.e.
Stry,r = {(F, f) - where f is a functions from F to [r]}.
Equivalently, given y; = f(x;), one can express an r-signed sets in the following form

Sirye = {(@ny), s (@) {z, -k} = Fry €[]}

And for a family F C 2", we define the family of r-signed sets on F by

S]:J, = U S{F},r-

FeF

In the second characterization, each signed set is a subset of [n] x [r] of size &, so the
intersection on [n] x [r] provides a natural definition for the intersection of two r-signed
sets. The Erdés—Ko—Rado problem can then be asked on this special set family and is
already proven for many particular set families ./, which will be introduced in Chapter 2

more explicitly.

One of the main results of this thesis is related to the following conjecture proposed

by Borg.
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Conjecture 1.2.2 (Borg (2009)). There exists a constant ro(t) such that for any r > 1y,

the largest t-intersecting subfamilies of Sr, are t-stars.

Although no proof or disproof is given in this thesis, we managed to find a tighter
bound for the lower bound of r when the underlying family F and ¢ is fixed. We let a(F)

denotes the size of the largest set in F.

Theorem 1.2.3. Let F C 2I"l be any family. Given integers t, forallr > rqg =e-(t+1)-

a(F), the largest t-intersecting subfamilies of Sx . are t-stars.

Two years after Conjecture 1.2.2 was proposed, Borg gave a new related conjecture

about the 7-signed sets intersecting family.

Conjecture 1.2.4 (Borg, Borg (20115)). Given a weight function w : 2" — R that
satisfies w(F") > w(F) forall F' C F, F', F € F. The function

w(F) =Y w(F)

FeF

is maximized by some star families among all intersecting families.

Conjecture 1.2.4 implies that the largest intersecting r-signed set family is as large
as a star family. On top of that, this conjecture also has some relation with Chvéatal’s and

Kleitman’s Conjecture.

1.3 Erdoés—Rothschild type extension

Definition 1.3.1. Let c,t € N, c > 2 a (c, t)-colorings of a set family F is a c-coloring on

elements of F such that every color class forms a t-intersecting family.

Given this definition, the following question is asked. What set family maximizes

the number of (¢, t)-coloring?

We say a t-intersecting family is maximal if we cannot find another set that can be

added to the family while preserving the ¢-intersecting property.

4
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For ¢ = 2, given a set family F and a maximal ¢-intersecting subfamily F; of it. Since
Fo is maximal, for every F' ¢ Fy, there exists G € Fy such that |F' N G| < t. Because
we only have two colors, the color of F' is determined by the color of (5. Therefore, the
2-coloring on Fy is actually decided by the 2-coloring on JF, which gives an upper bound
2170l On the other hand, taking F to be one of the largest t-intersecting families and

considering all 2-colorings on it gives a construction that matches the bound.

In this thesis, we will focus on the 3 color case and consider the problem with a set
family replaced with the multiset family and the r-signed set family on ([Z}). We will
show that the trivial construction still beats other possible families in these two settings

provided some condition on the variables.

Theorem 1.3.2. The trivial t-intersecting family maximizes the number of (3, t)-colorings
in multisets family and the r-signed sets family over ([Z}) with n, k,r satisfying certain

constraints.

1.4 QOutline of this thesis

We explain how we obtain the improved bound on ry in Theorem 1.2.3 in Chapter 2
and explain the relation of 1.2.4 with Chvatal’s and Kleitman’s Conjectures in Chapter 3.
In Chapter 4, we will explain more about the results of the Erdds-Rothschild problem and
look at the Erd6—Rothschild type extension of the EKR problem on multiset and r-signed

set families.
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Chapter 2 The Erdos-Ko-Rado
Theorem for signed set
family

2.1 Background

We start with some simple EKR type theorem for signed set. In the following, we
say that a family has (¢-)EKR property if some (¢-)star is one of its largest (¢-)intersecting
subfamily.

Theorem 2.1.1. The family Sy, has the EKR property.

k=1 where k is

Proof. By construction, we know that a star subfamily in Sg, has size r
the size of F'. On the other hand, let A be an intersecting subfamily in F. For each i € [r],
let f 4 i be the function obtained from f by adding a constant ¢ to every output of f,

where the addition is performed modulo r. Then define
Ai = {(F, [ +ir): (F. f) € A}.

Claim 2.1.2. A,, ..., A, are pairwise disjoint.

Suppose otherwise, then we can find i, j € [n] and (F, f1), (F, f2) € A such that
fi+1= fo+ 7. Thisimplies forallx € F, fi(z) +i—j = fo(z) = fi(z) # fo(x).
Thus, (F, f1) and (F, f3) are two disjoint signed sets in the intersecting signed sets family

A, contradiction.
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This claim shows that an intersecting family in S¢) . cannot have a size larger than

r*~1 and thus proves the EKR property of Sgy . [

Now, we look at r-signed sets on a given family F. For the ¢-EKR problem some
special case like 7 = (I"]), have been solved(Bey (1999) for ¢ < k < n, Frankl and
Tokushige (1999), Ahlswede and Khachatrian (1998) for £ = n). In addition, Feghali

(2019) gives an injective proof for the intersecting case of F = ([Z]) when n > 2k.

In Borg (2007) Borg generalized the EKR problem on r-signed to the general family

JF and made the following conjecture.

Conjecture 2.1.3 (Borg (2007)). Let F C 2" be any family, stars are the largest among

all intersecting family in Sr,. Moreover, they are the unique structure if v > 3.

Remark 2.1.4. For the case r = 2, there exists another construction as large as the star
family. The author also conjectured that this is the only one other possible construction

for the largest intersecting family in Sr s.

In the same paper, the author verified the conjecture for the family F with some

property.

Definition 2.1.5. Given F C 2I" and an element x € [n], we say that F is compressed to

x if for any set F € F and y € F, the set F'\ {y} U {x} is also in F.

Theorem 2.1.6 (Borg (2007)). Conjecture 2.1.3 is true if F is compressed with respect to

some element x.

Two years later, the author showed the r-signed set family Sx, has t-EKR property

provided r > ry, which depends on ¢ and the family F.

Theorem 2.1.7 (Borg (2009)). Let F C 2" be any family. Given integers t, for all

r>ryg= (O‘(;T )) (atsi)) the largest t-intersecting subfamilies of S, are t-stars.

Then he conjectured that we can actually give a lower bound r, independent of the

family F.
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Conjecture 2.1.8 (Borg (2009)). Let F C 2" be any family. There exists a constant r(t)

such that for any r > 1, the largest t-intersecting subfamilies of Sr, are t-stars.

Although we are still unsure whether Conjecture 1.2.2 is true or not, we have im-

proved the lower bound of ry.

2.2  Proof of improved bound on r

We first recall the statement of Theorem 1.2.3 and let «(F) denote the size of largest

set in F.

Theorem 1.2.3. Let F C 2" be any family. Given integers t, for allr > 1y = e - (t +
1) - a(F), the largest t-intersecting subfamilies of Sz, are t-stars. Here, o(F) denotes

the size of the largest set in F.

Compared with the exponential bound in Theorem 2.1.7, the lower bound of r is

adapted to a function that is linear in ¢ - «(F).

We improve Borg’s argument in Borg (2009) by making use of the following defini-
tion. Note that for a t-intersecting signed set family A, its domain D(A) := {F': (F, f) €
A for some f} is t-intersecting. By considering the same question on all ¢-intersecting
subfamilies of F, we may assume that F is a ¢-intersecting family and consider D(A) = F

without loss of generality.

Definition 2.2.1. Let F be a family, we say that A is a t-cover of F if for any set F' € F,
|[FNA| >t

Let S be a t-cover of F and s = |S|. Fix an order on all subsets of S of size t.
For every ' € F, we assign F' to be a member of F;r, where T is the first subset of F

appearing in the ordering.

This divides F into (;) disjoint families {F7 : 7' C S, |T'| = t}. Note that each Fr is

t-intersecting and we have a ¢-star r-singed set family centered at 7" with size - |Sx,. ..

9
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Notice that

ST Ssal =T Y ISkl =T SE.

TCS,|T|=t TCS,|T|=t

By pigeonhole, we have the following observation.
Observation 2.2.2. There exists a t-star in Sx, with size at least (‘:)_1 Tt SE L
As smaller s means a larger lower bound, we should pick s as small as possible,

we denote the smallest possible s with 7;(F). As for upper bound, we use the following

lemma proven by Borg with an observation.

Lemma 2.2.3. For any t-intersecting family A C Sr,, there exists an t-intersecting

Samily A* such that for any Ay, Ay € A*, |[A1 N Ay N ([n] x [1])] > t and | A] = | A*|.

Observation 2.2.4. Let A be a largest t-intersecting family with the property in Lemma
2.2.3. For any r-signed set (A, f) in A, f~1({1}) is a t-cover of A.

We save the proof of the lemma for later and assume that A is the largest non-trivial
t-intersecting family with property in Lemma 2.2.3. When focusing on a set F' € F, one

can rewrite the size of |.A N Sg,.| by observing that the collection of preimages of f, i.e.
B(A,F) .= {/7'({1}) : (F. ) € AN Sk},

is a t-intersecting family. This yields the following equality
||
[ANSzl = D (r=DIIT = 1BA F)|- (r = ),
BEB(A,F) k=s
where B, denotes sets in B with size k.
There are two small remarks for above equality. Firstly, the summation starts at s
from the definition of ¢-cover, and secondly, each By (A, F') isa k-uniform {¢,t+1, ... k—

1}-intersecting, which is defined as follows.

Definition 2.2.5. Given integers k,n and L C {0,1,...,k — 1}, we say a family F if
VA, B € F is L-intersecting, |AN B| € L.

10
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Then we can use the well-known Ray-Chaudhuri—Wilson theorem to get a bound on
Theorem 2.2.6 (Ray-Chaudhuri-Wilson). Given integers k,n, L C {0,1,...,k—1} and

a k-uniform L-intersecting family F, then |F| < (\ZI)'

Therefore, we now have

||

ANSz,| < Z (]JTt) (r — 1)IFI-k

k=s

— 1) 3 (k“j't) (r = 1)/FI=ED

The second inequality holds as follows. Fix a set F', one can see that

o (r—1)FI=(=t = the number of r-signed sets (F, f) for given F for which f~*({1})
equals a (k — t)-subset of F.

o rIFI=(s=1) — the number of r-signed sets (F, f) with preimage f~'(1) containing a

set 1" of size s — t.

Summing the first over all subsets of F' with size at least k£ — ¢, we have LHS of the
inequality. On the other hand, summing the second over all (s—t)-subsets of F' contributes
the the RHS of the inequality. The second summation overcounts some elements multiple

times, leading to the inequality.

Additionally, the last inequality requires an extra assumption that » > ¢ + 1, but it is

irrelevant compared to the bound we are going to get.

11
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The final step is to compare this upper bound with the lower bound of a ¢t-star in Sz,
and to obtain a bound of . When the lower bound for a ¢-star beats this general upper
bound for non-trivial ¢-intersecting signed set subfamily of Sx,. with D(A), the family

Sr, must have the EKR-property.

In conclusion, we want to find a condition on 7 such that the following inequality

holds.

s _1.r—t.|3f|: s _1'T_t'ZT|F|>€'Z IFI =1 ip-s
t " t - s—t

FeF FeF

Trivially, this is true if for each I’ € F,

—1
S AFI=t S o | F| FIFl=s
t s—1

Ts—t > e. S |F’
t)\s—t)

Note that the condition is stronger for larger | F'|, so we actually require

e (C5)

Because the RHS is smaller than

Or equivalently,

Ss—t . Oé(F)S_t
(s—=t)! (s—1)!

Using the fact that (ﬁ)l/ ¥ and (m)l/ . x are both maximized at 1 with value e among

e .

all integers, we obtain a lower bound o = e - (¢ + 1) - a(F).

2.3 Proof of Lemma 2.2.3

The proof of Lemma 2.2.3 uses the shifting technique. Roughly speaking, it works

like compressing the set family and forcing its members to be more likely to contain some

12
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common element.

In this section, it would be more convenient to consider a signed set (£, f) in the

form {(z;,y;) :i=1,...,|F|} suchthat ' = {zy,...,2p} and y; = f(x;).

Definition 2.3.1. For (a,b) € [n] x [2,7], we define an operator 6., on signed sets

A={(z1,1),-- -, (zr,yx) } as follows:

AN\ (a,b a,1) if(a,b) €A
n(A) = \(a,b)U(a,1) if(a,b) €

A otherwise

Then we define an operator A,y on signed set families by

A(%b) (.A) = {A cA: 5(a7b)(A) S .A} U {5(a,b)(A) A e A, (5((1,1))(14) ¢ A}

For a t-intersecting signed family A, we define a new family A’ by applying {A ) :
(a,b) € [n] x [2,7]} one by one on A

A =Aan)0Dpn o Apo12) 0 A2y (A).

Intuitively, a signed set (F), f) is “high” if f has many large values in its image, and then
applying the operators A, ;) will make all signed sets as “low” as possible. Now, we

claim that A’ is indeed the family we need for Lemma 2.2.3.

Theorem 2.3.2. The family A’ is still t-intersecting and | A’| = | A|, and for every A,, Ay €

A, they intersect in at least t elements in [n] x [1].

Proof. 1t is not difficult to see that each operator A, ;) maintains the size of the family.
Assume the final family A’ is not ¢-intersecting, then there must be a step in the process
such that A, ;) sends a t-intersecting family, say B, to a non t-intersecting one, say B'.
Assume B, B), € B’ and | B} N B}| < t, then we look at their preimages B; := 6(_;1))(B§).
By definition of ,), we know that either B, = Bj or By = B} \ {(a,1)} U {(a,b)}. In

summation, there might be two cases for each and, therefore, four cases in total.

* Case1: B, = B} and B, = B),
13
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In this case, B is not ¢-intersecting.

» Case 2: By # Bj and B, # B
In this case, (a,b) € By N Bs. So the size of intersection is unchanged, which is

impossible.

» Case3: B; = B and B, # B},
In this case, | BiNBs| = t—1and |BiNB}| = timplies (a, b) € |B;NBS|. However,
this means (a,b) € By, together with the fact B, is invariant under A, ), we must
have B; \ {(a,b)} U{(a,1)} € B. This set intersects B} in less than ¢ elements.

which contradicts the assumption B is t-intersecting.

The final case is the same as case 3. Thus, we have proved that A’ is ¢-intersecting.

Now we only need to show that they have an intersection of size at least ¢ in [n] x [1].

Again, we prove this by contradiction. Suppose A, A, € A’ is t-intersecting but
|[A1 N Ay N ([n] x 1)] <t. Let A; N Ay = {(a1,b1),...,(am,bn)}, one can observe that
A \{(a1,b1), ..y (am, b)) }U{(a1,1), ..., (am, 1)} isin A". Butthis set has an intersection

of size less than ¢ with A,, and therefore contradicts that A’ is ¢-intersecting. O

14
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Chapter 3 Relation with Chvatal’s and
Kleitman’s Conjectures

3.1 Another related conjecture

In this chapter, we introduce another conjecture that Borg proposed in Borg (20115)

and briefly explain its relation with two other famous EKR-type conjectures.

Conjecture 1.2.4 (Borg (201156)). Given a weight function w : 2" — R that satisfies
w(F") > w(F) forall F' C F,F', F € F. The function

FeF

is maximized by some star families among all intersecting families.

The statement is a little different from Borg (20115) but is equivalent. Now, we show

why this statement generalizes the EKR theorem for r-singed sets.

Given a family F C 2"l if we define a weight function on 2I"! by

w(S) = {(F. f) € Sz, f71({1}) = S}

Then the conjecture immediately reduces to the first part of Conjecture 1.2.4. But to feel

the power of the conjecture, we consider a different weight function w.

We say that a family F C 2/l is a down set family if it is closed under subsets. For
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a given down set family F, if let the weight function w = idz, where

1 ifFeF
1d]:(F> =

0 otherwise

Then Conjecture 1.2.4 reduces to Chvatal’s Conjecture.

Conjecture 3.1.1 (Chvatal (1974)). The largest intersecting family inside a down set fam-

ily F is a star.

Although Chvatal’s conjecture is very simple and easy to understand, it has remained
unsolved for about half a century. However, there are still some partial progress on this
problem; for example, Snevily (1992) verified the conjecture if the down set family is

compressed with respect to some element.

Another conjecture that usually appears with Chvatal’s Conjecture is the Kleitman’s
conjecture. It is also a strengthing of for Chvatal’s conjecture, proposed by Kleitman
(1979), but we follow a formulation given by Friedgut, Kahn, Kalai and Keller in Friedgut
et al. (2018).

Definition 3.1.2. Let £, g : 2" — R be two functions, we say f flows to g if there exists

a function v : 2" x 2" — R such that:

« forany A € 2", Y peom V(A, B) = f(A),

s forany B € ol ZAGQ[”] v(A, B) = g(B),

* IfAZ B, thenv(A, B) = 0.

To catch the definition, one can imagine a network on 2" with edge set {(4, B) :
A C B} and v is a function denoting the amount of water / money / whatever you like

that would go to B from A in the next minute. Then f would represent the amount of
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something at each point right now, and g would be the one after one minute. The final line

is a constraint on what paths can be used for the transmission.

With this definition, the statement of Kleitman’s Conjecture can be formulated as

follows.

Conjecture 3.1.3 (Kleitman (1979)). For every maximal intersecting family F C 20
there exists a convex combination of id; = idx, that flows to it, where F; = {F C oMl

i€ F}.

As one might have not been convinced that this is a generalization of Chvatal’s con-

jecture, we show it by proving that this conjecture implies Conjecture 1.2.4.

Theorem 3.1.4. Kleitman's Conjecture implies Conjecture 1.2.4.

Proof. Fix a weighted function w : 2"/ — R, assume F is an intersecting family that
maximizes w(F). We first extend it to a maximal intersecting family 7/ C 2", Then
by Kleitman’s conjecture, there exists a convex combination of id; flowing to id . Let ¢;

denote coefficients of the convex combination, we get
w(F) Sw(F) =Y w(F)idg (F Z Z ¢ w (F)+ Y [w(B)—w(A)]v(A, B)
Fe2lnl n] Fealn ACBC|n]

Since A C B = w(B) —w(A) > 0and v(A, B) < 0, the second term is negative.
Thus

C;*w < cirw(F;) < ¢;-max{ w max{w

<> G(F) < - cw(F) < 3 eomax{w(F)} = max{w(F))
i€[n] Fe2ln 1€[n] 1€[n]

In other word, a star will maximize the weighted sum. [

Remark 3.1.5. Last year, J. Cary proved the Kleitman's Conjecture for families that

satisify some technique conditions. (See Cary (2024))
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Chapter 4 The Erdos-Rothschild Type
Extension

4.1 Background

How many edges can we add between n vertices without constructing a triangle? In

1907, Mantel answered this question by establishing the following theorem.

Theorem 4.1.1 (Mantel (1907)). 4 triangle-free graph on n-vertex can have at most L”IQJ

edges. The bound is attained by a complete bipartite graph with two balanced parts.

Mantel’s theorem is one of the fundamental theorems in graph theory and has a lot
of variations. Turan’s theorem should be one of the most well-known extensions since it
generalizes the theorem to complete graphs K; and determines the result asymptotically.
They showed the optimal construction for K;-free n-vertex graph is a balanced (¢t — 1)-
partite graph. Such graph is constructed by dividing n vertices into (¢ — 1) parts as equal
as possible and add edges between two points in different parts. Some people also called
this graph the Tura n graph 7'(n, ¢t — 1) and the number of its edges is usually denoted by
ex(n, Ky).

Now, we look at another extension of Mantel’s theorem. In Erdés (n.d.), Erdds and
Rothschild proposed the following. Given a red / blue edge coloring on a graph G =
(V, E), we say that it is monochromatic-triangle-free if G,, the subgraph formed by
collecting red edges, and G, the one formed by collecting blue edges, are both triangle
free. The Erdds-Rothschild problem asks: What is the graph on n vertices that has the

most distinct monochromatic-triangle-free colorings?

19

doi:10.6342/NTU202500207


http://dx.doi.org/10.6342/NTU202500207

As one may think, a graph has more red/blue-colorings if it has many edges, and for
a triangle-free graph, any red/blue-coloring on it will certainly contain no monochromatic

triangle.

Erdds and Rothschild conjectured that this lower bound is also the best possible con-
struction. Several years later, Yuster (1996) proved the conjecture to be true. After that,
this problem is considered in larger cliques and more colors and that is where the interest-

ing part of this question emerged.

Definition 4.1.2. Let c,t € N, a (c,t)-colorings of a graph G is a c-coloring on the edge

set of G such that every color class is K-free.

As one might have thought, the question asked what is the maximum number of

(¢, t)-colorings an n-vertex graph can have?

From previous experience, by coloring the Turan graph 7'(n,t — 1) arbitrary with ¢

ex(n.K1) - Nevertheless, this is far

colors, it is natural to guess that the answer should be ¢
from the truth; in fact, Alon et al. (2004) showed that the bound is only true if ¢ < 3. There
are some further results in this direction, but they are beyond the scope of this thesis. In
fact, we want to consider this question for ¢-intersecting families. With abuse of notation,

we define

Definition 4.1.3. Let c,t € N, an (c,t)-colorings of a family F is an c-coloring on ele-

ments of F such that every color class form a t-intersecting family.

The goal of this section is to determine the family F maximizes the number of (3, ¢)-

colorings in our interested set families.

In Clemens et al. (2018), Clemens, Das and Tran proved a general theorem that solves
this problem under some assumptions. Although we focus on the case with 3 colors here,

they actually gave some result of the ¢ color version of this problem.

We say a t-intersecting family is extremal if it is not only maximal, but also attains
the maximum possible size. The following theorem gives a criteria that shows when the

idea of coloring a ¢-intersecting family arbitrary is the optimal one,
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Theorem 4.1.4. (Clemens et al. (2018)) Let N be the size of the extremal t-intersecting
families, N, the size of the largest non-trivial t-intersecting families. We further assume
that the intersection of 2 t-intersecting families has size at most Ny and the total number
of maximal t-intersecting families is less than M. If

6log, M

NO — maX(Nl, Ng) — m
2

>0

, then a t-intersecting family F can have at most 3N0 (3,t)-colorings and the equality

holds when F is an extremal t-intersecting family.

Note that we didn’t prescribe the under lying set families in the theorem. That means
the criteria can be applied to many different set families. In Clemens et al. (2018), they
applied it to the uniform set families ([Z]) , the permutation families &,, and the family of
k-dimensional subspaces of ;. Note that the size of intersection of 2 permutations is the

number of indices that they agree on.

As we said before, the problem of finding NV, is called the EKR type questions and
it has been proven that in many different set families with sufficiently large n, the ¢-

intersecting family is trivial.

Additionally, in these situations, one can ask the so-called Hilton-Milner type prob-
lems, which essentially ask what is the largest ¢-intersecting family that is not contained

in a trivial one.

As for the final number M, we require an upper bound for the use of Theorem 4.1.4.

For the k-uniform set family setting, we have the following theorem.

Theorem 4.1.5 (Balogh et al. (2015)). The number of maximal t-intersecting k-uniform

in [n] is less than
2(k—t)+1)

()

In the following context, we will prove Theorem 4.1.4 and apply it to some set fam-

ilies in which the Erdés—Ko—Rado and Hilton—Milner type results are known.
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4.2 Proof of Theorem 4.1.4

This proof is the same as the one in Clemens et al. (2018), we include it here for

completeness.

Fix an arbitrary ground set family equipped with an intersection. Let Ny, Ny, No, M
be the corresponding number as defined in Theorem 4.1.4. We consider the number of

(3,t)-colorings of F and denote it with c(F).

For a t-intersecting subfamily G, we can assign it a maximal ¢-intersecting family
7(G) that contains it. Given a (3, t)-coloring, let F;, F», F3 be its monochromatic parts.

We say that this coloring has type (7(F1), 7(F2), 7(F3)). Note that there are at most M3

types.

Now, we want to find an upper bound for a fixed type (M7, M2, M3). But before
that, we first look at the special case G; = G = G3 = G. In this case, we have F C G,

which implies ¢(F) < 3191 < 3M,

Now, we assume that these 3 maximal ¢-intersecting families are not all the same.
For each F' € F, let w(F') denote the number of times F’ appears in these 3 families. This
number also means the number of possible colors of F' of this type. Therefore, if we let
n; = |{F € F : w(F) = i}|, we have 273" as the upper bound of (3, t)-colorings of F

in this type.

Since each maximal ¢-intersecting family cannot have more than N, edges, by double
counting, it yields inequality n; +2ny + 3n3 < 3Ny. To optimize 223" under ny + 2ng +
3n3 < 3Ny, ng should be as large as possible, However, the condition that these 3 are
not all the same adds a bound max{N;, N2} on a3. Thus, when we sum over all possible

types, we will get the following calculation.

c(F) < M- 93 (No—ns)  gns _ pr3 . 93No (2*%3)% — M3 3N (23371)1\/0%3

6 logy M 6 logo M
= 3N0 . (2%3_1)]\[07”3721%22373 < 3N0 . (2%3_1)N07max{N1,N2}77210g22373
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Since 22371 < 1 and the exponent is greater than 0, ¢(F) will be strictly less than

3™o_ which proves Theorem 4.1.4.

4.3 Erdos-Rothschild problem on £-uniform multiset fam-

ily

k

We start the discussion with the case of multiset family (( [} )) := {multisubsets of [n] with size k}.

Note that we do count duplicate elements in intersection of two multisets. For example,
the intersection of {1, 1,1} and {1, 1, 2} has size 2. With this said, we can naturally define
the ¢-intersecting multiset family. We say a t-intersecting multiset family is trivial if every

member contains common ¢ elements and non-trivial otherwise.
Theorem 4.3.1. Given integer k and t. For sufficiently large m, a t-intersecting subfam-

ily of (( [7,?] )) can have at most 3™° (3,t)-colorings, where Ny = (( k’ft)) = (mﬁf_ftt*l).

Moreover, the equality holds when F is a trivial t-intersecting family.

In Meagher and Purdy (2016), K. Meagher and A. Purdy proved the following Erdés—

Ko—Rado and Hilton-Milner type results for ¢-intersecting multiset families.

Theorem 4.3.2 (Fiiredi et al. (2015)). Let m, k,t be two integers with k > t and m + k —
1> (k—t+1)(t+ 1). For every t-intersecting family F of k-multisets of [m|,

A< )=

Moreover, the equality holds if and only if F consists of all k-multisets containing some

fixed t elements.

Now, we need an answer for the Hilton-Milner type result. i.e. the size of extremal
non-trivial ¢-intersecting family. Firstly, we consider following two constructions for non-

trivial ¢-intersecting family:

Gi={Se (([Z])):|Sﬂ[t+2]|2t+1}
G,={5¢€ (([T]Z]))3[t]QS,Sﬂ[t—l-l,k‘—l-l]#@}U{[k+1]—{z’}:z':l,...,t}
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Note that

G| = (t+2) - (m — )P 4 pbt2
o= () - (")

In fact, these two t-intersecting families are actually the only two possible candidates

for the extremal ¢-intersecting family.

Theorem 4.3.3 (Meagher and Purdy (2016)). Let m > k > t be integers such that m >
max{t(k —t) + 3,2k — t}. For every non-trivial t-intersecting family F of k-multisets of
[m],

[ F| < max{|G], |Gaf }

The final ingredient we want is the number of maximal ¢-intersecting multiset family.
As mentioned above, to apply Theorem 4.1.4, we only need an upper bound of this number.
What we will do is to project the multiset family to a set family with larger ground set,
which reduces the case to Theorem 4.1.5 and provides us an upper bound that is good

enough.

Assuming that element x that appears ¢ times in a multiset, we map these ¢ many z
to (z,1),...,(x,4) in [m] x [k]. This yield a map o that sends a ¢-intersecting k-uniform
multiset family to the k-uniform ¢-intersecting family with ground set [m] x [k], which is
essentially the same as [mk]. For a set family F, we let X(F) := {o(F) : F' € F} denote

the image.

It can be easily seen that this mapping is one-to-one and preserves the intersection.
In other words, if F is a k-uniform ¢-intersecting multiset family, then its image > (F) is

a k-uniform ¢-intersecting family with ground set [mk].

One potential problem is that the image >(F) of a maximal ¢-intersecting family F
is not guaranteed to be maximal t-intersecting. We deal with this problem in two steps,
firstly, we may extend the family ¥(F) is a maximal ¢-intersecting one, call it ¥/(F).

Secondly, we show that the map >’ is also one-to-one on maximal ¢-intersecting families.
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Lemma 4.3.4. The map X' is one-to-one when restricted on maximal t-intersecting fanii-

lies.

Proof. Suppose otherwise that there exists J;, F» such that ¥'(F;) = ¥'(F). By defini-
tion, we know there exists a set G € X(Fy) \ 2(F;). Let F = 07 1(G). Since G belongs
to X'(F2), F intersects every member of F» with size at least ¢. So F, U {F'} is also

t-intersecting, which contradicts that /, is maximal ¢-intersecting. [

Thus, the number we want can be bounded by the number of k-uniform ¢-intersecting

families in [mk]. Applying the theorem with n = mk gives an easy upper bound.

Note that Ny < max{ Ny, (( kfgil))}, so we should discuss case by case depending
on the output of max{ Ny, No}. We use A to denote the formula in Theorem 4.1.4.

Case 1: max{N;, Nb} = |G|

In this case,

2(k7t)+1)

m 6 mk ( k—t
A: —(t 2 _1 k—t—1 k—t—?_—l
((k—t)) (t+2)(m—1) " 2log, 3 — 3 OgQ(k)

1 _ . 6 2k —t) + 1 mk
> 3 k—t 2) k—t—1 __ _~ 1
Z G~ EYm 210g23—3( kot ) 0g2<k)
m e 6 2(k—t)+1
> —t—=2)-mFtt - . k1
= (G )-m 2log, 3 — 3 ( kot ) og,(em)
m L 2k —t) + 1
— =) -mF 7ok 1
_((k;—t)! t—2)-m 72k ( bt ) 0g, M

Notice that when k and ¢ are fixed, the second term has order O(logm), so if m >

(t —2)(k —t)!, then A > 0 for sufficiently large m.
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Case 2: max{N;, No} = |Gy

In this case,

2(k—t)+1)

("5 ()

m— 2 2k —t)+1
(k_t>—t—72k-< by )-long

A

v

Again, A > 0 holds for sufficiently large m.

Case 3: max{Ny, No} = (( k_’:‘_l)) In this case,

s~ () () ()

o (m+Ek—-t-1 B m+k—t—2 B 6 o mk (0
- k—t k—t—1 2log,3 -3 22\ k&
2(k:—t)+1)

_(mt+k—t—=2) 6 o mk (i
B kE—t 2log,3 —3 82 k

1 . 2k —t)+1
> — Dt — 72k -1
_(k—t)!(m ) 7 ( Lt ) og, m

Once again, A > ( holds for sufficiently large m. Therefore, we obtain the following

theorem of Erdés-Rothschild type problem.

Theorem 4.3.5. Given integers m > k > t, there exists mo(k,t) such that if m >
mo(k,t), then a t-intersecting multiset family F can have at most 3(:7) (3, t)-colorings.

Moreover, the inequality holds if and only if F is a t-star.
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4.4 FErdos-Rothschild problem on £-uniform r-signed sets

Now, we consider the same problem on signed set family. Given integers k, r, we

define the r-signed £-set family as follows:

S =40 ae (W) rea5 1)

In other words, S, i, is the special case of previously discussed signed set family Sz,
with F = ([Z]). We first record some EKR and Hilton—Milner type results in this setting.
Notice that unlike in section 2, we do not fix the family ([Z]). In other words, n can now

grow.

The ¢-EKR result of S,, ,, - was also independently proved in Ahlswede and Khacha-
trian (1998) and in Frankl and Tokushige (1999). For k£ < n, the t-intersecting S,, 1, is
solved by Bey (1999).

Theorem 4.4.1 (Ahlswede and Khachatrian (1998), Frankl and Tokushige (1999)). Let
n > t and r be integers. The largest t-intersecting subfamily of S,, ,, . is trivial if and only
ifr>t+ 1.

Theorem 4.4.2 (Bey (1999)). Let n > k > t and r be integers. A t-star has largest size

among all the largest t-intersecting subfamily of S,, ., if and only if n > @ (t+1).

Combining these two, we have the following corollary.

Corollary 4.4.3 (Borg (2011a)). Let n > k > t and r be integers. The largest t-

intersecting subfamily of S,, . , is trivial if r >t + 1.

As for Hilton—Milner type result, we first look at two constructions. For integer s,

M denotes the r-signed set {(1,1),(2,1),...,(s,1)}. We define

M= {Ac ([Z]> AN Mo} >t + 1)
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and

Hy = {Ae ([Z]) LM, C A, |AN M| 2t+1}U{Ae ([Z]) AN M| 2@-1},

where ¢ = min{k + 1, n}

Theorem 4.4.4 (Yao et al. (2021)). Letn > k > t and r be integers and F be a non-trivial

t-intersecting subfamily of Sy, .. If 7 > ro(n, k,t), n >t +2 >4 andn > k > t, then
|«F| S {H17H2}7

where

7“0(77/, k> t) =

(k—t+3)(k—t—1) t+2\ k—t+1
n—t—1 'max{( 2 ) y

Remark 4.4.5. Although the theorem does not cover the case for k = t + 1, one can
observe that in this special situation, a nontrivial t-intersecting k-uniform family has size

at most k + 1.

Let n, k, t, r be the numbers defined above, observe that

Ha| < (t+2) - (n_t_ 1) pkt=1

k—t—1
n—t—1 n—~¢+1
< ({—1)- L pk—t=1 AN k1
Mol < (£~ 1) (k_t_1> (0= 1) (k—£+1) r

Note that (}~;!}) is actually bounded by 2 and when ¢ > t + 2, the p#=*+1 > ph=t+1

and the second term is usually the lower order term.

Using this lemma and some calculation, we have

—t —t—1
A%-—Hﬁm{ﬁh7ﬁb}2i(z t-T-—HMX{t+2,k—-t+2}) (Z . 1)-7ﬁ—*4

Now we deal with the last term in the discriminant. The idea of finding an upper
bound for the number of maximal ¢-intersecting families in S, ;- is the same as in the
multiset case, where we ignore the extra structure of the ground set and use Theorem

4.1.5.
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This time, the ground set has size nr, and the exponential term is indépendent of n

and r, so log M = O(logr) grows logarithmically in the variables.

log M < (2<kk__t)t+ 1) -log (TZ) ~ O(lognr)

Thus, we know that the last term grows much slower compared to the first one, which

shows

—1 —t—-1
A > (Z_t-r—max{t+2,k—t+2}) (Z—t—l) -rF1 — O(lognr) > 0

for all sufficiently large n and r > % -max{t+ 2,k — ¢+ 2}. As a conclusion, we

have the following theorem.

Theorem 4.4.6. For fixed integers k > t and sufficiently large n and r > % - max{t +
2,k — t + 2}, a t-intersecting subfamily of S, ., can have at most 3N (3, t)-colorings,
where Ny = (Z:i) - k=t Moreover, the equality holds when F is a trivial t-intersecting

family.
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Chapter 5§ Conclusion and further
extension

We focused on two types of extension of the Erdds—Ko—Rado theorem in this thesis

and there are still many unsolved parts.

In the EKR thoerem for r-signed sets Sr -, we find an improved lower bound for r
that depends on t and «(F), the size of the largest sets in F, but it still does not answer
the conjecture, which demands a lower bound that only depends on ¢. We then introduced
another conjecture proposed by Borg and explain how it *sits between” the well-known
Chvatal’s Conjecture and Kleitman’s Conjecture and, of course, it will be very intriguing

if one proves or disproves these problems.

As for the second topic, the Erd6s—Rothschild type extension of the Erd6s—Ko—Rado
theorem, we only consider the case of 3-coloring. As mentioned previously, the construc-

tion for optimal family of more than 4 colors might no longer be trivial.

In addition, finding a tighter upper bound for the number of maximal ¢-intersecting
families is also a potential problem. In this thesis, a very loose estimation is used since
its order is not the dominant one, but we reduce it to the set setting by considering it as a

large ground set, which might be probably far from the correct order.
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