Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96492
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高文媛zh_TW
dc.contributor.advisorWen-Yuan Kaoen
dc.contributor.author鍾名瑋zh_TW
dc.contributor.authorMing-Wei Zhongen
dc.date.accessioned2025-02-19T16:12:57Z-
dc.date.available2025-02-20-
dc.date.copyright2025-02-19-
dc.date.issued2025-
dc.date.submitted2025-01-23-
dc.identifier.citation謝長富、湯惟新、林義方、林雲珍、陳尊賢、林光清、張仲民(1989)。自然保護區生態基準資料庫之建立(二)。行政院農業委員會。
蔣先覺、陳尊賢、林光清、洪富文(1993)。臺灣高山森林土壤形態、性質與分類。臺灣省林業試驗所。
黃怡清(2015)。六種蕨類葉片的氣孔對藍光與二氧化碳濃度之反應。國立臺灣大學生態學與演化生物學研究所[未出版之碩士論文]。
林宗儀(2019)。臺灣東北部蕨類與石松植物之物種組成與蕨類群集之葉部形態形質沿海拔梯度之變化。國立臺灣大學生態學與演化生物學研究所[未出版之碩士論文]。
邱祈榮,陳子英,謝長富,劉和義,葉慶龍,王震哲(2019)。臺灣現生天然植群圖集。行政院農業委員會林務局。
郭城孟(2020)。蕨類觀察入門。遠流出版事業股份有限公司。
張智翔、許天銓、郭立園(2021)。Four new records for the fern flora of Taiwan。臺灣生物多樣性研究,23(4),10-22。
鄧信彥(2022)。臺灣北部拉拉山與塔曼山區域天然森林植群之分析。國立臺灣大學森林環境暨資源學研究所[未出版之碩士論文]。
Adler, P. B., Smull, D., Beard, K. H., Choi, R. T., Furniss, T., Kulmatiski, A., Meiners, J. M., Tredennick, A. T., & Veblen, K. E. (2018). Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecology Letters, 21(9), 1319-1329. https://doi.org/https://doi.org/10.1111/ele.13098
Anderson, Y. O. (1955). Seasonal development in sun and shade leaves. Ecology, 36(3), 430-439. https://doi.org/10.2307/1929579
Arens, N. C. (1997). Responses of leaf anatomy to light environment in the tree fern Cyathea caracasana (Cyatheaceae) and its application to some ancient seed ferns. PALAIOS, 12(1), 84-94. https://doi.org/10.2307/3515296
Armitage, A. M., & Vines, H. M. (1982). Net photosynthesis, diffusive resistance, and chlorophyll content of shade- and sun-tolerant plants grown under different light regimes. HortScience, 17(3), 342-343. doi:10.21273/hortsci.17.3.342
Bannister, P., & Wildish, K. L. (1982). Light compensation points and specific leaf areas in some New Zealand ferns. New Zealand Journal of Botany, 20(4), 421-424. https://doi.org/10.1080/0028825X.1982.10428512
Barber, H. N. (1955). Adaptive gene substitutions in Tasmanian Eucalypts: I. genes controlling the development of glaucousness. Evolution, 9(1), 1-14. https://doi.org/10.1111/j.1558-5646.1955.tb01509.x
Barnes, P. W., Flint, S. D., Ryel, R. J., Tobler, M. A., Barkley, A. E., & Wargent, J. J. (2015). Rediscovering leaf optical properties: New insights into plant acclimation to solar UV radiation. Plant Physiol Biochem, 93, 94-100. https://doi.org/10.1016/j.plaphy.2014.11.015
Beadle, C., & Sands, R. (2004). Tree Physiology | Physiology and Silviculture. In J. Burley (Ed.), Encyclopedia of Forest Sciences (pp. 1568-1577). Elsevier. https://doi.org/https://doi.org/10.1016/B0-12-145160-7/00097-1
Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.
Bengtson, C., Larsson, S., & Liljenberg, C. (1978). Effects of water stress on cuticular transpiration rate and amount and composition of epicuticular wax in seedlings of six oat varieties. Physiologia Plantarum, 44(4), 319-324. https://doi.org/https://doi.org/10.1111/j.1399-3054.1978.tb01630.x
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289-300. http://www.jstor.org/stable/2346101
Bewick, T. A., Shilling, D. G., & Querns, R. (1993). Evaluation of epicuticular wax removal from whole leaves with chloroform. Weed Technology, 7(3), 706-716. https://doi.org/10.1017/S0890037X00037581
Bhatla, S. C., & Lal, M. A. (2023). Plant Physiology, Development and Metabolism / by Satish C. Bhatla, Manju A. Lal (2nd 2023. ed.). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-5736-1
Björkman, O., & Holmgren, P. (1963). Adaptability of the photosynthetic apparatus to light intensity in ecotypes from exposed and shaded habitats. Physiologia Plantarum, 16(4), 889-914. doi:https://doi.org/10.1111/j.1399-3054.1963.tb08366.x
Björkman, O., & Powles, S. B. (1984). Inhibition of photosynthetic reactions under water stress: interaction with light level. Planta, 161(6), 490-504. https://doi.org/10.1007/BF00407081
Boese, S. R., & Huner, N. P. A. (1990). Effect of growth temperature and temperature shifts on spinach leaf morphology and photosynthesis 1. Plant Physiology, 94(4), 1830-1836. https://doi.org/10.1104/pp.94.4.1830
Briones, O., Montaña, C., & Ezcurra, E. (1996). Competition between three Chihuahuan desert species: evidence from plant size-distance relations and root distribution. Journal of Vegetation Science, 7(3), 453-460. https://doi.org/https://doi.org/10.2307/3236289
Brown, N., Jennings, S., Wheeler, P., & Nabe-Nielsen, J. (2000). An improved method for the rapid assessment of forest understorey light environments. Journal of Applied Ecology, 37(6), 1044-1053. https://doi.org/https://doi.org/10.1046/j.1365-2664.2000.00573.x
Bucher, S. F., & Rosbakh, S. (2020). Foliar summer frost resistance measured via electrolyte leakage approach as related to plant distribution, community composition and plant traits. Functional Ecology, 35. https://doi.org/10.1111/1365-2435.13740
Bukhov, N. G., Wiese, C., Neimanis, S., & Heber, U. (1999). Heat sensitivity of chloroplasts and leaves: Leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynthesis Research, 59(1), 81-93. https://doi.org/10.1023/A:1006149317411
Burow, G. B., Franks, C. D., & Xin, Z. (2008). Genetic and physiological analysis of an irradiated bloomless mutant (epicuticular wax mutant) of Sorghum. Crop Science, 48(1), 41-48. https://doi.org/https://doi.org/10.2135/cropsci2007.02.0119
Buschhaus, C., & Jetter, R. (2011). Composition differences between epicuticular and intracuticular wax substructures: How do plants seal their epidermal surfaces? Journal of Experimental Botany, 62(3), 841-853. https://doi.org/10.1093/jxb/erq366
Cadotte, M. W., & Tucker, C. M. (2017). Should environmental filtering be abandoned? Trends in Ecology & Evolution, 32(6), 429-437. doi:10.1016/j.tree.2017.03.004
Cameron, R. (1970). Light intensity and the growth of Eucalyptus seedlings. II. The effect of cuticular waxes on light absorption in leaves of Eucalyptus species. Australian Journal of Botany, 18(3), 275-284. https://doi.org/https://doi.org/10.1071/BT9700275
Cerón-Carpio, A. B., Pérez-García, B., Monribot Villanueva, J. L., Kiel-Martínez, A. L., Espinosa-Matias, S., Guerrero-Analco, J. A., & Mehltreter, K. (2019). Chemical composition and micromorphological structure of cuticular leaf waxes of eight tropical fern species of Mexico. Biochemical Systematics and Ecology, 85, 13-20. https://doi.org/https://doi.org/10.1016/j.bse.2019.04.008
Chao, Y.-S., Yang, Y.-W., Sheue, C.-R., & Lai, I.-L. (2024). Niche and phenotypic differentiation in fern hybrid speciation, a case study of Pteris fauriei (Pteridaceae). Annals of Botany, 134(1), 71-84. https://doi.org/10.1093/aob/mcae037
Chiang, J.-M., Lin, T.-C., Luo, Y.-C., Chang, C.-T., Cheng, J.-Y., & Martin, C. E. (2013). Relationships among rainfall, leaf hydrenchyma, and Crassulacean acid metabolism in Pyrrosia lanceolata (L.) Fraw. (Polypodiaceae) in central Taiwan. Flora - Morphology, Distribution, Functional Ecology of Plants, 208(5), 343-350. https://doi.org/https://doi.org/10.1016/j.flora.2013.04.007
Chiou, W.-L., Martin, C. E., Lin, T.-C., Hsu, C.-C., Lin, S.-H., & Lin, K.-C. (2005). Ecophysiological differences between sterile and fertile fronds of the subtropical epiphytic fern Pyrrosia lingua (Polypodiaceae) in Taiwan. American Fern Journal, 95(4), 131-140, 110. https://doi.org/10.1640/0002-8444(2005)95[131:EDBSAF]2.0.CO;2
Chiu, C.-A., Lin, P.-H., & Tsai, c.-y. (2014). Spatio-temporal variation and monsoon effect on the temperature lapse rate of a subtropical island. Terrestrial, Atmospheric and Oceanic Sciences, 25, 203. https://doi.org/10.3319/TAO.2013.11.08.01(A)
Chiu, T. Y., Wang, H.-H., Kuo, Y. L., Tomonori, K., Chiou, W.-l., & Huang, Y.-M. (2015). Ecophysiological characteristics of three Cyathea species in northeastern Taiwan. Taiwan Journal of Forest Science, 30, 147-155.
Clarke, J. M., & Richards, R. A. (1988). The effects of glaucousness, epicuticular wax, leaf age, plant height, and growth environment on water loss rates of excised wheat leaves. Canadian Journal of Plant Science, 68(4), 975-982. https://doi.org/10.4141/cjps88-118
Clayton-Greene, K. A., Collins, N. J., Green, T. G. A., & Proctor, M. C. F. (1985). Surface wax, structure and function in leaves of Polytrichaceae. Journal of Bryology, 13(4), 549-562. https://doi.org/10.1179/jbr.1985.13.4.549
Delucia, E. H., Nelson, K., Vogelmann, T. C., & Smith, W. K. (1996). Contribution of intercellular reflectance to photosynthesis in shade leaves. Plant, Cell & Environment, 19(2), 159-170. https://doi.org/https://doi.org/10.1111/j.1365-3040.1996.tb00237.x
Dong, N., Prentice, I. C., Wright, I. J., Evans, B. J., Togashi, H. F., Caddy-Retalic, S., McInerney, F. A., Sparrow, B., Leitch, E., & Lowe, A. J. (2020). Components of leaf-trait variation along environmental gradients. New Phytologist, 228(1), 82-94. https://doi.org/https://doi.org/10.1111/nph.16558
Du, X.-Y., Lu, J.-M., Zhang, L.-B., Wen, J., Kuo, L.-Y., Mynssen, C. M., Schneider, H., & Li, D.-Z. (2021). Simultaneous diversification of Polypodiales and angiosperms in the Mesozoic. Cladistics, 37(5), 518-539. https://doi.org/https://doi.org/10.1111/cla.12457
Durand, L. Z., & Goldstein, G. (2001). Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii. Oecologia, 126(3), 345-354. https://doi.org/10.1007/s004420000535
Edwards, E. J., Chatelet, D. S., Sack, L., & Donoghue, M. J. (2014). Leaf life span and the leaf economic spectrum in the context of whole plant architecture. Journal of Ecology, 102(2), 328-336. https://doi.org/https://doi.org/10.1111/1365-2745.12209
Eigenbrode, S. D., & Espelie, K. E. (1995). Effects of plant epicuticular lipids on insect herbivores. Annual review of entomology, 40(1), 171-194.
Falcone, D. L., Ogas, J. P., & Somerville, C. R. (2004). Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biology, 4(1), 17. https://doi.org/10.1186/1471-2229-4-17
Finzi, A. C., & Canham, C. D. (2000). Sapling growth in response to light and nitrogen availability in a southern New England forest. Forest Ecology and Management, 131(1), 153-165. https://doi.org/https://doi.org/10.1016/S0378-1127(99)00206-6
Fraaije, R. G. A., ter Braak, C. J. F., Verduyn, B., Breeman, L. B. S., Verhoeven, J. T. A., & Soons, M. B. (2015). Early plant recruitment stages set the template for the development of vegetation patterns along a hydrological gradient. Functional Ecology, 29(7), 971-980. https://doi.org/https://doi.org/10.1111/1365-2435.12441
Gates, D. M. (1968). Transpiration and leaf temperature. Annual Review of Plant Biology, 19, 211-238. https://doi.org/https://doi.org/10.1146/annurev.pp.19.060168.001235
Givnish, T. J. (1982). On the adaptive significance of leaf height in forest herbs. The American Naturalist, 120(3), 353-381. https://doi.org/10.1086/283995
Givnish, T. J. (1988). Adaptation to sun and shade: a whole-plant perspective. Functional Plant Biology, 15, 63-92. doi:10.1071/PP9880063
Gorsuch, P. A., Pandey, S., & Atkin, O. K. (2010). Temporal heterogeneity of cold acclimation phenotypes in Arabidopsis leaves. Plant, Cell & Environment, 33(2), 244-258. https://doi.org/https://doi.org/10.1111/j.1365-3040.2009.02074.x
Gratani, L., Meneghini, M., Pesoli, P., & Crescente, M. F. (2003). Structural and functional plasticity of Quercus ilex seedlings of different provenances in Italy. Trees, 17(6), 515-521. https://doi.org/10.1007/s00468-003-0269-8
Gratani, L., Vasheka, O., & Puglielli, G. (2019). Leaf physiological and structural plasticity of two Asplenium (Aspleniaceae) species coexisting in sun and shade conditions. Plant Ecology and Evolution, 152, 426-436. https://doi.org/10.5091/plecevo.2019.1525
Guo, Y., Li, J. J., Busta, L., & Jetter, R. (2018). Coverage and composition of cuticular waxes on the fronds of the temperate ferns Pteridium aquilinum, Cryptogramma crispa, Polypodium glycyrrhiza, Polystichum munitum and Gymnocarpium dryopteris. Annals of Botany, 122(4), 555-568. https://doi.org/10.1093/aob/mcy078
Haworth, M., Marino, G., Loreto, F., & Centritto, M. (2021). Integrating stomatal physiology and morphology: evolution of stomatal control and development of future crops. Oecologia, 197. https://doi.org/10.1007/s00442-021-04857-3
Helsen, K., Shen, Y.-C., Lin, T.-Y., Chen, C.-F., Huang, C.-M., Li, C.-F., & Zelený, D. (2022). Climate and soil differentially affect species, trait and diversity patterns of woody overstorey and fern understorey in a subtropical forest along an elevation gradient in Taiwan. Journal of Vegetation Science, 33(3), e13130. https://doi.org/https://doi.org/10.1111/jvs.13130
Helsen, K., Viana, J. L., Lin, T.-Y., Kuo, L.-Y., & Zelený, D. (2023). Functional-trait contrasts between terrestrial and epiphytic ferns in Taiwanese subtropical cloud forests. Journal of Vegetation Science, 34(6), e13220. https://doi.org/https://doi.org/10.1111/jvs.13220
Hietala, T., Laakso, S., & Rosenqvist, H. (1995). Epicuticular waxes of Salix species in relation to their overwintering survival and biomass productivity. Phytochemistry, 40(1), 23-27. https://doi.org/https://doi.org/10.1016/0031-9422(95)00263-7
Hikosaka, K., Ishikawa, K., Borjigidai, A., Muller, O., & Onoda, Y. (2005). Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. Journal of Experimental Botany, 57(2), 291-302. https://doi.org/10.1093/jxb/erj049
Holmes, M. G., & Keiller, D. R. (2002). Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species. Plant, Cell & Environment, 25(1), 85-93. https://doi.org/https://doi.org/10.1046/j.1365-3040.2002.00779.x
Huang, Y.-L., Kao, W.-Y., Yeh, T.-F., & Chang, S.-T. (2021). Effects of growth temperature on gas exchange of Chamaecyparis formosensis and C. obtusa var. formosana seedlings occupying different ecological niches. Trees, 35(5), 1485-1496. https://doi.org/10.1007/s00468-021-02130-x
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415-427.
Ivanova, L. A., & P'Yankov, V. I. (2002). Structural adaptation of the leaf mesophyll to shading. Russian Journal of Plant Physiology, 49(3), 419-431. https://doi.org/10.1023/A:1015513607202
Jarial, R., Shard, A., Thakur, S., Sakinah, M., Zularisam, A. W., Rezania, S., Kanwar, S. S., & Singh, L. (2018). Characterization of flavonoids from fern Cheilanthes tenuifolia and evaluation of antioxidant, antimicrobial and anticancer activities. Journal of King Saud University - Science, 30(4), 425-432. https://doi.org/https://doi.org/10.1016/j.jksus.2017.04.007
Jayalakshmy, M. S., & Philip, J. (2010). Thermophysical properties of plant leaves and their influence on the environment temperature. International Journal of Thermophysics, 31(11), 2295-2304. https://doi.org/10.1007/s10765-010-0877-7
Jin, B., Wang, L., Wang, J., Jiang, K.-Z., Wang, Y., Jiang, X.-X., Ni, C.-Y., Wang, Y.-L., & Teng, N.-J. (2011). The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana. BMC Plant Biology, 11(1), 35. https://doi.org/10.1186/1471-2229-11-35
Jones, H. G. (2014). Plants and Microclimate : A Quantitative Approach to Environmental Plant Physiology (3rd ed.). Cambridge University Press.
Johnson, D. A., Richards, R. A., & Turner, N. C. (1983). Yield, water relations, gas exchange, and surface reflectances of near-isogenic wheat lines differing in glaucousness. Crop Science, 23(2), cropsci1983.0011183X002300020033x. https://doi.org/https://doi.org/10.2135/cropsci1983.0011183X002300020033x
Karst, A. L., & Lechowicz, M. J. (2007). Are correlations among foliar traits in ferns consistent with those in the seed plants? New Phytologist, 173(2), 306-312. https://doi.org/https://doi.org/10.1111/j.1469-8137.2006.01914.x
Kelly, C. K. (1994). On the economics of plant growth: stolon length and ramet initiation in the parasitic clonal plant Cuscuta europaea. Evolutionary Ecology, 8(5), 459-470. https://doi.org/10.1007/BF01238251
Kessler, M., Siorak, Y., Wunderlich, M., & Wegner, C. (2007). Patterns of morphological leaf traits among pteridophytes along humidity and temperature gradients in the Bolivian Andes. Functional Plant Biology, 34, 963-971. https://doi.org/10.1071/FP07087
Kitajima, K., & Hogan, K. P. (2003). Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant, Cell & Environment, 26(6), 857-865. https://doi.org/https://doi.org/10.1046/j.1365-3040.2003.01017.x
Knapp, R. (2011). Ferns and fern allies of Taiwan. Dr. Cecilia Koo Botanic Conservation Center KBCC Press.
Kochhar, S. L., & Gujral, S. K. (2020). Plant Physiology: Theory and Applications (2nd ed.). Cambridge University Press. https://doi.org/DOI: 10.1017/9781108486392
Körner, C., Neumayer, M., Menendez-Riedl, S. P., & Smeets-Scheel, A. (1989). Functional morphology of mountain plants. Flora, 182(5), 353-383. https://doi.org/https://doi.org/10.1016/S0367-2530(17)30426-7
Kraft, N. J. B., Adler, P. B., Godoy, O., James, E. C., Fuller, S., & Levine, J. M. (2015). Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29(5), 592-599. https://doi.org/https://doi.org/10.1111/1365-2435.12345
Kreft, H., Jetz, W., Mutke, J., & Barthlott, W. (2010). Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography, 33(2), 408-419. https://doi.org/https://doi.org/10.1111/j.1600-0587.2010.06434.x
Kuo, T. L.-Y., Hsu, T.-C., Chao, Y.-S., Liou, W.-T., Chang, H.-M., Chen, C.-W., Huang, Y.-M., Li, F.-W., Huang, Y.-F., Shao, W., Lu, P.-F., Chen, C.-W., Chang, Y.-H., & Chiou, W.-L. (2019). Updating Taiwanese pteridophyte checklist: a new phylogenetic classification. Taiwania, 64(4), 367-395. https://taiwania.ntu.edu.tw/abstract/1636
Kuo, L.-Y., Chang, Y.-H., Huang, Y.-H., Testo, W., Ebihara, A., Rouhan, G., Quintanilla, L. G., Watkins Jr., J. E., Huang, Y.-M., & Li, F.-W. (2020). A global phylogeny of Stegnogramma ferns (Thelypteridaceae): generic and sectional revision, historical biogeography and evolution of leaf architecture. Cladistics, 36(2), 164-183. https://doi.org/https://doi.org/10.1111/cla.12399
Lai, I.-L., Chang, S.-C., Lin, P.-H., Chou, C.-H., & Wu, J.-T. (2006). Climatic Characteristics of the subtropical mountainous cloud forest at the Yuanyang Lake long-term ecological research site, Taiwan. Taiwania, 51(4), 317-329. Retrieved from https://taiwania.ntu.edu.tw/abstract/510
Lambers, H., & Poorter, H. (1992). Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. In M. Begon & A. H. Fitter, Advances in Ecological Research (Vol. 23, pp. 187-261). Academic Press. https://doi.org/https://doi.org/10.1016/S0065-2504(08)60148-8
Lambers, H., & Oliveira, R. S. (2019). Plant Physiological Ecology (3rd ed.). Springer International Publishing. https://doi.org/10.1007/978-3-030-29639-1
Li, C.-F., Zelený, D., Chytrý, M., Chen, M.-Y., Chen, T.-Y., Chiou, C.-R., . . . Hsieh, C.-F. (2015). Chamaecyparis montane cloud forest in Taiwan: ecology and vegetation classification. Ecological Research, 30(5), 771-791. doi:https://doi.org/10.1007/s11284-015-1284-0
Li, X., Schmid, B., Wang, F., & Paine, C. E. T. (2016). Net assimilation rate determines the growth rates of 14 species of subtropical forest trees. PLOS ONE, 11(3), e0150644. https://doi.org/10.1371/journal.pone.0150644
Lin, H.-y., Hu, J.-m., Chen, T.-y., Hsieh, C.-f., Wang, G., & Wang, T. (2018). A dynamic downscaling approach to generate scale-free regional climate data in Taiwan. Taiwania, 63(3), 251-266. https://doi.org/10.6165/tai.2018.63.251
Lin, H.-Y., Li, C.-F., Chen, T.-Y., Hsieh, C.-F., Wang, G., Wang, T., & Hu, J.-M. (2020). Climate-based approach for modeling the distribution of montane forest vegetation in Taiwan. Applied Vegetation Science, 23(2), 239-253. https://doi.org/https://doi.org/10.1111/avsc.12485
Liu, W., Zheng, L., & Qi, D. (2020). Variation in leaf traits at different altitudes reflects the adaptive strategy of plants to environmental changes. Ecology and Evolution, 10(15), 8166-8175. https://doi.org/https://doi.org/10.1002/ece3.6519
Long, S. P., Humphries, S., & Falkowski, P. G. (1994). Photoinhibition of photosynthesis in nature. Annual Review of Plant Biology, 45, 633-662. https://doi.org/https://doi.org/10.1146/annurev.pp.45.060194.003221
Lovelock, C. E., Osmond, C. B., & Jebb, M. (1994). Photoinhibition and recovery in tropical plant species: response to disturbance. Oecologia, 97(3), 297-307. https://doi.org/10.1007/bf00317318
Ludlow, C. J., & Wolf, F. T. (1975). Photosynthesis and respiration rates of ferns. American Fern Journal, 65(2), 43-48. https://doi.org/10.2307/1546309
Ludlow, M. M., & Björkman, O. (1984). Paraheliotropic leaf movement in Siratro as a protective mechanism against drought-induced damage to primary photosynthetic reactions: damage by excessive light and heat. Planta, 161(6), 505-518. https://doi.org/10.1007/bf00407082
Marshall, B., & Biscoe, P. V. (1980). A model for C3 leaves describing the dependence of net photosynthesis on irradiance. Journal of Experimental Botany, 31(1), 29-39. https://doi.org/10.1093/jxb/31.1.29
Martin, C. E., Lin, T. C., Hsu, C. C., Lin, S. H., Lin, K. C., Hsia, Y.-J., & Chiou, W. L. (2004). Ecophysiology and plant size in a tropical epiphytic fern, Asplenium nidus, in Taiwan. International Journal of Plant Sciences, 165(1), 65-72. https://doi.org/10.1086/380982
Martin, C. E., Hsu, R., & Lin, T.-C. (2009). Comparative photosynthetic capacity of abaxial and adaxial leaf sides as related to exposure in two epiphytic ferns in a subtropical rainforest in Northeastern Taiwan. American Fern Journal, 99(3), 145-154, 110. https://doi.org/10.1640/0002-8444-99.3.145
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659-668. doi:10.1093/jexbot/51.345.659
Mohammadian, M. A., Watling, J. R., & Hill, R. S. (2007). The impact of epicuticular wax on gas-exchange and photoinhibition in Leucadendron lanigerum (Proteaceae). Acta Oecologica, 31(1), 93-101. https://doi.org/https://doi.org/10.1016/j.actao.2006.10.005
Monteiro, M. V., Blanuša, T., Verhoef, A., Hadley, P., & Cameron, R. W. (2016). Relative importance of transpiration rate and leaf morphological traits for the regulation of leaf temperature. Australian Journal of Botany, 64(1), 32-44.
Nasrulhaq-boyce, A., & Mohamed, M. A. H. (1987). Photosynthetic and respiratory characteristics of malayan sun and shade ferns. New Phytologist, 105(1), 81-88. doi:https://doi.org/10.1111/j.1469-8137.1987.tb00112.x
Neinhuis, C., Koch, K., & Barthlott, W. (2001). Movement and regeneration of epicuticular waxes through plant cuticles. Planta, 213(3), 427-434. https://doi.org/10.1007/s004250100530
Neta-Sharir, I., Isaacson, T., Lurie, S., & Weiss, D. (2005). Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. The Plant Cell, 17(6), 1829-1838. https://doi.org/10.1105/tpc.105.031914
Ogaya, R., & Peñuelas, J. (2007). Leaf mass per area ratio in Quercus ilex leaves under a wide range of climatic conditions. The importance of low temperatures. Acta Oecologica, 31(2), 168-173. https://doi.org/https://doi.org/10.1016/j.actao.2006.07.004
Onoda, Y., Westoby, M., Adler, P., Choong, A., Clissold, F., Cornelissen, J., Diaz, S., Dominy, N., Elgart, A., Enrico, L., Fine, P., Howard, J., Jalili, A., Kitajima, K., Kurokawa, H., McArthur, C., Lucas, P., Markesteijn, L., Pérez-Harguindeguy, N., & Yamashita, N. (2011). Global patterns of leaf mechanical properties. Ecology Letters, 14, 301-312. https://doi.org/10.1111/j.1461-0248.2010.01582.x
Olascoaga, B., Porcar-Castell, A., Juurola, E., Bäck, J., & Nikinmaa, E. (2010). Effect of epicuticular waxes on the absorptance of visible light in Scots pine needles (Pinus sylvestris L.): Influence of needle age and position in the canopy. In Proceedings of the Finnish Center of Excellence and Graduate School in 'Physics, Chemistry, Biology and Meteorology of Atmospheric Composition and Climate Change' Annual Workshop 17.-19.5.2010 (Report Series in Aerosol Science; Vol. 109). Finnish Association for Aerosol Research.
Oliveira, A. F. M., Meirelles, S. T., & Salatino, A. (2003). Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss. Anais da Academia Brasileira de Ciências, 75.
Pacala, S. W., & Tilman, D. (1994). Limiting similarity in mechanistic and spatial models of plant competition in heterogeneous environments. The American Naturalist, 143(2), 222-257. http://www.jstor.org/stable/2462642
Pacala, S. W., Canham, C. D., Jr., J. A. S., & Kobe, R. K. (1994). Sapling growth as a function of resources in a north temperate forest. Canadian Journal of Forest Research, 24(11), 2172-2183. https://doi.org/10.1139/x94-280
Page, C. N. (2002). Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology, 119(1), 1-33. https://doi.org/https://doi.org/10.1016/S0034-6667(01)00127-0
Patton, A. J., Volenec, J. J., & Reicher, Z. J. (2007). Stolon growth and dry matter partitioning explain differences in zoysiagrass establishment rates. Crop Science, 47(3), 1237-1245. https://doi.org/https://doi.org/10.2135/cropsci2006.10.0633
Petter, G., Wagner, K., Wanek, W., Sánchez Delgado, E. J., Zotz, G., Cabral, J. S., & Kreft, H. (2016). Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals. Functional Ecology, 30(2), 188-198. https://doi.org/https://doi.org/10.1111/1365-2435.12490
Pietrak, A., Salachna, P., & Łopusiewicz, Ł. (2023). Changes in growth, ionic status, metabolites content and antioxidant activity of two ferns exposed to shade, full sunlight, and salinity. International Journal of Molecular Sciences, 24(1), 296. Retrieved from https://www.mdpi.com/1422-0067/24/1/296
Poorter, H., Niinemets, Ü., Walter, A., Fiorani, F., & Schurr, U. (2010). A method to construct dose–response curves for a wide range of environmental factors and plant traits by means of a meta-analysis of phenotypic data. Journal of Experimental Botany, 61(8), 2043-2055. https://doi.org/10.1093/jxb/erp358
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2019). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182(3), 565-588. https://doi.org/https://doi.org/10.1111/j.1469-8137.2009.02830.x
Post-Beittenmiller, D. (1996). Biochemistry and molecular biology of wax production in plants. Annu Rev Plant Physiol Plant Mol Biol, 47, 405-430. https://doi.org/10.1146/annurev.arplant.47.1.405
Powles, S. B. (1984). Photoinhibition of photosynthesis induced by visible light. Annual Review of Plant Biology, 35, 15-44. https://doi.org/https://doi.org/10.1146/annurev.pp.35.060184.000311
PPG I. (2016). A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution, 54(6), 563-603. https://doi.org/https://doi.org/10.1111/jse.12229
Rahman, T., Shao, M., Pahari, S., Venglat, P., Soolanayakanahally, R., Qiu, X., Rahman, A., & Tanino, K. (2021). Dissecting the roles of cuticular wax in plant resistance to shoot dehydration and low-temperature stress in Arabidopsis. International Journal of Molecular Sciences, 22(4), 1554. https://doi.org/10.3390/ijms22041554
Rautiainen, P., Koivula, K., & Hyvärinen, M. (2004). The effect of within-genet and between-genet competition on sexual reproduction and vegetative spread in Potentilla anserina ssp. egedii. Journal of Ecology, 92(3), 505-511. https://doi.org/https://doi.org/10.1111/j.0022-0477.2004.00878.x
Redondo-Gómez, S., Castillo, J., Luque, C. J., Luque, T., Figueroa, E., & Davy, A. (2007). Fundamental niche differentiation in subspecies of Sarcocornia perennis on a salt marsh elevational gradient. Marine Ecology-Progress Series, 347, 15-20. https://doi.org/10.3354/meps07041
Reicosky, D. A., & Hanover, J. W. (1978). Physiological effects of surface waxes: I. light reflectance for glaucous and nonglaucous Picea pungens. Plant Physiology, 62(1), 101-104. https://doi.org/10.1104/pp.62.1.101
Robinson, S. A., Lovelock, C. E., & Osmond, C. B. (1993). Wax as a mechanism for protection against photoinhibition — a study of Cotyledon orbiculata. Botanica Acta, 106(4), 307-312. https://doi.org/https://doi.org/10.1111/j.1438-8677.1993.tb00753.x
Rosbakh, S., Römermann, C., & Poschlod, P. (2015). Specific leaf area correlates with temperature: new evidence of trait variation at the population, species and community levels. Alpine Botany, 125(2), 79-86. https://doi.org/10.1007/s00035-015-0150-6
Runcie, J. W., & Durako, M. J. (2004). Among-shoot variability and leaf-specific absorptance characteristics affect diel estimates of in situ electron transport of Posidonia australis. Aquatic Botany, 80(3), 209-220. doi:https://doi.org/10.1016/j.aquabot.2004.08.001
Sakai, S. (1991). A model analysis for the adaptive architecture of herbaceous plants. Journal of Theoretical Biology, 148(4), 535-544. https://doi.org/https://doi.org/10.1016/S0022-5193(05)80235-8
Saldaña, A., Gianoli, E., & Lusk, C. H. (2005). Ecophysiological responses to light availability in three Blechnum species (Pteridophyta, Blechnaceae) of different ecological breadth. Oecologia, 145(2), 251-256. https://doi.org/10.1007/s00442-005-0116-2
Saldaña, A. O., Hernández, C., Coopman, R. E., Bravo, L. A., & Corcuera, L. J. (2010). Differences in light usage among three fern species of genus Blechnum of contrasting ecological breadth in a forest light gradient. Ecological Research, 25(2), 273-281. https://doi.org/https://doi.org/10.1007/s11284-009-0656-8
Sampangi-Ramaiah, M. H., Ravishankar, K. V., Seetharamaiah, S. K., Roy, T. K., Hunashikatti, L. R., Rekha, A., & Shilpa, P. (2016). Barrier against water loss: relationship between epicuticular wax composition, gene expression and leaf water retention capacity in banana. Functional Plant Biology, 43(6), 492-501. https://doi.org/https://doi.org/10.1071/FP15296
Sessa, E. B. (2018). Evolution and classification of ferns and lycophytes. In H. Fernández (Ed.), Current Advances in Fern Research (pp. 179-200). Springer International Publishing. https://doi.org/10.1007/978-3-319-75103-0_9
Schneider, H., Schuettpelz, E., Pryer, K. M., Cranfill, R., Magallón, S., & Lupia, R. (2004). Ferns diversified in the shadow of angiosperms. Nature, 428(6982), 553-557. https://doi.org/10.1038/nature02361
Shieh, W.-C., Devol, C. E. & Lu, C-Y. (1994). Plagiogyriaceae. In Editorial Committee of the Flora of Taiwan (Ed.), Flora of Taiwan (2nd ed.Vol. 5.) (pp. 134-139). Editorial Committee of the Flora of Taiwan.
Skrzydeł, J., Borowska-Wykręt, D., & Kwiatkowska, D. (2021). Structure, assembly and function of cuticle from mechanical perspective with special focus on perianth. Int J Mol Sci, 22(8). https://doi.org/10.3390/ijms22084160
Slot, M., Garcia, M. N., & Winter, K. (2016). Temperature response of CO2 exchange in three tropical tree species. Funct Plant Biol, 43(5), 468-478. https://doi.org/10.1071/fp15320
Soberón, J., & Arroyo-Peña, B. (2017). Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. PLOS ONE, 12(4), e0175138. https://doi.org/10.1371/journal.pone.0175138
Stinziano J, Roback C, Gamble D, Murphy B, Hudson P, Muir C (2023). “photosynthesis: tools for plant ecophysiology & modeling.” R package version 2.1.4, https://CRAN.R-project.org/package=photosynthesis.
Sutherland, W. J., & Stillman, R. A. (1988). The foraging tactics of plants. Oikos, 52(3), 239-244. https://doi.org/10.2307/3565196
Sutter, E., & Langhans, R. W. (1982). Formation of epicuticular wax and its effect on water loss in cabbage plants regenerated from shoot-tip culture. Canadian Journal of Botany, 60(12), 2896-2902. https://doi.org/10.1139/b82-350
Sutton, L., Mueter, F. J., Bluhm, B. A., & Iken, K. (2021). Environmental filtering influences functional community assembly of epibenthic communities. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.736917
Thompson, W., Huang, L., & Kriedemann, P. (1992). Photosynthetic response to light and nutrients in sun-tolerant and shade-tolerant rainforest trees. II. leaf gas exchange and component processes of photosynthesis. Functional Plant Biology, 19(1), 19-42. doi:https://doi.org/10.1071/PP9920019
Valladares, F., & Niinemets, Ü. (2008). Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics, 39, 237-257. https://doi.org/https://doi.org/10.1146/annurev.ecolsys.39.110707.173506
Vasco, A., Moran, R. C., & Ambrose, B. A. (2013). The evolution, morphology, and development of fern leaves. Frontiers in Plant Science, 4. https://doi.org/10.3389/fpls.2013.00345
Vicent, M., y Galán, J. M. G., & Ainoüche, A. (2014). Insight into fern evolution: a mechanistic approach to main concepts and study techniques. Botanica Complutensis, 38, 7.
Wassink, E. C., & Stolwijk, J. A. J. (1956). Effects of light quality on plant growth. Annual Review of Plant Biology, 7, 373-400. https://doi.org/https://doi.org/10.1146/annurev.pp.07.060156.002105
Watkins Jr., J. E., Mack, M. K., & Mulkey, S. S. (2007). Gametophyte ecology and demography of epiphytic and terrestrial tropical ferns. American Journal of Botany, 94(4), 701-708. https://doi.org/https://doi.org/10.3732/ajb.94.4.701
Weng, J.-H., & Wong, S. L. (2015). Photosynthetic light responses of fern species adapted to different light regimes. In Tuft J. (Ed.), Ferns and Shrubs: Diversity, Cultivation and Implications for the Environment (pp. 57-76).
Went, F. W. (1953). The effect of temperature on plant growth. Annual Review of Plant Biology, 4, 347-362. https://doi.org/https://doi.org/10.1146/annurev.pp.04.060153.002023
Wintermans, J. F. G. M., & de Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA) - Biophysics including Photosynthesis, 109(2), 448-453. https://doi.org/https://doi.org/10.1016/0926-6585(65)90170-6
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., . . . Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821-827. https://doi.org/10.1038/nature02403
Wright, I., Dong, N., Maire, V., Prentice, I., Westoby, M., Diaz, S., Gallagher, R., Jacobs, B., Kooyman, R., Law, E., Leishman, M., Niinemets, Ü., Reich, P., Sack, L., Villar, R., Wang, H., & Wilf, P. (2017). Global climatic drivers of leaf size. Science, 357, 917-921. https://doi.org/10.1126/science.aal4760
Wu, T.-C., & Kao, W.-Y. (2011). Ecophysiological traits of leaves of three Marsilea species distributed in different geographical regions. Taiwania, 56(4), 279-286. https://taiwania.ntu.edu.tw/abstract/1095
Wu, T.-C., Lin, B.-L., & Kao, W.-Y. (2020a). Active stomatal control of Marsilea crenata, an amphibious fern, in response to CO2 and exogenous application of ABA. Taiwania, 65(4), 431-437. https://taiwania.ntu.edu.tw/abstract/1705
Wu, T.-C., Lin, B.-L., & Kao, W.-Y. (2020b). Stomatal blue light response is present in Marsilea crenata, an amphibious fern. Taiwania, 65(4), 456-462. https://taiwania.ntu.edu.tw/abstract/1709
Xiong, D., & Flexas, J. (2020). From one side to two sides: the effects of stomatal distribution on photosynthesis. New Phytologist, 228. https://doi.org/10.1111/nph.16801
Xu, C.-Y., Salih, A., Ghannoum, O., & Tissue, D. T. (2012). Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in CO2 and temperature. Journal of Experimental Botany, 63(16), 5829-5841. https://doi.org/10.1093/jxb/ers231
Yamori, W., Suzuki, K., Noguchi, K., Nakai, M., & Terashima, I. (2006). Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant, Cell & Environment, 29(8), 1659-1670. https://doi.org/https://doi.org/10.1111/j.1365-3040.2006.01550.x
Yamori, W., Hikosaka, K., & Way, D. A. (2014). Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research, 119(1), 101-117. https://doi.org/10.1007/s11120-013-9874-6
Yang, Y., Wang, G., Klanderud, K., & Yang, L. (2011). Responses in leaf functional traits and resource allocation of a dominant alpine sedge (Kobresia pygmaea) to climate warming in the Qinghai-Tibetan Plateau permafrost region. Plant and Soil, 349(1), 377-387. https://doi.org/10.1007/s11104-011-0891-y
Yeh, D. M., & Wang, H. M. (2000). Effects of irradiance on growth, net photosynthesis and indoor performance of the shade-adapted plant, maidenhair fern. The Journal of Horticultural Science and Biotechnology, 75(3), 293-298. https://doi.org/10.1080/14620316.2000.11511240
Zeisler-Diehl, V., & Schreiber, L. (2016). Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Planta, 243(1), 65-81. https://doi.org/10.1007/s00425-015-2397-y
Zeisler-Diehl, V., Müller, Y., & Schreiber, L. (2018). Epicuticular wax on leaf cuticles does not establish the transpiration barrier, which is essentially formed by intracuticular wax. Journal of Plant Physiology, 227, 66-74. https://doi.org/https://doi.org/10.1016/j.jplph.2018.03.018
Zhang, X.-C., & Nooteboom, H. (1998). A taxonomic revision of Plagiogyriaceae (Pteridophyta). Blumea: Journal of Plant Taxonomy and Plant Geography, 43, 401-469.
Zheng, Y., Xu, M., Shen, R., & Qiu, S. (2013). Effects of artificial warming on the structural, physiological, and biochemical changes of maize (Zea mays L.) leaves in northern China. Acta Physiologiae Plantarum, 35(10), 2891-2904. https://doi.org/10.1007/s11738-013-1320-z
Zhu, J., Huang, K., Cheng, D., Zhang, C., Li, R., Liu, F., Wen, H., Tao, L., Zhang, Y., Li, C., Liu, S., & Wei, C. (2022). Characterization of cuticular wax in tea plant and its modification in response to low temperature. Journal of Agricultural and Food Chemistry, 70(43), 13849-13861. https://doi.org/10.1021/acs.jafc.2c05470
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96492-
dc.description.abstract瘤足蕨屬(Plagiogyria Mett.)植物主要分佈於熱帶及亞熱帶山地霧林,臺灣有8個該屬物種,其中臺灣瘤足蕨(P. glauca (Blume) Mett.)及華中瘤足蕨(P. euphlebia (Kunze) Mett.)為霧林帶林下最常見的物種,且僅臺灣瘤足蕨葉背被有白色表角質層蠟質。前人研究指出兩者在臺灣山地霧林中的分佈數量似乎會隨著海拔高度和與稜線的距離而不同。本研究探討:(1)兩種瘤足蕨在塔曼山霧林帶中的分佈是否不同?如果不同,是什麼環境因子造成其分佈差異?又兩者的葉片生理生態特徵是否能解釋及反映其分佈差異?(2)臺灣瘤足蕨葉背蠟質可能有什麼功能?為了回答上述問題,我調查塔曼山兩種瘤足蕨在不同海拔高度(1780、1880、1980及2080公尺)棲地的植株覆蓋度、進行溫室環境因子(溫度和光強度)生長實驗並測量其葉片生理生態特徵,及觀察臺灣瘤足蕨的表角質層蠟質並探討其對葉片的影響。
野外調查結果發現:華中瘤足蕨在較低海拔棲地(1780公尺)數量較多,而臺灣瘤足蕨在高海拔(2080公尺)且林冠較開闊處的數量較多,兩物種數量有變化趨勢相反的現象。環境因子處理實驗結果顯示:相較於在15°C和20°C下,移植植株在高溫(25°C)下生長時,臺灣瘤足蕨的存活狀況及光合作用速率顯著降低,而華中瘤足蕨則沒有此現象;相較於在最大光環境為photosynthetic photon flux density (PPFD) = 100 μmol photon m-2s-1的溫室中生長時,在高光強度(最大PPFD = 300 μmol photon m-2s-1)下生長的移植植株,華中瘤足蕨的光合作用能力顯著下降,而臺灣瘤足蕨則未受影響,上述結果可以解釋兩者在海拔高度分佈的差異。相較於華中瘤足蕨,臺灣瘤足蕨的比葉面積(specific leaf area)較低、葉肉結構較緻密,並在光強度300 μmol photon m-2s-1生長時的葉綠素a/b比值顯著較高,顯示臺灣瘤足蕨具有能適應較低溫、光強度較高的葉片生理生態特徵。上述結果支持環境因子中的溫度及光強度是影響此兩種瘤足蕨分佈差異的假說,兩種蕨類葉片的生理生態特徵可以反映其分佈差異。
以掃描式電子顯微鏡觀察發現:臺灣瘤足蕨羽片遠軸面的表角質蠟質層由細絲狀的蠟質堆積而成,但並未覆蓋氣孔。表角質層蠟質經移除後會再重新生成。移除蠟質並不會改變臺灣瘤足蕨羽片的溫度也不會增加羽片對於低溫或高光的耐受度,但會減少羽片遠軸面對於可見光的反射度、增加羽片的蒸散作用速率和氣孔導度,並降低羽片的最大淨光合作用速率。結果支持臺灣瘤足蕨羽片遠軸面的表角質蠟質層可以降低其羽片的蒸散作用,減少水分喪失的假說。
zh_TW
dc.description.abstractPlagiogyria Mett. species are primarily distributed in tropical and subtropical cloud forests. Among the eight species reported in Taiwan, P. glauca (Blume) Mett. and P. euphlebia (Kunze) Mett. are the most common species in the understory of cloud forest zone, and P. glauca is the only species of the genus in Taiwan that bears white epicuticular wax on the abaxial surface of its pinnae. Previous studies have suggested that the two Plagiogyria species differ in distribution patterns in terms of elevation and distances of their habitats from ridges in Taiwanese cloud forests. This study has two objectives. To understand whether the two Plagiogyria species exhibit differential distributions within the cloud forest zone. If so, what are the main environmental factors that cause their differential distributions and can their leaf ecophysiological characters explain and/or reflect their distribution patterns. To investigate the possible functions of P. glauca’s epicuticular wax. To answer these questions, field surveys were conducted to estimate the coverage of the two Plagiogyria species in habitats at elevation of 1780, 1880, 1980 and 2080 m above sea level (a.s.l.) of Tamanshan in Northern Taiwan. Additionally, plants were grown in greenhouse with controlled abiotic environmental factors, including temperature and light availability, and their leaf ecophysiological characteristics were measured, and the function of P. glauca’s epicuticular wax was investigated.
Results of field survey show that in comparison between the two species, P. euphlebia has higher coverage at habitats at lower elevation of 1780 m a.s.l., while P. glauca exhibits higher coverage in exposed habitats at the higher elevation of 2080 m a.s.l. Temperature and light intensity controlled experiments revealed that compared to grown under 15°C or 20°C, P. glauca grown under 25°C exhibited poorer growth and had significantly lower maximal photosynthetic rates (Amax) while P. euphlebia did not show such phenomena. In comparison to grown under maximal photosynthetic photon flux density (PPFD) of 100 μmol photon m-2s-1, P. euphlebia under PPFD of 300 μmol photon m-2s-1 exhibited significant reduction in Amax while P. glauca remained unaffected. Furthermore, compared to P. euphlebia, P. glauca showed lower specific leaf area, denser mesophyll structures, and an increased chlorophyll a/b ratio when grown under a high light intensity. These results suggest that P. glauca is better adapted to habitats of lower temperatures and higher light intensities. These results also support the hypothesis that temperature and light intensity are the primary environmental factors that drive the differential distributions of P. euphlebia and P. glauca. Also, the ecophysiological traits of pinnae of these two species reflect their distribution patterns.
SEM showed that the epicuticular wax layer of P. glauca is composed of filiform wax which does not cover stomatal pores. The epicuticular wax seems to be regenerated after being removed. Wax removal experiments showed that the absence of epicuticular wax does not alter leaf temperature or the resistance of P. glauca’s pinnae to low temperature and high light stress. However, the removal of epicuticular wax significantly decreases the reflectance of the abaxial surface, increases the transpiration rate and stomatal conductance, while reduces Amax. The results support the hypothesis that the epicuticular wax can reduce the transpirational water loss of P. glauca.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:12:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-19T16:12:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
學位論文學術倫理暨原創性聲明書 II
誌謝 III
摘要 IV
Abstract VI
目次 IX
圖次 XI
表次 XIII
一、前言 1
二、材料與方法 8
(一) 塔曼山華中瘤足蕨及臺灣瘤足蕨比較 8
1. 華中瘤足蕨及臺灣瘤足蕨族群調查 8
2. 臺灣瘤足蕨及華中瘤足蕨移植植株在不同生長溫度/光強度處理下的反應 10
(二) 臺灣瘤足蕨葉背蠟質探討 14
1. 羽片蠟質層觀察 14
2. 蠟質層對於羽片光學性質的影響 15
3. 除蠟處理對於羽片光合作用PS II活性變化的影響 15
4. 蠟質層對於羽片氣體交換的影響 16
(三) 統計分析 17
三、結果 18
(一) 塔曼山華中瘤足蕨及臺灣瘤足蕨比較 18
1. 華中瘤足蕨及臺灣瘤足蕨族群調查結果 18
2. 生長溫度處理對植株和其葉片形質的影響 21
3. 生長光強度處理對植株和其葉片形質的影響 32
(二) 臺灣瘤足蕨葉背蠟質探討 42
1. 羽片蠟質層的分佈及含量變化 42
2. 蠟質層對於羽片光學性質的影響 45
3. 除蠟處理對於羽片光合作用PS II活性變化的影響 46
4. 蠟質層對於羽片氣體交換的影響 48
四、討論 52
(一) 塔曼山華中瘤足蕨及臺灣瘤足蕨族群分佈狀況 52
(二) 生長溫度和光度處理的影響 53
(三) 兩種瘤足蕨對溫度和光強度的反應可以解釋其在野外族群分佈差異 57
(四) 臺灣瘤足蕨葉背蠟質對其羽片的影響 59
五、結論 62
六、參考文獻 63
七、附錄 87
-
dc.language.isozh_TW-
dc.subject山地霧林zh_TW
dc.subject表角質層蠟質zh_TW
dc.subject棲位分化zh_TW
dc.subject功能性狀zh_TW
dc.subject瘤足蕨屬zh_TW
dc.subject蕨類zh_TW
dc.subjectfunctional traitsen
dc.subjectPlagiogyriaen
dc.subjectmontane cloud forestsen
dc.subjectpteridophyteen
dc.subjectepicuticular waxen
dc.subjectniche differentiationen
dc.title華中瘤足蕨及臺灣瘤足蕨在臺灣北部霧林帶分佈差異及其葉片生理生態特徵zh_TW
dc.titleDifferential distributions and leaf ecophysiological traits of Plagiogyria euphlebia and P. glauca in a cloud forest of Northern Taiwanen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee高資棟;黃曜謀;郭耀綸zh_TW
dc.contributor.oralexamcommitteeTzu-Tong Kao;Yao-Moan Huang;Yau-Lun Kuoen
dc.subject.keyword蕨類,山地霧林,瘤足蕨屬,功能性狀,棲位分化,表角質層蠟質,zh_TW
dc.subject.keywordpteridophyte,montane cloud forests,Plagiogyria,functional traits,niche differentiation,epicuticular wax,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202500286-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-01-26-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
dc.date.embargo-lift2030-01-23-
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  此日期後於網路公開 2030-01-23
10.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved