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摘要

給定一個整數 t，如果一個集合族中的任意兩個集合的交集大小至

少為 t，則稱該集合族為 t­交叉的（t­intersecting），當 t = 1時，則簡

稱為交叉的（intersecting）。

考慮 1, 2, ..., n 的所有大小為 k 的集合所形成的集合族。跟據

Erdős–Ko–Rado定理，如果 n小於等於 2k，那麼在該集合族所有的交

叉的集合子族中，平凡的集合族（即包含一個單點的所有集合所形成

的集合族）的大小會達到最大值。在本文中，我們介紹了關於該定理

的兩類相關推廣問題。

第一類是討論 r­標記集合（r­signed sets）上的問題。給定整數 r，

一個 r­標記集合由一個集合 F 和一個定義在其上，取值為 1至 r的函

數組成。我們將探討 Borg提出的兩個相關猜想，並解釋其與 Chvátal

和 Kleitman猜想的關係。

第二部分當中，我們引入了另一個擴展該問題的方向，也就是將

Erdős–Rothschild問題的核心想法引入交叉集合族中。在這一問題裡，

需要最大化的目標從集合族的大小變為集合族的 3­著色（3­colorings）

數量，且要求每個種顏色的集合族都是 t­交叉的。

關鍵字：Erdős–Ko–Rado定理、標記集合、交叉集合族、Erdős–Rothschild
定理、集合著色
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Abstract

Given an integer t, a set family is called t­intersecting if any two sets in

it have an intersection of size at least t and is abbreviated as intersecting if

t = 1.

Let
(
[n]
k

)
denote all subsets of {1, 2, . . . , n} with size k. The Erdős–Ko–

Rado theorem says that if n is at least 2k, then the size of an intersecting

family in
(
[n]
k

)
is maximized by the trivial one, which means an intersect­

ing family consisting of a common element. There are many different ways

of generalizing the theorem, and we introduce two related problems in this

thesis.

The first is to consider the question on the r­signed sets, which is a pair

of a set F and a function on it with values ranging from 1 to r, where r is a

given integer. We will discuss two related conjectures proposed by Borg and

explain the relation with Chvátal’s and Kleitman’s Conjectures.

In the second part, we introduce another variant problem extended with

the idea of the Erdős–Rothschild problem. In this question, the target that

should be maximized is changed from the size of a set family to the num­

ber of 3­colorings of a set family such that each monochromatic part is t­

intersecting.

Keywords: Erdős–Ko–Rado, signed sets, intersecting family, Erdős–Rothschild, set
colouring
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Chapter 1 Introduction

1.1 Basic definition

Let F be a family of sets, we say that F is an intersecting family if for any F1, F2 ∈

F , F1 ∩ F2 ̸= ∅. There are many problems related to the intersection of sets, and one

of the most frequently asked questions is how large an intersecting subfamily can be in a

given family. We begin the discussion with the following example. Let [n] denote the set

{1, 2, . . . , n} for the integer n.

Theorem 1.1.1. Let F ⊆ 2[n] be an intersecting family. Then |F| ≤ 2n−1.

One can prove this result by observing that an intersecting family F cannot contain

a set A and its complement Ac at the same time. Although this example seems a little bit

trivial, there is something to note. As can be easily seen, a star, which is a special type

of set family consisting of all sets containing a fixed element, attains the upper bound.

However, this is not the only family (up to permutations of the ground set [n]) that satisfies

the bound. For example, when n is odd, the family F≥n/2 := {F ∈ F : 2 · |F | > n}

also has size 2n−1 and one can verify that F≥n/2 is an intersecting family by using the

Pigeonhole principle.

Next, we introduce the first cornerstone for intersection­related problems, the Erdős­

Ko­Rado theorem.

Theorem 1.1.2 (Erdős­Ko­Rado, Erdős (1961)). Let n ≥ 2k and
(
[n]
k

)
denote the family

of all subsets in [n] with size k. If F ⊆
(
[n]
k

)
is an intersecting family, then

|F| ≤
(
n− 1

k − 1

)
.

1
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Moreover, if n > 2k, then stars are the only families of sets that reach the bound.

There are many different ways to generalize the result. For instance, Erdős et al.

considered and gave some partial result of the following one in the same paper: fixing

an integer t, one can define the t­intersecting family F by requiring every pair of sets to

have an intersection of size at least t and ask how large a t­intersecting family can be.

As in the intersecting case, we define a t­star to the family that contains t common

elements. Once again, the t­star family beats all other possible families in terms of size

when n is sufficiently large.

Theorem 1.1.3 (Erdős (1961)). Let
(
[n]
k

)
denote the family of all subsets in [n] with size k.

There exists an integer n0 = n0(k, t) such that if n ≥ n0, then

|F| ≤
(
n− t

k − t

)
.

Moreover, the equality holds if and only if F is a family consisting of all k­subsets con­

taining t common elements.

The reason why we said this result is partial is due to the bound n0 is not optimal.

It was until 20 years later when Frankl and Wilson gave the exact bound n0 = (k − t +

1)(t+ 1) in Frankl and Wilson (1981). In fact, in these EKR type questions, determining

the exact bound is much harder than showing the growth rate of a star family beats all

other intersecting families in terms of sizes.

The t­intersecting EKR theorem is later generalized to a beautiful result, the complete

intersection theorem, proven by Ahlswede and Khachatrian (1997).

Theorem 1.1.4 (Ahlswede and Khachatrian (1997)). For integer 0 ≤ r ≤ k − t, let

nr = (k − t+ 1) · t− 1

r
,

with convention t−1
0

= ∞. Then, if

nr ≤ n ≤ nr+1,

2
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the size of the largest t­intersecting family in
(
[n]
k

)
is maximized by the family

Fr := {F ∈
(
[n]

k

)
: |F ∩ [t+ 2r]| ≥ t+ r}.

Although we have this ultimate intersecting theorem for set families, there are still

many open problems extended from the EKR problem that remain unsolved. In this thesis,

we introduce two related problems of this kind.

1.2 r­signed sets and Borg’s Conjecture

One common extension is to ask the EKR type question for different combinatorial

objects and here we consider this question on the r­signed set family.

Definition 1.2.1. Let r be an integer, F be a subset of [n]. We define the r­signed set on

F by a pair of set with a function on F with range [r]. i.e.

S{F},r := {(F, f) : where f is a functions from F to [r]}.

Equivalently, given yi = f(xi), one can express an r­signed sets in the following form

S{F},r := {(x1, y1), . . . , (xk, yk) : {x1, . . . , xk} = F, yi ∈ [r]}.

And for a family F ⊆ 2[n], we define the family of r­signed sets on F by

SF ,r :=
∪
F∈F

S{F},r.

In the second characterization, each signed set is a subset of [n]× [r] of size k, so the

intersection on [n] × [r] provides a natural definition for the intersection of two r­signed

sets. The Erdős–Ko–Rado problem can then be asked on this special set family and is

already proven for many particular set families F , which will be introduced in Chapter 2

more explicitly.

One of the main results of this thesis is related to the following conjecture proposed

by Borg.

3
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Conjecture 1.2.2 (Borg (2009)). There exists a constant r0(t) such that for any r ≥ r0,

the largest t­intersecting subfamilies of SF ,r are t­stars.

Although no proof or disproof is given in this thesis, we managed to find a tighter

bound for the lower bound of r when the underlying family F and t is fixed. We let α(F)

denotes the size of the largest set in F .

Theorem 1.2.3. Let F ⊆ 2[n] be any family. Given integers t, for all r > r0 = e · (t+1) ·

α(F), the largest t­intersecting subfamilies of SF ,r are t­stars.

Two years after Conjecture 1.2.2 was proposed, Borg gave a new related conjecture

about the r­signed sets intersecting family.

Conjecture 1.2.4 (Borg, Borg (2011b)). Given a weight function w : 2[n] → R that

satisfies w(F ′) ≥ w(F ) for all F ′ ⊆ F, F ′, F ∈ F . The function

w(F) :=
∑
F∈F

w(F )

is maximized by some star families among all intersecting families.

Conjecture 1.2.4 implies that the largest intersecting r­signed set family is as large

as a star family. On top of that, this conjecture also has some relation with Chvátal’s and

Kleitman’s Conjecture.

1.3 Erdős–Rothschild type extension

Definition 1.3.1. Let c, t ∈ N, c ≥ 2 a (c, t)­colorings of a set family F is a c­coloring on

elements of F such that every color class forms a t­intersecting family.

Given this definition, the following question is asked. What set family maximizes

the number of (c, t)­coloring?

We say a t­intersecting family is maximal if we cannot find another set that can be

added to the family while preserving the t­intersecting property.

4
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For c = 2, given a set familyF and amaximal t­intersecting subfamilyF0 of it. Since

F0 is maximal, for every F /∈ F0, there exists G ∈ F0 such that |F ∩ G| < t. Because

we only have two colors, the color of F is determined by the color of G. Therefore, the

2­coloring on F0 is actually decided by the 2­coloring on F , which gives an upper bound

2|F0|. On the other hand, taking F to be one of the largest t­intersecting families and

considering all 2­colorings on it gives a construction that matches the bound.

In this thesis, we will focus on the 3 color case and consider the problem with a set

family replaced with the multiset family and the r­signed set family on
(
[n]
k

)
. We will

show that the trivial construction still beats other possible families in these two settings

provided some condition on the variables.

Theorem 1.3.2. The trivial t­intersecting family maximizes the number of (3, t)­colorings

in multisets family and the r­signed sets family over
(
[n]
k

)
with n, k, r satisfying certain

constraints.

1.4 Outline of this thesis

We explain how we obtain the improved bound on r0 in Theorem 1.2.3 in Chapter 2

and explain the relation of 1.2.4 with Chvátal’s and Kleitman’s Conjectures in Chapter 3.

In Chapter 4, we will explain more about the results of the Erdős­Rothschild problem and

look at the Erdő–Rothschild type extension of the EKR problem on multiset and r­signed

set families.

5
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Chapter 2 The Erdős­Ko­Rado
Theorem for signed set

family

2.1 Background

We start with some simple EKR type theorem for signed set. In the following, we

say that a family has (t­)EKR property if some (t­)star is one of its largest (t­)intersecting

subfamily.

Theorem 2.1.1. The family S{F},r has the EKR property.

Proof. By construction, we know that a star subfamily in SF,r has size rk−1, where k is

the size of F . On the other hand, letA be an intersecting subfamily inF . For each i ∈ [r],

let f + iF be the function obtained from f by adding a constant i to every output of f ,

where the addition is performed modulo r. Then define

Ai := {(F, f + iF ) : (F, f) ∈ A}.

Claim 2.1.2. A1, . . . ,Ar are pairwise disjoint.

Suppose otherwise, then we can find i, j ∈ [n] and (F, f1), (F, f2) ∈ A such that

f1 + i ≡ f2 + j. This implies for all x ∈ F , f1(x) + i− j = f2(x) =⇒ f1(x) ̸= f2(x).

Thus, (F, f1) and (F, f2) are two disjoint signed sets in the intersecting signed sets family

A, contradiction.

7
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This claim shows that an intersecting family in S{F},r cannot have a size larger than

rk−1 and thus proves the EKR property of S{F},r.

Now, we look at r­signed sets on a given family F . For the t­EKR problem some

special case like F =
(
[n]
k

)
, have been solved(Bey (1999) for t ≤ k < n, Frankl and

Tokushige (1999), Ahlswede and Khachatrian (1998) for k = n). In addition, Feghali

(2019) gives an injective proof for the intersecting case of F =
(
[n]
k

)
when n > 2k.

In Borg (2007) Borg generalized the EKR problem on r­signed to the general family

F and made the following conjecture.

Conjecture 2.1.3 (Borg (2007)). Let F ⊆ 2[n] be any family, stars are the largest among

all intersecting family in SF ,r. Moreover, they are the unique structure if r ≥ 3.

Remark 2.1.4. For the case r = 2, there exists another construction as large as the star

family. The author also conjectured that this is the only one other possible construction

for the largest intersecting family in SF ,2.

In the same paper, the author verified the conjecture for the family F with some

property.

Definition 2.1.5. Given F ⊆ 2[n] and an element x ∈ [n], we say that F is compressed to

x if for any set F ∈ F and y ∈ F , the set F \ {y} ∪ {x} is also in F .

Theorem 2.1.6 (Borg (2007)). Conjecture 2.1.3 is true if F is compressed with respect to

some element x.

Two years later, the author showed the r­signed set family SF ,r has t­EKR property

provided r ≥ r0, which depends on t and the family F .

Theorem 2.1.7 (Borg (2009)). Let F ⊆ 2[n] be any family. Given integers t, for all

r > r0 =
(
α(F)
t

)(
α(F)
t+1

)
, the largest t­intersecting subfamilies of SF ,r are t­stars.

Then he conjectured that we can actually give a lower bound r0 independent of the

family F .

8
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Conjecture 2.1.8 (Borg (2009)). LetF ⊆ 2[n] be any family. There exists a constant r0(t)

such that for any r ≥ r0, the largest t­intersecting subfamilies of SF ,r are t­stars.

Although we are still unsure whether Conjecture 1.2.2 is true or not, we have im­

proved the lower bound of r0.

2.2 Proof of improved bound on r0

We first recall the statement of Theorem 1.2.3 and let α(F) denote the size of largest

set in F .

Theorem 1.2.3. Let F ⊆ 2[n] be any family. Given integers t, for all r > r0 = e · (t +

1) · α(F), the largest t­intersecting subfamilies of SF ,r are t­stars. Here, α(F) denotes

the size of the largest set in F .

Compared with the exponential bound in Theorem 2.1.7, the lower bound of r is

adapted to a function that is linear in t · α(F).

We improve Borg’s argument in Borg (2009) by making use of the following defini­

tion. Note that for a t­intersecting signed set familyA, its domainD(A) := {F : (F, f) ∈

A for some f} is t­intersecting. By considering the same question on all t­intersecting

subfamilies ofF , wemay assume thatF is a t­intersecting family and considerD(A) = F

without loss of generality.

Definition 2.2.1. Let F be a family, we say that A is a t­cover of F if for any set F ∈ F ,

|F ∩ A| ≥ t.

Let S be a t­cover of F and s = |S|. Fix an order on all subsets of S of size t.

For every F ∈ F , we assign F to be a member of FT , where T is the first subset of F

appearing in the ordering.

This dividesF into
(
s
t

)
disjoint families {FT : T ⊆ S, |T | = t}. Note that eachFT is

t­intersecting and we have a t­star r­singed set family centered at T with size r−t · |SFT ,r|.

9

http://dx.doi.org/10.6342/NTU202500207


doi:10.6342/NTU202500207

Notice that

∑
T⊆S,|T |=t

r−t · |SFT ,r| = r−t ·
∑

T⊆S,|T |=t

|SFT ,r| = r−t · |SF ,r|.

By pigeonhole, we have the following observation.

Observation 2.2.2. There exists a t­star in SF ,r with size at least
(
s
t

)−1 · r−t · |SF ,r|.

As smaller s means a larger lower bound, we should pick s as small as possible,

we denote the smallest possible s with τt(F). As for upper bound, we use the following

lemma proven by Borg with an observation.

Lemma 2.2.3. For any t­intersecting family A ⊆ SF ,r, there exists an t­intersecting

family A∗ such that for any A1, A2 ∈ A∗, |A1 ∩ A2 ∩ ([n]× [1])| ≥ t and |A| = |A∗|.

Observation 2.2.4. Let A be a largest t­intersecting family with the property in Lemma

2.2.3. For any r­signed set (A, f) in A, f−1({1}) is a t­cover of A.

We save the proof of the lemma for later and assume that A is the largest non­trivial

t­intersecting family with property in Lemma 2.2.3. When focusing on a set F ∈ F , one

can rewrite the size of |A ∩ SF,r| by observing that the collection of preimages of f , i.e.

B(A, F ) := {f−1({1}) : (F, f) ∈ A ∩ SF,r},

is a t­intersecting family. This yields the following equality

|A ∩ SF ,r| =
∑

B∈B(A,F )

(r − 1)|F |−|B| =

|F |∑
k=s

|Bk(A, F )| · (r − 1)|F |−k,

where Bk denotes sets in B with size k.

There are two small remarks for above equality. Firstly, the summation starts at s

from the definition of t­cover, and secondly, eachBk(A, F ) is a k­uniform {t, t+1, . . . , k−

1}­intersecting, which is defined as follows.

Definition 2.2.5. Given integers k, n and L ⊆ {0, 1, . . . , k − 1}, we say a family F if

∀A,B ∈ F is L­intersecting, |A ∩B| ∈ L.

10
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Then we can use the well­known Ray­Chaudhuri–Wilson theorem to get a bound on

Bk(A, F ).

Theorem 2.2.6 (Ray­Chaudhuri–Wilson). Given integers k, n, L ⊆ {0, 1, . . . , k−1} and

a k­uniform L­intersecting family F , then |F| ≤
(

n
|L|

)
.

Therefore, we now have

|A ∩ SF ,r| ≤
|F |∑
k=s

(
|F |
k − t

)
· (r − 1)|F |−k

= (r − 1)−t ·
|F |∑
k=s

(
|F |
k − t

)
· (r − 1)|F |−(k−t)

≤ (r − 1)−t ·
(

|F |
s− t

)
· r|F |−(s−t)

= (
r − 1

r
)−t ·

(
|F |
s− t

)
· r|F |−s

≤ e ·
(

|F |
s− t

)
· r|F |−s

The second inequality holds as follows. Fix a set F , one can see that

• (r−1)|F |−(k−t) = the number of r­signed sets (F, f) for givenF for which f−1({1})

equals a (k − t)­subset of F .

• r|F |−(s−t) = the number of r­signed sets (F, f) with preimage f−1(1) containing a

set T of size s− t.

Summing the first over all subsets of F with size at least k − t, we have LHS of the

inequality. On the other hand, summing the second over all (s−t)­subsets ofF contributes

the the RHS of the inequality. The second summation overcounts some elements multiple

times, leading to the inequality.

Additionally, the last inequality requires an extra assumption that r ≥ t+ 1, but it is

irrelevant compared to the bound we are going to get.

11
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The final step is to compare this upper bound with the lower bound of a t­star in SF ,r

and to obtain a bound of r. When the lower bound for a t­star beats this general upper

bound for non­trivial t­intersecting signed set subfamily of SF ,r with D(A), the family

SF ,r must have the EKR­property.

In conclusion, we want to find a condition on r such that the following inequality

holds.

(
s

t

)−1

· r−t · |SF ,r| =
(
s

t

)−1

· r−t ·
∑
F∈F

r|F | ≥ e ·
∑
F∈F

(
|F | − 1

s− t

)
· r|F |−s

Trivially, this is true if for each F ∈ F ,(
s

t

)−1

r|F |−t > e ·
(

|F |
s− t

)
r|F |−s.

Or equivalently,

rs−t > e ·
(
s

t

)(
|F |
s− t

)
.

Note that the condition is stronger for larger |F |, so we actually require

rs−t > e ·
(
s

t

)(
α(F )

s− t

)
.

Because the RHS is smaller than

e · ss−t

(s− t)!
· α(F )s−t

(s− t)!

Using the fact that ( e
x!·x!)

1/x and ( e
x!·x!)

1/x · x are both maximized at 1 with value e among

all integers, we obtain a lower bound r0 = e · (t+ 1) · α(F).

2.3 Proof of Lemma 2.2.3

The proof of Lemma 2.2.3 uses the shifting technique. Roughly speaking, it works

like compressing the set family and forcing its members to be more likely to contain some

12

http://dx.doi.org/10.6342/NTU202500207


doi:10.6342/NTU202500207

common element.

In this section, it would be more convenient to consider a signed set (F, f) in the

form {(xi, yi) : i = 1, . . . , |F |} such that F = {x1, . . . , x|F |} and yi = f(xi).

Definition 2.3.1. For (a, b) ∈ [n] × [2, r], we define an operator δ(a,b) on signed sets

A = {(x1, y1), . . . , (xk, yk)} as follows:

δ(a,b)(A) :=

A \ (a, b) ∪ (a, 1) if (a, b) ∈ A

A otherwise

Then we define an operator ∆(a,b) on signed set families by

∆(a,b)(A) := {A ∈ A : δ(a,b)(A) ∈ A} ∪ {δ(a,b)(A) : A ∈ A, δ(a,b)(A) /∈ A}

For a t­intersecting signed familyA, we define a new familyA′ by applying {∆(a,b) :

(a, b) ∈ [n]× [2, r]} one by one on A

A′ = ∆(1,n) ◦∆(2,n) ◦ · · ·∆(n−1,2) ◦∆(n,2)(A).

Intuitively, a signed set (F, f) is “high” if f has many large values in its image, and then

applying the operators ∆(a,b) will make all signed sets as “low” as possible. Now, we

claim that A′ is indeed the family we need for Lemma 2.2.3.

Theorem2.3.2. The familyA′ is still t­intersecting and |A′| = |A|, and for everyA1, A2 ∈

A′, they intersect in at least t elements in [n]× [1].

Proof. It is not difficult to see that each operator ∆(a,b) maintains the size of the family.

Assume the final family A′ is not t­intersecting, then there must be a step in the process

such that ∆(a,b) sends a t­intersecting family, say B, to a non t­intersecting one, say B′.

Assume B′
1, B

′
2 ∈ B′ and |B′

1 ∩B′
2| < t, then we look at their preimages Bi := δ−1

(a,b)(B
′
i).

By definition of δ(a,b), we know that either B1 = B′
1 or B1 = B′

1 \ {(a, 1)} ∪ {(a, b)}. In

summation, there might be two cases for each and, therefore, four cases in total.

• Case 1: B1 = B′
1 and B2 = B′

2

13
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In this case, B is not t­intersecting.

• Case 2: B1 ̸= B′
1 and B2 ̸= B′

2

In this case, (a, b) ∈ B1 ∩ B2. So the size of intersection is unchanged, which is

impossible.

• Case 3: B1 = B′
1 and B2 ̸= B′

2

In this case, |B1∩B2| = t−1 and |B1∩B′
2| = t implies (a, b) ∈ |B1∩B′

2|. However,

this means (a, b) ∈ B1, together with the fact B1 is invariant under ∆(a,b), we must

have B1 \ {(a, b)} ∪ {(a, 1)} ∈ B. This set intersects B′
2 in less than t elements.

which contradicts the assumption B is t­intersecting.

The final case is the same as case 3. Thus, we have proved that A′ is t­intersecting.

Now we only need to show that they have an intersection of size at least t in [n]× [1].

Again, we prove this by contradiction. Suppose A1, A2 ∈ A′ is t­intersecting but

|A1 ∩ A2 ∩ ([n]× 1)| < t. Let A1 ∩ A2 = {(a1, b1), . . . , (am, bm)}, one can observe that

A1\{(a1, b1), ..., (am, bm)}∪{(a1, 1), . . . , (am, 1)} is inA′. But this set has an intersection

of size less than t with A2, and therefore contradicts that A′ is t­intersecting.

14
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Chapter 3 Relation with Chvátal’s and
Kleitman’s Conjectures

3.1 Another related conjecture

In this chapter, we introduce another conjecture that Borg proposed in Borg (2011b)

and briefly explain its relation with two other famous EKR­type conjectures.

Conjecture 1.2.4 (Borg (2011b)). Given a weight function w : 2[n] → R that satisfies

w(F ′) ≥ w(F ) for all F ′ ⊆ F, F ′, F ∈ F . The function

w(F) :=
∑
F∈F

w(F )

is maximized by some star families among all intersecting families.

The statement is a little different from Borg (2011b) but is equivalent. Now, we show

why this statement generalizes the EKR theorem for r­singed sets.

Given a family F ⊆ 2[n], if we define a weight function on 2[n] by

w(S) = |{(F, f) ∈ SF ,r : f
−1({1}) = S}|

Then the conjecture immediately reduces to the first part of Conjecture 1.2.4. But to feel

the power of the conjecture, we consider a different weight function w.

We say that a family F ⊆ 2[n] is a down set family if it is closed under subsets. For

15
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a given down set family F , if let the weight function w = idF , where

idF(F ) :=

1 if F ∈ F

0 otherwise

Then Conjecture 1.2.4 reduces to Chvátal’s Conjecture.

Conjecture 3.1.1 (Chvátal (1974)). The largest intersecting family inside a down set fam­

ily F is a star.

Although Chvátal’s conjecture is very simple and easy to understand, it has remained

unsolved for about half a century. However, there are still some partial progress on this

problem; for example, Snevily (1992) verified the conjecture if the down set family is

compressed with respect to some element.

Another conjecture that usually appears with Chvátal’s Conjecture is the Kleitman’s

conjecture. It is also a strengthing of for Chvátal’s conjecture, proposed by Kleitman

(1979), but we follow a formulation given by Friedgut, Kahn, Kalai and Keller in Friedgut

et al. (2018).

Definition 3.1.2. Let f, g : 2[n] → R≥0 be two functions, we say f flows to g if there exists

a function v : 2[n] × 2[n] → R≥0 such that:

• for any A ∈ 2[n],
∑

B∈2[n] v(A,B) = f(A),

• for any B ∈ 2[n],
∑

A∈2[n] v(A,B) = g(B),

• If A ̸⊆ B, then v(A,B) = 0.

To catch the definition, one can imagine a network on 2[n] with edge set {(A,B) :

A ⊆ B} and v is a function denoting the amount of water / money / whatever you like

that would go to B from A in the next minute. Then f would represent the amount of

16
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something at each point right now, and g would be the one after one minute. The final line

is a constraint on what paths can be used for the transmission.

With this definition, the statement of Kleitman’s Conjecture can be formulated as

follows.

Conjecture 3.1.3 (Kleitman (1979)). For every maximal intersecting family F ⊆ 2[n],

there exists a convex combination of idi := idFi
that flows to it, where Fi = {F ⊆ 2[n] :

i ∈ F}.

As one might have not been convinced that this is a generalization of Chvátal’s con­

jecture, we show it by proving that this conjecture implies Conjecture 1.2.4.

Theorem 3.1.4. Kleitman’s Conjecture implies Conjecture 1.2.4.

Proof. Fix a weighted function w : 2[n] → R, assume F is an intersecting family that

maximizes w(F). We first extend it to a maximal intersecting family F ′ ⊆ 2[n]. Then

by Kleitman’s conjecture, there exists a convex combination of idi flowing to idF ′ . Let ci
denote coefficients of the convex combination, we get

w(F) ≤ w(F ′) =
∑

F∈2[n]

w(F )·idF ′(F ) =
∑
i∈[n]

∑
F∈2[n]

ci·w(F )·idi(F )+
∑

A⊆B⊆[n]

[w(B)−w(A)]·v(A,B)

Since A ⊆ B =⇒ w(B) − w(A) ≥ 0 and v(A,B) ≤ 0, the second term is negative.

Thus

w(F) ≤
∑
i∈[n]

∑
F∈2[n]

ci·w(F )·idi(F ) ≤
∑
i∈[n]

ci·w(Fi) ≤
∑
i∈[n]

ci·max
i∈[n]

{w(Fi)} = max
i∈[n]

{w(Fi)}

In other word, a star will maximize the weighted sum.

Remark 3.1.5. Last year, J. Cary proved the Kleitman’s Conjecture for families that

satisify some technique conditions. (See Cary (2024))
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Chapter 4 The Erdős­Rothschild Type
Extension

4.1 Background

How many edges can we add between n vertices without constructing a triangle? In

1907, Mantel answered this question by establishing the following theorem.

Theorem 4.1.1 (Mantel (1907)). A triangle­free graph on n­vertex can have at most ⌊n2

4
⌋

edges. The bound is attained by a complete bipartite graph with two balanced parts.

Mantel’s theorem is one of the fundamental theorems in graph theory and has a lot

of variations. Turán’s theorem should be one of the most well­known extensions since it

generalizes the theorem to complete graphs Kt and determines the result asymptotically.

They showed the optimal construction for Kt­free n­vertex graph is a balanced (t − 1)­

partite graph. Such graph is constructed by dividing n vertices into (t− 1) parts as equal

as possible and add edges between two points in different parts. Some people also called

this graph the Turá n graph T (n, t− 1) and the number of its edges is usually denoted by

ex(n,Kt).

Now, we look at another extension of Mantel’s theorem. In Erdős (n.d.), Erdős and

Rothschild proposed the following. Given a red / blue edge coloring on a graph G =

(V,E), we say that it is monochromatic­triangle­free if Gr, the subgraph formed by

collecting red edges, and Gb, the one formed by collecting blue edges, are both triangle

free. The Erdős­Rothschild problem asks: What is the graph on n vertices that has the

most distinct monochromatic­triangle­free colorings?
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As one may think, a graph has more red/blue­colorings if it has many edges, and for

a triangle­free graph, any red/blue­coloring on it will certainly contain no monochromatic

triangle.

Erdős and Rothschild conjectured that this lower bound is also the best possible con­

struction. Several years later, Yuster (1996) proved the conjecture to be true. After that,

this problem is considered in larger cliques and more colors and that is where the interest­

ing part of this question emerged.

Definition 4.1.2. Let c, t ∈ N, a (c, t)­colorings of a graph G is a c­coloring on the edge

set of G such that every color class is Kt­free.

As one might have thought, the question asked what is the maximum number of

(c, t)­colorings an n­vertex graph can have?

From previous experience, by coloring the Turán graph T (n, t − 1) arbitrary with c

colors, it is natural to guess that the answer should be cex(n,Kt). Nevertheless, this is far

from the truth; in fact, Alon et al. (2004) showed that the bound is only true if c ≤ 3. There

are some further results in this direction, but they are beyond the scope of this thesis. In

fact, we want to consider this question for t­intersecting families. With abuse of notation,

we define

Definition 4.1.3. Let c, t ∈ N, an (c, t)­colorings of a family F is an c­coloring on ele­

ments of F such that every color class form a t­intersecting family.

The goal of this section is to determine the familyF maximizes the number of (3, t)­

colorings in our interested set families.

In Clemens et al. (2018), Clemens, Das and Tran proved a general theorem that solves

this problem under some assumptions. Although we focus on the case with 3 colors here,

they actually gave some result of the c color version of this problem.

We say a t­intersecting family is extremal if it is not only maximal, but also attains

the maximum possible size. The following theorem gives a criteria that shows when the

idea of coloring a t­intersecting family arbitrary is the optimal one,
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Theorem 4.1.4. (Clemens et al. (2018)) Let N0 be the size of the extremal t­intersecting

families, N1 the size of the largest non­trivial t­intersecting families. We further assume

that the intersection of 2 t­intersecting families has size at most N2 and the total number

of maximal t­intersecting families is less thanM . If

N0 −max(N1, N2)−
6 log2M

2 log2 3− 3
> 0

, then a t­intersecting family F can have at most 3N0 (3, t)­colorings and the equality

holds when F is an extremal t­intersecting family.

Note that we didn’t prescribe the under lying set families in the theorem. That means

the criteria can be applied to many different set families. In Clemens et al. (2018), they

applied it to the uniform set families
(
[n]
k

)
, the permutation families Sn and the family of

k­dimensional subspaces of Fn
q . Note that the size of intersection of 2 permutations is the

number of indices that they agree on.

As we said before, the problem of finding N0 is called the EKR type questions and

it has been proven that in many different set families with sufficiently large n, the t­

intersecting family is trivial.

Additionally, in these situations, one can ask the so­called Hilton­Milner type prob­

lems, which essentially ask what is the largest t­intersecting family that is not contained

in a trivial one.

As for the final numberM , we require an upper bound for the use of Theorem 4.1.4.

For the k­uniform set family setting, we have the following theorem.

Theorem 4.1.5 (Balogh et al. (2015)). The number of maximal t­intersecting k­uniform

in [n] is less than (
n

k

)(2(k−t)+1
k−t

)

In the following context, we will prove Theorem 4.1.4 and apply it to some set fam­

ilies in which the Erdős–Ko–Rado and Hilton–Milner type results are known.

21

http://dx.doi.org/10.6342/NTU202500207


doi:10.6342/NTU202500207

4.2 Proof of Theorem 4.1.4

This proof is the same as the one in Clemens et al. (2018), we include it here for

completeness.

Fix an arbitrary ground set family equipped with an intersection. Let N0, N1, N2,M

be the corresponding number as defined in Theorem 4.1.4. We consider the number of

(3, t)­colorings of F and denote it with c(F).

For a t­intersecting subfamily G, we can assign it a maximal t­intersecting family

τ(G) that contains it. Given a (3, t)­coloring, let F1,F2,F3 be its monochromatic parts.

We say that this coloring has type (τ(F1), τ(F2), τ(F3)). Note that there are at most M3

types.

Now, we want to find an upper bound for a fixed type (M1,M2,M3). But before

that, we first look at the special case G1 = G2 = G3 = G. In this case, we have F ⊆ G,

which implies c(F) ≤ 3|G| ≤ 3N0 .

Now, we assume that these 3 maximal t­intersecting families are not all the same.

For each F ∈ F , let w(F ) denote the number of times F appears in these 3 families. This

number also means the number of possible colors of F of this type. Therefore, if we let

ni = |{F ∈ F : w(F ) = i}|, we have 2n23n3 as the upper bound of (3, t)­colorings of F

in this type.

Since each maximal t­intersecting family cannot have more thanN0 edges, by double

counting, it yields inequality n1+2n2+3n3 ≤ 3N0. To optimize 2n23n3 under n1+2n3+

3n3 ≤ 3N0, n3 should be as large as possible, However, the condition that these 3 are

not all the same adds a bound max{N1, N2} on a3. Thus, when we sum over all possible

types, we will get the following calculation.

c(F) ≤ M3 · 2
3
2
(N0−n3) · 3n3 = M3 · 2

3
2
N0 · (2−

3
23)n3 = M3 · 3N0 · (2

3
23−1)N0−n3

= 3N0 · (2
3
23−1)

N0−n3− 6 log2 M
2 log2 3−3 ≤ 3N0 · (2

3
23−1)

N0−max{N1,N2}− 6 log2 M
2 log2 3−3
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Since 2 3
23−1 < 1 and the exponent is greater than 0, c(F) will be strictly less than

3N0 , which proves Theorem 4.1.4.

4.3 Erdős­Rothschild problemon k­uniformmultiset fam­
ily

We start the discussionwith the case ofmultiset family
((

[m]
k

))
:= {multisubsets of [n] with size k}.

Note that we do count duplicate elements in intersection of two multisets. For example,

the intersection of {1, 1, 1} and {1, 1, 2} has size 2. With this said, we can naturally define

the t­intersecting multiset family. We say a t­intersecting multiset family is trivial if every

member contains common t elements and non­trivial otherwise.

Theorem 4.3.1. Given integer k and t. For sufficiently largem, a t­intersecting subfam­

ily of
((

[m]
k

))
can have at most 3N0 (3, t)­colorings, where N0 =

((
m
k−t

))
=

(
m+k−t−1

k−t

)
.

Moreover, the equality holds when F is a trivial t­intersecting family.

InMeagher and Purdy (2016), K.Meagher and A. Purdy proved the following Erdős–

Ko–Rado and Hilton­Milner type results for t­intersecting multiset families.

Theorem 4.3.2 (Füredi et al. (2015)). Letm, k, t be two integers with k > t andm+ k−

1 > (k − t+ 1)(t+ 1). For every t­intersecting family F of k­multisets of [m],

|F| ≤
((

m

k − t

))
=

(
m+ k − t− 1

k − t

)
Moreover, the equality holds if and only if F consists of all k­multisets containing some

fixed t elements.

Now, we need an answer for the Hilton­Milner type result. i.e. the size of extremal

non­trivial t­intersecting family. Firstly, we consider following two constructions for non­

trivial t­intersecting family:

G1 = {S ∈
((

[m]

k

))
: |S ∩ [t+ 2]| ≥ t+ 1}

G2 = {S ∈
((

[m]

k

))
: [t] ⊆ S, S ∩ [t+ 1, k + 1] ̸= ∅} ∪ {[k + 1]− {i} : i = 1, . . . , t}
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Note that

|G1| = (t+ 2) · (m− 1)k−t−1 +mk−t−2

|G2| =
((

m

k − t

))
−

((
m− (k − t)− 1

k − t

))
+ t

In fact, these two t­intersecting families are actually the only two possible candidates

for the extremal t­intersecting family.

Theorem 4.3.3 (Meagher and Purdy (2016)). Let m > k ≥ t be integers such that m ≥

max{t(k− t) + 3, 2k− t}. For every non­trivial t­intersecting family F of k­multisets of

[m],

|F| ≤ max{|G1|, |G2|}

The final ingredient we want is the number of maximal t­intersecting multiset family.

Asmentioned above, to apply Theorem 4.1.4, we only need an upper bound of this number.

What we will do is to project the multiset family to a set family with larger ground set,

which reduces the case to Theorem 4.1.5 and provides us an upper bound that is good

enough.

Assuming that element x that appears i times in a multiset, we map these i many x

to (x, 1), . . . , (x, i) in [m]× [k]. This yield a map σ that sends a t­intersecting k­uniform

multiset family to the k­uniform t­intersecting family with ground set [m]× [k], which is

essentially the same as [mk]. For a set family F , we let Σ(F) := {σ(F ) : F ∈ F} denote

the image.

It can be easily seen that this mapping is one­to­one and preserves the intersection.

In other words, if F is a k­uniform t­intersecting multiset family, then its image Σ(F) is

a k­uniform t­intersecting family with ground set [mk].

One potential problem is that the image Σ(F) of a maximal t­intersecting family F

is not guaranteed to be maximal t­intersecting. We deal with this problem in two steps,

firstly, we may extend the family Σ(F) is a maximal t­intersecting one, call it Σ′(F).

Secondly, we show that the map Σ′ is also one­to­one on maximal t­intersecting families.
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Lemma 4.3.4. The map Σ′ is one­to­one when restricted on maximal t­intersecting fami­

lies.

Proof. Suppose otherwise that there exists F1,F2 such that Σ′(F1) = Σ′(F2). By defini­

tion, we know there exists a set G ∈ Σ(F1) \ Σ(F2). Let F = σ−1(G). Since G belongs

to Σ′(F2), F intersects every member of F2 with size at least t. So F2 ∪ {F} is also

t­intersecting, which contradicts that F2 is maximal t­intersecting.

Thus, the number we want can be bounded by the number of k­uniform t­intersecting

families in [mk]. Applying the theorem with n = mk gives an easy upper bound.

Note that N2 ≤ max{N1,
((

m
k−t−1

))
}, so we should discuss case by case depending

on the output of max{N1, N2}. We use ∆ to denote the formula in Theorem 4.1.4.

Case 1: max{N1, N2} = |G1|

In this case,

∆ =

((
m

k − t

))
− (t+ 2)(m− 1)k−t−1 −mk−t−2 − 6

2 log2 3− 3
log2

(
mk

k

)(2(k−t)+1
k−t

)

≥ 1

(k − t)!
·mk−t − (t+ 2)mk−t−1 − 6

2 log2 3− 3

(
2(k − t) + 1

k − t

)
· log2

(
mk

k

)
≥ (

m

(k − t)!
− t− 2) ·mk−t−1 − 6

2 log2 3− 3
·
(
2(k − t) + 1

k − t

)
· k log2(em)

≥ (
m

(k − t)!
− t− 2) ·mk−t−1 − 72k ·

(
2(k − t) + 1

k − t

)
· log2m

Notice that when k and t are fixed, the second term has order O(logm), so if m >

(t− 2)(k − t)!, then ∆ > 0 for sufficiently largem.
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Case 2: max{N1, N2} = |G2|

In this case,

∆ =

((
m− (k − t)− 1

k − t

))
− t− 6

2 log2 3− 3
log2

(
mk

k

)(2(k−t)+1
k−t

)

≥
(
m− 2

k − t

)
− t− 72k ·

(
2(k − t) + 1

k − t

)
· log2m

Again, ∆ > 0 holds for sufficiently largem.

Case 3: max{N1, N2} =
((

m
k−t−1

))
In this case,

∆ =

((
m

k − t

))
−

((
m

k − t− 1

))
− 6

2 log2 3− 3
log2

(
mk

k

)(2(k−t)+1
k−t

)

=

(
m+ k − t− 1

k − t

)
−

(
m+ k − t− 2

k − t− 1

)
− 6

2 log2 3− 3
log2

(
mk

k

)(2(k−t)+1
k−t

)

=

(
m+ k − t− 2

k − t

)
− 6

2 log2 3− 3
log2

(
mk

k

)(2(k−t)+1
k−t

)

≥ 1

(k − t)!
(m− 1)k−t − 72k ·

(
2(k − t) + 1

k − t

)
· log2m

Once again,∆ > 0 holds for sufficiently largem. Therefore, we obtain the following

theorem of Erdős­Rothschild type problem.

Theorem 4.3.5. Given integers m > k > t, there exists m0(k, t) such that if m >

m0(k, t), then a t­intersecting multiset family F can have at most 3((
m

k−t)) (3, t)­colorings.

Moreover, the inequality holds if and only if F is a t­star.
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4.4 Erdős­Rothschild problemon k­uniform r­signed sets

Now, we consider the same problem on signed set family. Given integers k, r, we

define the r­signed k­set family as follows:

Sn,k,r := {(A, f) : A ∈
(
[n]

k

)
, f : A → [r]}

In other words, Sn,k,r is the special case of previously discussed signed set family SF ,r

with F =
(
[n]
k

)
. We first record some EKR and Hilton–Milner type results in this setting.

Notice that unlike in section 2, we do not fix the family
(
[n]
k

)
. In other words, n can now

grow.

The t­EKR result of Sn,n,r was also independently proved in Ahlswede and Khacha­

trian (1998) and in Frankl and Tokushige (1999). For k < n, the t­intersecting Sn,k,r is

solved by Bey (1999).

Theorem 4.4.1 (Ahlswede and Khachatrian (1998), Frankl and Tokushige (1999)). Let

n ≥ t and r be integers. The largest t­intersecting subfamily of Sn,n,r is trivial if and only

if r ≥ t+ 1.

Theorem 4.4.2 (Bey (1999)). Let n ≥ k ≥ t and r be integers. A t­star has largest size

among all the largest t­intersecting subfamily of Sn,k,r if and only if n ≥ k−t+r
r

· (t+ 1).

Combining these two, we have the following corollary.

Corollary 4.4.3 (Borg (2011a)). Let n ≥ k ≥ t and r be integers. The largest t­

intersecting subfamily of Sn,k,r is trivial if r ≥ t+ 1.

As for Hilton–Milner type result, we first look at two constructions. For integer s,

Ms denotes the r­signed set {(1, 1), (2, 1), . . . , (s, 1)}. We define

H1 := {A ∈
(
[n]

k

)
: |A ∩Mt+2}| ≥ t+ 1}
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and

H2 :=

{
A ∈

(
[n]

k

)
: Mt ⊂ A, |A ∩Mℓ| ≥ t+ 1

}
∪
{
A ∈

(
[n]

k

)
: |A ∩Mℓ| ≥ ℓ− 1

}
,

where ℓ = min{k + 1, n}

Theorem 4.4.4 (Yao et al. (2021)). Let n > k ≥ t and r be integers andF be a non­trivial

t­intersecting subfamily of Sn,k,r. If r ≥ r0(n, k, t), n ≥ t+ 2 ≥ 4 and n ≥ k ≥ t, then

|F| ≤ {H1,H2},

where

r0(n, k, t) =
(k − t+ 3)(k − t− 1)

n− t− 1
·max{

(
t+ 2

2

)
,
k − t+ 1

2
}.

Remark 4.4.5. Although the theorem does not cover the case for k = t + 1, one can

observe that in this special situation, a nontrivial t­intersecting k­uniform family has size

at most k + 1.

Let n, k, t, r be the numbers defined above, observe that

|H1| ≤ (t+ 2) ·
(
n− t− 1

k − t− 1

)
· rk−t−1,

|H2| ≤ (ℓ− t) ·
(
n− t− 1

k − t− 1

)
· rk−t−1 + (ℓ− t) ·

(
n− ℓ+ 1

k − ℓ+ 1

)
· rk−ℓ+1.

Note that
(
n−ℓ+1
k−ℓ+1

)
is actually bounded by n and when ℓ ≥ t+2, the rk−t+1 > rk−ℓ+1

and the second term is usually the lower order term.

Using this lemma and some calculation, we have

N0 −max{N1, N2} ≥
(
n− t

k − t
· r −max{t+ 2, k − t+ 2}

)(
n− t− 1

k − t− 1

)
· rk−t−1

Now we deal with the last term in the discriminant. The idea of finding an upper

bound for the number of maximal t­intersecting families in Sn,k,r is the same as in the

multiset case, where we ignore the extra structure of the ground set and use Theorem

4.1.5.
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This time, the ground set has size nr, and the exponential term is independent of n

and r, so logM = O(log r) grows logarithmically in the variables.

logM ≤
(
2(k − t) + 1

k − t

)
· log

(
nr

k

)
≈ O(lognr)

Thus, we know that the last term grows much slower compared to the first one, which

shows

∆ ≥
(
n− t

k − t
· r −max{t+ 2, k − t+ 2}

)(
n− t− 1

k − t− 1

)
· rk−t−1 −O(lognr) > 0

for all sufficiently large n and r ≥ k−t
n−t

·max{t+ 2, k− t+ 2}. As a conclusion, we

have the following theorem.

Theorem 4.4.6. For fixed integers k ≥ t and sufficiently large n and r ≥ k−t
n−t

·max{t+

2, k − t + 2}, a t­intersecting subfamily of Sn,k,r can have at most 3N0 (3, t)­colorings,

where N0 =
(
n−t
k−t

)
· rk−t. Moreover, the equality holds when F is a trivial t­intersecting

family.
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Chapter 5 Conclusion and further
extension

We focused on two types of extension of the Erdős–Ko–Rado theorem in this thesis

and there are still many unsolved parts.

In the EKR thoerem for r­signed sets SF ,r, we find an improved lower bound for r

that depends on t and α(F), the size of the largest sets in F , but it still does not answer

the conjecture, which demands a lower bound that only depends on t. We then introduced

another conjecture proposed by Borg and explain how it ˋˋsits between” the well­known

Chvátal’s Conjecture and Kleitman’s Conjecture and, of course, it will be very intriguing

if one proves or disproves these problems.

As for the second topic, the Erdős–Rothschild type extension of the Erdős–Ko–Rado

theorem, we only consider the case of 3­coloring. As mentioned previously, the construc­

tion for optimal family of more than 4 colors might no longer be trivial.

In addition, finding a tighter upper bound for the number of maximal t­intersecting

families is also a potential problem. In this thesis, a very loose estimation is used since

its order is not the dominant one, but we reduce it to the set setting by considering it as a

large ground set, which might be probably far from the correct order.
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