Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96482
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor沈立言zh_TW
dc.contributor.advisorLee-Yan Sheenen
dc.contributor.author楊筑鈞zh_TW
dc.contributor.authorChu-Chun Yangen
dc.date.accessioned2025-02-19T16:10:16Z-
dc.date.available2025-01-14-
dc.date.copyright2025-02-19-
dc.date.issued2025-
dc.date.submitted2025-01-14-
dc.identifier.citationAggarwal, V., Sunder, S., & Verma, S. R. (2022). Disease-associated dysbiosis and potential therapeutic role of Akkermansia muciniphila, a mucus degrading bacteria of gut microbiome. Folia Microbiol (Praha), 67(6), 811-824.
Ahmad, T. R., & Haeusler, R. A. (2019). Bile acids in glucose metabolism and insulin signalling - mechanisms and research needs. Nat Rev Endocrinol, 15(12), 701-712.
Albillos, A., de Gottardi, A., & Rescigno, M. (2020). The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol, 72(3), 558-577.
Arrieta, M. C., Walter, J., & Finlay, B. B. (2016). Human microbiota-associated mice: A model with challenges. Cell Host Microbe, 19(5), 575-578.
Barbier, L., Ferhat, M., Salamé, E., Robin, A., Herbelin, A., Gombert, J. M., Silvain, C., & Barbarin, A. (2019). Interleukin-1 family cytokines: keystones in liver inflammatory diseases. Front Immunol, 10, 2014.
Beer, N. L., Tribble, N. D., McCulloch, L. J., Roos, C., Johnson, P. R., Orho-Melander, M., & Gloyn, A. L. (2009). The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet, 18(21), 4081-4088.
Bellali, S., Bou Khalil, J., Fontanini, A., Raoult, D., & Lagier, J. C. (2020). A new protectant medium preserving bacterial viability after freeze drying. Microbiol Res, 236, 126454.
Berná, G., & Romero-Gomez, M. (2020). The role of nutrition in non-alcoholic fatty liver disease: Pathophysiology and management. Liver Int, 40 Suppl 1, 102-108.
Bessone, F., Razori, M. V., & Roma, M. G. (2019). Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci, 76(1), 99-128.
Brescia, P., & Rescigno, M. (2021). The gut vascular barrier: a new player in the gut-liver-brain axis. Trends Mol Med, 27(9), 844-855.
Brown, M. S., & Goldstein, J. L. (2008). Selective versus total insulin resistance: a pathogenic paradox. Cell Metab, 7(2), 95-96.
Buenrostro, J. D., Corces, M. R., Lareau, C. A., Wu, B., Schep, A. N., Aryee, M. J., Majeti, R., Chang, H. Y., & Greenleaf, W. J. (2018). Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell, 173(6), 1535-1548.e1516.
Bugianesi, E., Gastaldelli, A., Vanni, E., Gambino, R., Cassader, M., Baldi, S., Ponti, V., Pagano, G., Ferrannini, E., & Rizzetto, M. (2005). Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia, 48(4), 634-642.
Buzzetti, E., Pinzani, M., & Tsochatzis, E. A. (2016). The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism, 65(8), 1038-1048.
Cai, D., Yuan, M., Frantz, D. F., Melendez, P. A., Hansen, L., Lee, J., & Shoelson, S. E. (2005). Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med, 11(2), 183-190.
Cazanave, S. C., Mott, J. L., Elmi, N. A., Bronk, S. F., Werneburg, N. W., Akazawa, Y., Kahraman, A., Garrison, S. P., Zambetti, G. P., Charlton, M. R., & Gores, G. J. (2009). JNK1-dependent PUMA expression contributes to hepatocyte lipoapoptosis. J Biol Chem, 284(39), 26591-26602.
Cho, K. H. (2022). The current status of research on high-density lipoproteins (HDL): A paradigm shift from HDL quantity to HDL quality and HDL functionality. Int J Mol Sci, 23(7).
Chua, D., Low, Z. S., Cheam, G. X., Ng, A. S., & Tan, N. S. (2022). Utility of human relevant preclinical animal models in aavigating NAFLD to MAFLD paradigm. Int J Mol Sci, 23(23).
Chung, H., Pamp, S. J., Hill, J. A., Surana, N. K., Edelman, S. M., Troy, E. B., Reading, N. C., Villablanca, E. J., Wang, S., Mora, J. R., Umesaki, Y., Mathis, D., Benoist, C., Relman, D. A., & Kasper, D. L. (2012). Gut immune maturation depends on colonization with a host-specific microbiota. Cell, 149(7), 1578-1593.
Ciubotaru, I., Green, S. J., Kukreja, S., & Barengolts, E. (2015). Significant differences in fecal microbiota are associated with various stages of glucose tolerance in African American male veterans. Transl Res, 166(5), 401-411.
Clapper, J. R., Hendricks, M. D., Gu, G., Wittmer, C., Dolman, C. S., Herich, J., Athanacio, J., Villescaz, C., Ghosh, S. S., Heilig, J. S., Lowe, C., & Roth, J. D. (2013). Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment. Am J Physiol Gastrointest Liver Physiol, 305(7), G483-495.
Czaja, M. J. (2003). The future of GI and liver research: editorial perspectives. III. JNK/AP-1 regulation of hepatocyte death. Am J Physiol Gastrointest Liver Physiol, 284(6), G875-879.
Day, C. P., & James, O. F. (1998). Steatohepatitis: a tale of two "hits"? Gastroenterology, 114(4), 842-845.
Derrien, M., Vaughan, E. E., Plugge, C. M., & de Vos, W. M. (2004). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol, 54(Pt 5), 1469-1476.
Dongiovanni, P., Petta, S., Maglio, C., Fracanzani, A. L., Pipitone, R., Mozzi, E., Motta, B. M., Kaminska, D., Rametta, R., Grimaudo, S., Pelusi, S., Montalcini, T., Alisi, A., Maggioni, M., Kärjä, V., Borén, J., Käkelä, P., Di Marco, V., Xing, C., . . . Valenti, L. (2015). Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology, 61(2), 506-514.
Duan, Y., Pan, X., Luo, J., Xiao, X., Li, J., Bestman, P. L., & Luo, M. (2022). Association of inflammatory cytokines with non-alcoholic fatty liver disease. Front Immunol, 13, 880298.
Duncan, S. H., Aminov, R. I., Scott, K. P., Louis, P., Stanton, T. B., & Flint, H. J. (2006). Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. Int J Syst Evol Microbiol, 56(Pt 10), 2437-2441.
Eslam, M., Newsome, P. N., Sarin, S. K., Anstee, Q. M., Targher, G., Romero-Gomez, M., Zelber-Sagi, S., Wai-Sun Wong, V., Dufour, J. F., Schattenberg, J. M., Kawaguchi, T., Arrese, M., Valenti, L., Shiha, G., Tiribelli, C., Yki-Järvinen, H., Fan, J. G., Grønbæk, H., Yilmaz, Y., . . . George, J. (2020). A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol, 73(1), 202-209.
Eslam, M., Valenti, L., & Romeo, S. (2018). Genetics and epigenetics of NAFLD and NASH: Clinical impact. J Hepatol, 68(2), 268-279.
Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., Guiot, Y., Derrien, M., Muccioli, G. G., Delzenne, N. M., de Vos, W. M., & Cani, P. D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A, 110(22), 9066-9071.
Fernando, D. H., Forbes, J. M., Angus, P. W., & Herath, C. B. (2019). Development and progression of non-alcoholic fatty liver disease: The role of advanced glycation end products. Int J Mol Sci, 20(20).
Flannery, C., Dufour, S., Rabøl, R., Shulman, G. I., & Petersen, K. F. (2012). Skeletal muscle insulin resistance promotes increased hepatic de novo lipogenesis, hyperlipidemia, and hepatic steatosis in the elderly. Diabetes, 61(11), 2711-2717.
Fougerat, A., Montagner, A., Loiseau, N., Guillou, H., & Wahli, W. (2020). Peroxisome proliferator-activated receptors and their novel ligands as candidates for the treatment of non-alcoholic fatty liver disease. Cells, 9(7).
Fraulob, J. C., Ogg-Diamantino, R., Fernandes-Santos, C., Aguila, M. B., & Mandarim-de-Lacerda, C. A. (2010). A mouse model of metabolic syndrome: Insulin resistance, fatty liver and non-alcoholic fatty pancreas disease (NAFPD) in C57BL/6 mice fed a high fat diet. J Clin Biochem Nutr, 46(3), 212-223.
Gallage, S., Avila, J. E. B., Ramadori, P., Focaccia, E., Rahbari, M., Ali, A., Malek, N. P., Anstee, Q. M., & Heikenwalder, M. (2022). A researcher's guide to preclinical mouse NASH models. Nat Metab, 4(12), 1632-1649.
Guo, P., Wang, H., Ji, L., Song, P., & Ma, X. (2021). Impacts of fructose on intestinal barrier function, inflammation and microbiota in a piglet model. Nutrients, 13(10).
Gurung, M., Li, Z., You, H., Rodrigues, R., Jump, D. B., Morgun, A., & Shulzhenko, N. (2020). Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine, 51, 102590.
Hansen, H. H., Ægidius, H. M., Oró, D., Evers, S. S., Heebøll, S., Eriksen, P. L., Thomsen, K. L., Bengtsson, A., Veidal, S. S., Feigh, M., Suppli, M. P., Knop, F. K., Grønbæk, H., Miranda, D., Trevaskis, J. L., Vrang, N., Jelsing, J., & Rigbolt, K. T. G. (2020). Human translatability of the GAN diet-induced obese mouse model of non-alcoholic steatohepatitis. BMC Gastroenterol, 20(1), 210.
Hansen, J., Hollander, S., Drilias, N., Van Calcar, S., Rohr, F., & Bernstein, L. (2020). Simplified Diet for nutrition management of phenylketonuria: A survey of U.S. metabolic dietitians. JIMD Rep, 53(1), 83-89.
Harrison, S. A., Bedossa, P., Guy, C. D., Schattenberg, J. M., Loomba, R., Taub, R., Labriola, D., Moussa, S. E., Neff, G. W., Rinella, M. E., Anstee, Q. M., Abdelmalek, M. F., Younossi, Z., Baum, S. J., Francque, S., Charlton, M. R., Newsome, P. N., Lanthier, N., Schiefke, I., . . . Ratziu, V. (2024). A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N Engl J Med, 390(6), 497-509.
Haukeland, J. W., Damås, J. K., Konopski, Z., Løberg, E. M., Haaland, T., Goverud, I., Torjesen, P. A., Birkeland, K., Bjøro, K., & Aukrust, P. (2006). Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J Hepatol, 44(6), 1167-1174.
Henneke, L., Schlicht, K., Andreani, N. A., Hollstein, T., Demetrowitsch, T., Knappe, C., Hartmann, K., Jensen-Kroll, J., Rohmann, N., Pohlschneider, D., Geisler, C., Schulte, D. M., Settgast, U., Türk, K., Zimmermann, J., Kaleta, C., Baines, J. F., Shearer, J., Shah, S., . . . Laudes, M. (2022). A dietary carbohydrate - gut Parasutterella - human fatty acid biosynthesis metabolic axis in obesity and type 2 diabetes. Gut Microbes, 14(1), 2057778.
Hong, T., Chen, Y., Li, X., & Lu, Y. (2021). The role and mechanism of oxidative stress and nuclear receptors in the development of NAFLD. Oxid Med Cell Longev, 2021, 6889533.
Hsu, C. L., & Schnabl, B. (2023). The gut-liver axis and gut microbiota in health and liver disease. Nat Rev Microbiol, 21(11), 719-733.
Im, Y. R., Hunter, H., de Gracia Hahn, D., Duret, A., Cheah, Q., Dong, J., Fairey, M., Hjalmarsson, C., Li, A., Lim, H. K., McKeown, L., Mitrofan, C. G., Rao, R., Utukuri, M., Rowe, I. A., & Mann, J. P. (2021). A systematic review of animal models of NAFLD finds high-fat, high-fructose diets most closely resemble human NAFLD. Hepatology, 74(4), 1884-1901.
Itagaki, H., Shimizu, K., Morikawa, S., Ogawa, K., & Ezaki, T. (2013). Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in C57BL/6 mice. Int J Clin Exp Pathol, 6(12), 2683-2696.
Jegatheesan, P., & De Bandt, J. P. (2017). Fructose and NAFLD: The multifaceted aspects of fructose metabolism. Nutrients, 9(3).
Jiao, Y., Lu, Y., & Li, X. Y. (2015). Farnesoid X receptor: a master regulator of hepatic triglyceride and glucose homeostasis. Acta Pharmacol Sin, 36(1), 44-50.
Jornayvaz, F. R., Samuel, V. T., & Shulman, G. I. (2010). The role of muscle insulin resistance in the pathogenesis of atherogenic dyslipidemia and nonalcoholic fatty liver disease associated with the metabolic syndrome. Annu Rev Nutr, 30, 273-290.
Kapoor, A., & Sanyal, A. J. (2009). Endoplasmic reticulum stress and the unfolded protein response. Clin Liver Dis, 13(4), 581-590.
Karlsson, F. H., Tremaroli, V., Nookaew, I., Bergström, G., Behre, C. J., Fagerberg, B., Nielsen, J., & Bäckhed, F. (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 498(7452), 99-103.
Katsagoni, C. N., Georgoulis, M., Papatheodoridis, G. V., Panagiotakos, D. B., & Kontogianni, M. D. (2017). Effects of lifestyle interventions on clinical characteristics of patients with non-alcoholic fatty liver disease: A meta-analysis. Metabolism, 68, 119-132.
Kaya, E., & Yilmaz, Y. (2022). Metabolic-associated Fatty Liver Disease (MAFLD): A multi-systemic disease beyond the liver. J Clin Transl Hepatol, 10(2), 329-338.
Kechagias, S., Ernersson, A., Dahlqvist, O., Lundberg, P., Lindström, T., & Nystrom, F. H. (2008). Fast-food-based hyper-alimentation can induce rapid and profound elevation of serum alanine aminotransferase in healthy subjects. Gut, 57(5), 649-654.
Kim, S., Lee, Y., Kim, Y., Seo, Y., Lee, H., Ha, J., Lee, J., Choi, Y., Oh, H., & Yoon, Y. (2020). Akkermansia muciniphila prevents fatty liver disease, decreases serum triglycerides, and maintains gut homeostasis. Appl Environ Microbiol, 86(7).
Koliada, A., Syzenko, G., Moseiko, V., Budovska, L., Puchkov, K., Perederiy, V., Gavalko, Y., Dorofeyev, A., Romanenko, M., Tkach, S., Sineok, L., Lushchak, O., & Vaiserman, A. (2017). Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol, 17(1), 120.
Kumashiro, N., Erion, D. M., Zhang, D., Kahn, M., Beddow, S. A., Chu, X., Still, C. D., Gerhard, G. S., Han, X., Dziura, J., Petersen, K. F., Samuel, V. T., & Shulman, G. I. (2011). Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A, 108(39), 16381-16385.
Larsen, N., Vogensen, F. K., van den Berg, F. W., Nielsen, D. S., Andreasen, A. S., Pedersen, B. K., Al-Soud, W. A., Sørensen, S. J., Hansen, L. H., & Jakobsen, M. (2010). Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One, 5(2), e9085.
Le Roy, T., Llopis, M., Lepage, P., Bruneau, A., Rabot, S., Bevilacqua, C., Martin, P., Philippe, C., Walker, F., Bado, A., Perlemuter, G., Cassard-Doulcier, A. M., & Gérard, P. (2013). Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut, 62(12), 1787-1794.
Leamy, A. K., Egnatchik, R. A., & Young, J. D. (2013). Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res, 52(1), 165-174.
Leiva-Gea, I., Sánchez-Alcoholado, L., Martín-Tejedor, B., Castellano-Castillo, D., Moreno-Indias, I., Urda-Cardona, A., Tinahones, F. J., Fernández-García, J. C., & Queipo-Ortuño, M. I. (2018). Gut microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: A case-control study. Diabetes Care, 41(11), 2385-2395.
Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Microbial ecology: Human gut microbes associated with obesity. Nature, 444(7122), 1022-1023.
Li, L., Song, Y., Shi, Y., & Sun, L. (2023). Thyroid hormone receptor-β agonists in NAFLD therapy: Possibilities and challenges. J Clin Endocrinol Metab, 108(7), 1602-1613.
Liu, J., Han, L., Zhu, L., & Yu, Y. (2016). Free fatty acids, not triglycerides, are associated with non-alcoholic liver injury progression in high fat diet induced obese rats. Lipids Health Dis, 15, 27.
Loomba, R., Seguritan, V., Li, W., Long, T., Klitgord, N., Bhatt, A., Dulai, P. S., Caussy, C., Bettencourt, R., Highlander, S. K., Jones, M. B., Sirlin, C. B., Schnabl, B., Brinkac, L., Schork, N., Chen, C. H., Brenner, D. A., Biggs, W., Yooseph, S., . . . Nelson, K. E. (2017). Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab, 25(5), 1054-1062.e1055.
Ludwig, J., Viggiano, T. R., McGill, D. B., & Oh, B. J. (1980). Nonalcoholic steatohepatitis: Mayo clinic experiences with a hitherto unnamed disease. Mayo Clin Proc, 55(7), 434-438.
Luedde, T., & Schwabe, R. F. (2011). NF-κB in the liver--linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol, 8(2), 108-118.
Luther, J., Garber, J. J., Khalili, H., Dave, M., Bale, S. S., Jindal, R., Motola, D. L., Luther, S., Bohr, S., Jeoung, S. W., Deshpande, V., Singh, G., Turner, J. R., Yarmush, M. L., Chung, R. T., & Patel, S. J. (2015). Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell Mol Gastroenterol Hepatol, 1(2), 222-232.
Ma, M., Shi, F., Zhai, R., Wang, H., Li, K., Xu, C., Yao, W., & Zhou, F. (2021). TGF-β promote epithelial-mesenchymal transition via NF-κB/NOX4/ROS signal pathway in lung cancer cells. Mol Biol Rep, 48(3), 2365-2375.
Ma, Y., Lee, G., Heo, S. Y., & Roh, Y. S. (2021). Oxidative stress is a key modulator in the development of nonalcoholic fatty liver disease. Antioxidants (Basel), 11(1).
Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V., Ballet, V., Claes, K., Van Immerseel, F., Verbeke, K., Ferrante, M., Verhaegen, J., Rutgeerts, P., & Vermeire, S. (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63(8), 1275-1283.
Masarone, M., Rosato, V., Dallio, M., Gravina, A. G., Aglitti, A., Loguercio, C., Federico, A., & Persico, M. (2018). Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev, 2018, 9547613.
Mensink, R. P., Zock, P. L., Kester, A. D., & Katan, M. B. (2003). Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr, 77(5), 1146-1155.
Michael, M. D., Kulkarni, R. N., Postic, C., Previs, S. F., Shulman, G. I., Magnuson, M. A., & Kahn, C. R. (2000). Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell, 6(1), 87-97.
Milosevic, I., Vujovic, A., Barac, A., Djelic, M., Korac, M., Radovanovic Spurnic, A., Gmizic, I., Stevanovic, O., Djordjevic, V., Lekic, N., Russo, E., & Amedei, A. (2019). Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: ArReview of the literature. Int J Mol Sci, 20(2).
Negi, C. K., Babica, P., Bajard, L., Bienertova-Vasku, J., & Tarantino, G. (2022). Insights into the molecular targets and emerging pharmacotherapeutic interventions for nonalcoholic fatty liver disease. Metabolism, 126, 154925.
Newsome, P. N., Buchholtz, K., Cusi, K., Linder, M., Okanoue, T., Ratziu, V., Sanyal, A. J., Sejling, A. S., & Harrison, S. A. (2021). A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med, 384(12), 1113-1124.
Ni, Y., Qian, L., Siliceo, S. L., Long, X., Nychas, E., Liu, Y., Ismaiah, M. J., Leung, H., Zhang, L., Gao, Q., Wu, Q., Zhang, Y., Jia, X., Liu, S., Yuan, R., Zhou, L., Wang, X., Li, Q., Zhao, Y., . . . Jia, W. (2023). Resistant starch decreases intrahepatic triglycerides in patients with NAFLD via gut microbiome alterations. Cell Metab, 35(9), 1530-1547.e1538.
Nie, K., Ma, K., Luo, W., Shen, Z., Yang, Z., Xiao, M., Tong, T., Yang, Y., & Wang, X. (2021). Roseburia intestinalis: A beneficial gut organism from the discoveries in genus and species. Front Cell Infect Microbiol, 11, 757718.
Nomura, K., Ishikawa, D., Okahara, K., Ito, S., Haga, K., Takahashi, M., Arakawa, A., Shibuya, T., Osada, T., Kuwahara-Arai, K., Kirikae, T., & Nagahara, A. (2021). Bacteroidetes species are correlated with disease activity in ulcerative colitis. J Clin Med, 10(8).
Ouyang, X., Cirillo, P., Sautin, Y., McCall, S., Bruchette, J. L., Diehl, A. M., Johnson, R. J., & Abdelmalek, M. F. (2008). Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol, 48(6), 993-999.
Park, J. C., & Im, S. H. (2020). Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics. Exp Mol Med, 52(9), 1383-1396.
Patterson, A. M., Mulder, I. E., Travis, A. J., Lan, A., Cerf-Bensussan, N., Gaboriau-Routhiau, V., Garden, K., Logan, E., Delday, M. I., Coutts, A. G. P., Monnais, E., Ferraria, V. C., Inoue, R., Grant, G., & Aminov, R. I. (2017). Human gut symbiont Roseburia hominis promotes and regulates innate immunity. Front Immunol, 8, 1166.
Peng, C., Stewart, A. G., Woodman, O. L., Ritchie, R. H., & Qin, C. X. (2020). Non-alcoholic steatohepatitis: A Review of its mechanism, models and medical treatments. Front Pharmacol, 11, 603926.
Plovier, H., Everard, A., Druart, C., Depommier, C., Van Hul, M., Geurts, L., Chilloux, J., Ottman, N., Duparc, T., Lichtenstein, L., Myridakis, A., Delzenne, N. M., Klievink, J., Bhattacharjee, A., van der Ark, K. C., Aalvink, S., Martinez, L. O., Dumas, M. E., Maiter, D., . . . Cani, P. D. (2017). A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med, 23(1), 107-113.
Polyzos, S. A., Aronis, K. N., Kountouras, J., Raptis, D. D., Vasiloglou, M. F., & Mantzoros, C. S. (2016). Circulating leptin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Diabetologia, 59(1), 30-43.
Prasun, P., Ginevic, I., & Oishi, K. (2021). Mitochondrial dysfunction in nonalcoholic fatty liver disease and alcohol related liver disease. Transl Gastroenterol Hepatol, 6, 4.
Puri, P., Mirshahi, F., Cheung, O., Natarajan, R., Maher, J. W., Kellum, J. M., & Sanyal, A. J. (2008). Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology, 134(2), 568-576.
Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen, D., Peng, Y., Zhang, D., Jie, Z., Wu, W., Qin, Y., Xue, W., Li, J., Han, L., Lu, D., . . . Wang, J. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418), 55-60.
Rada, P., González-Rodríguez, Á., García-Monzón, C., & Valverde Á, M. (2020). Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis, 11(9), 802.
Radhakrishnan, S., Ke, J. Y., & Pellizzon, M. A. (2020). Targeted nutrient modifications in purified diets differentially affect nonalcoholic fatty liver disease and metabolic disease development in rodent models. Curr Dev Nutr, 4(6), nzaa078.
Rahman, K., Desai, C., Iyer, S. S., Thorn, N. E., Kumar, P., Liu, Y., Smith, T., Neish, A. S., Li, H., Tan, S., Wu, P., Liu, X., Yu, Y., Farris, A. B., Nusrat, A., Parkos, C. A., & Anania, F. A. (2016). Loss of junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology, 151(4), 733-746.e712.
Ramadori, P., Weiskirchen, R., Trebicka, J., & Streetz, K. (2015). Mouse models of metabolic liver injury. Lab Anim, 49(1 Suppl), 47-58.
Rao, Y., Kuang, Z., Li, C., Guo, S., Xu, Y., Zhao, D., Hu, Y., Song, B., Jiang, Z., Ge, Z., Liu, X., Li, C., Chen, S., Ye, J., Huang, Z., & Lu, Y. (2021). Gut Akkermansia muciniphila ameliorates metabolic dysfunction-associated fatty liver disease by regulating the metabolism of L-aspartate via gut-liver axis. Gut Microbes, 13(1), 1-19.
Rawls, J. F., Mahowald, M. A., Ley, R. E., & Gordon, J. I. (2006). Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell, 127(2), 423-433.
Riazi, K., Azhari, H., Charette, J. H., Underwood, F. E., King, J. A., Afshar, E. E., Swain, M. G., Congly, S. E., Kaplan, G. G., & Shaheen, A. A. (2022). The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol, 7(9), 851-861.
Ribeiro, P. S., Cortez-Pinto, H., Solá, S., Castro, R. E., Ramalho, R. M., Baptista, A., Moura, M. C., Camilo, M. E., & Rodrigues, C. M. (2004). Hepatocyte apoptosis, expression of death receptors, and activation of NF-kappaB in the liver of nonalcoholic and alcoholic steatohepatitis patients. Am J Gastroenterol, 99(9), 1708-1717.
Romeo, S., Kozlitina, J., Xing, C., Pertsemlidis, A., Cox, D., Pennacchio, L. A., Boerwinkle, E., Cohen, J. C., & Hobbs, H. H. (2008). Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet, 40(12), 1461-1465.
Rosenson, R. S., Brewer, H. B., Jr., Ansell, B. J., Barter, P., Chapman, M. J., Heinecke, J. W., Kontush, A., Tall, A. R., & Webb, N. R. (2016). Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol, 13(1), 48-60.
Ryu, S. W., Moon, J. C., Oh, B. S., Yu, S. Y., Bak, J. E., Heo, E. S., Jeong, J. H., & Lee, J. H. (2023). Anti-obesity activity of human gut microbiota Bacteroides stercoris KGMB02265. Arch Microbiol, 206(1), 19.
Sabio, G., Das, M., Mora, A., Zhang, Z., Jun, J. Y., Ko, H. J., Barrett, T., Kim, J. K., & Davis, R. J. (2008). A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science, 322(5907), 1539-1543.
Salehi-Sahlabadi, A., Sadat, S., Beigrezaei, S., Pourmasomi, M., Feizi, A., Ghiasvand, R., Hadi, A., Clark, C. C. T., & Miraghajani, M. (2021). Dietary patterns and risk of non-alcoholic fatty liver disease. BMC Gastroenterol, 21(1), 41.
Sangro, P., de la Torre Aláez, M., Sangro, B., & D'Avola, D. (2023). Metabolic dysfunction-associated fatty liver disease (MAFLD): an update of the recent advances in pharmacological treatment. J Physiol Biochem, 79(4), 869-879.
Schattenberg, J. M., Wang, Y., Singh, R., Rigoli, R. M., & Czaja, M. J. (2005). Hepatocyte CYP2E1 overexpression and steatohepatitis lead to impaired hepatic insulin signaling. J Biol Chem, 280(11), 9887-9894.
Scheen, A. J. (2015). Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs, 75(1), 33-59.
Seo, B., Jeon, K., Moon, S., Lee, K., Kim, W. K., Jeong, H., Cha, K. H., Lim, M. Y., Kang, W., Kweon, M. N., Sung, J., Kim, W., Park, J. H., & Ko, G. (2020). Roseburia spp. abundance associates with alcohol consumption in humans and its administration ameliorates alcoholic fatty liver in mice. Cell Host Microbe, 27(1), 25-40.e26.
Softic, S., Cohen, D. E., & Kahn, C. R. (2016). Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig Dis Sci, 61(5), 1282-1293.
Song, D., Chen, Y., Wang, B., Li, D., Xu, C., Huang, H., Huang, S., & Liu, R. (2019). Bisphenol A inhibits autophagosome-lysosome fusion and lipid droplet degradation. Ecotoxicol Environ Saf, 183, 109492.
Sookoian, S., & Pirola, C. J. (2011). Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology, 53(6), 1883-1894.
Sun, L., Deng, C., Gu, Y., He, Y., Yang, L., & Shi, J. (2022). Effects of dapagliflozin in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. Clin Res Hepatol Gastroenterol, 46(4), 101876.
Targher, G., Corey, K. E., Byrne, C. D., & Roden, M. (2021). The complex link between NAFLD and type 2 diabetes mellitus - mechanisms and treatments. Nat Rev Gastroenterol Hepatol, 18(9), 599-612.
Thyfault, J. P., & Bergouignan, A. (2020). Exercise and metabolic health: beyond skeletal muscle. Diabetologia, 63(8), 1464-1474.
Tilg, H., & Moschen, A. R. (2010). Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology, 52(5), 1836-1846.
Tsompanaki, E., Thanapirom, K., Papatheodoridi, M., Parikh, P., Chotai de Lima, Y., & Tsochatzis, E. A. (2023). Systematic review and meta-analysis: The role of diet in the development of nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol, 21(6), 1462-1474.e1424.
Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., & Gordon, J. I. (2009). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med, 1(6), 6ra14.
van der Windt, D. J., Sud, V., Zhang, H., Tsung, A., & Huang, H. (2018). The effects of physical exercise on fatty liver disease. Gene Expr, 18(2), 89-101.
Vilar-Gomez, E., Martinez-Perez, Y., Calzadilla-Bertot, L., Torres-Gonzalez, A., Gra-Oramas, B., Gonzalez-Fabian, L., Friedman, S. L., Diago, M., & Romero-Gomez, M. (2015). Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology, 149(2), 367-378.e365; quiz e314-365.
Wang, T. Y., Wang, R. F., Bu, Z. Y., Targher, G., Byrne, C. D., Sun, D. Q., & Zheng, M. H. (2022). Association of metabolic dysfunction-associated fatty liver disease with kidney disease. Nat Rev Nephrol, 18(4), 259-268.
Watanabe, M., Houten, S. M., Wang, L., Moschetta, A., Mangelsdorf, D. J., Heyman, R. A., Moore, D. D., & Auwerx, J. (2004). Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest, 113(10), 1408-1418.
Willner, I. R., Waters, B., Patil, S. R., Reuben, A., Morelli, J., & Riely, C. A. (2001). Ninety patients with nonalcoholic steatohepatitis: insulin resistance, familial tendency, and severity of disease. Am J Gastroenterol, 96(10), 2957-2961.
Wu, W., Kaicen, W., Bian, X., Yang, L., Ding, S., Li, Y., Li, S., Zhuge, A., & Li, L. (2023). Akkermansia muciniphila alleviates high-fat-diet-related metabolic-associated fatty liver disease by modulating gut microbiota and bile acids. Microb Biotechnol, 16(10), 1924-1939.
Xian, Y. X., Weng, J. P., & Xu, F. (2020). MAFLD vs. NAFLD: shared features and potential changes in epidemiology, pathophysiology, diagnosis, and pharmacotherapy. Chin Med J (Engl), 134(1), 8-19.
Xu, X., So, J. S., Park, J. G., & Lee, A. H. (2013). Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP. Semin Liver Dis, 33(4), 301-311.
Xuan, Y., Wu, D., Zhang, Q., Yu, Z., Yu, J., & Zhou, D. (2024). Elevated ALT/AST ratio as a marker for NAFLD risk and severity: insights from a cross-sectional analysis in the United States. Front Endocrinol (Lausanne), 15, 1457598.
Yan, S., Khambu, B., Chen, X., Dong, Z., Guo, G., & Yin, X. M. (2021). Hepatic autophagy deficiency remodels gut microbiota for adaptive protection via FGF15-FGFR4 signaling. Cell Mol Gastroenterol Hepatol, 11(4), 973-997.
Yan, S., Resta, T. C., & Jernigan, N. L. (2020). Vasoconstrictor mechanisms in chronic hypoxia-induced pulmonary hypertension: Role of oxidant signaling. Antioxidants (Basel), 9(10).
Younossi, Z. M., Yilmaz, Y., Yu, M. L., Wai-Sun Wong, V., Fernandez, M. C., Isakov, V. A., Duseja, A. K., Mendez-Sanchez, N., Eguchi, Y., Bugianesi, E., Burra, P., George, J., Fan, J. G., Papatheodoridis, G. V., Chan, W. K., Alswat, K., Saeed, H. S., Singal, A. K., Romero-Gomez, M., . . . Stepanova, M. (2022). Clinical and patient-reported outcomes from patients with nonalcoholic fatty liver disease across the world: Data from the global non-alcoholic steatohepatitis (NASH)/ non-alcoholic fatty liver disease (NAFLD) registry. Clin Gastroenterol Hepatol, 20(10), 2296-2306.e2296.
Zhang, C. H., Zhou, B. G., Sheng, J. Q., Chen, Y., Cao, Y. Q., & Chen, C. (2020). Molecular mechanisms of hepatic insulin resistance in nonalcoholic fatty liver disease and potential treatment strategies. Pharmacol Res, 159, 104984.
Zhang, L., Liu, C., Jiang, Q., & Yin, Y. (2021). Butyrate in energy metabolism: There is still more to learn. Trends Endocrinol Metab, 32(3), 159-169.
Zhang, L., Wang, Z., Zhang, X., Zhao, L., Chu, J., Li, H., Sun, W., Yang, C., Wang, H., Dai, W., Yan, S., Chen, X., & Xu, D. (2022). Alterations of the gut microbiota in patients with diabetic nephropathy. Microbiol Spectr, 10(4), e0032422.
Zhong, H., Ren, H., Lu, Y., Fang, C., Hou, G., Yang, Z., Chen, B., Yang, F., Zhao, Y., Shi, Z., Zhou, B., Wu, J., Zou, H., Zi, J., Chen, J., Bao, X., Hu, Y., Gao, Y., Zhang, J., . . . Li, J. (2019). Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics. EBioMedicine, 47, 373-383.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96482-
dc.description.abstract代謝性脂肪肝病(MAFLD)是全球常見的慢性肝病,約影響全球30%的人口。MAFLD涵蓋了廣泛的肝臟疾病範疇,從脂肪肝開始逐漸發展為代謝性脂肪肝炎(MASH),最終可能導致肝硬化甚至肝癌。多項研究顯示,人體腸道菌在MAFLD的進展中透過腸肝軸發揮重要作用。因此,許多研究成功利用次世代益生菌(NGP)來預防或治療脂肪肝病。為了探討腸道菌群對MAFLD的作用,我們的研究團隊建立了仿人體腸道菌鼠(HMA)模型,將來自六位具有不同程度MAFLD的肥胖患者的糞便微生物移植到無菌小鼠中,並研究其與MAFLD疾病嚴重程度相關的表徵。我們觀察到在六位供體中,HMA小鼠中供體D的(HMA_D組)腸道菌對抗MASH表現出最佳的肝保護效果。腸道菌分析顯示,HMA_D小鼠中Roseburia hominis和Bacteroides stercoris的豐富度較高,這可能有助於預防MAFLD疾病進展。因此,本研究旨在探討來自仿人體腸道菌鼠的微生物基因體數據篩選出之新興腸道菌株對於Gubra-Amylin NASH(GAN)飲食誘導小鼠之代謝性脂肪肝炎進展的影響。結果顯示,Roseburia hominis和Bacteroides stercoris在介入GAN 飲食誘導的小鼠肝損傷方面效果有限。然而,當這些菌株以混合菌液形式給予時,MAFLD的發生率呈下降的趨勢,顯示混合菌株比單一菌株對預防MAFLD更有效果。此外,本研究發現給予Roseburia hominis或Bacteroides stercoris的小鼠能有效減少肝臟腫大,並顯著降低血漿總膽固醇。然而,這些改善的背後機制尚不清楚,需進一步探討。本實驗的發現之一是,Roseburia hominis 透過上調胰島素訊號通路中的關鍵分子,如IRS1和PI3K,來緩解MAFLD小鼠的胰島素阻抗,並顯著降低空腹血糖。最後,腸道菌群分析顯示,MAFLD小鼠的腸道菌群失衡,表現為有益菌減少和有害菌增加。然而,Roseburia hominis或Bacteroides stercoris對腸道菌群失衡的逆轉效果有限。總結來說,Roseburia hominis和Bacteroides stercoris在緩解MAFLD小鼠的肝損傷和代謝紊亂方面表現出一定的效果,且混合菌株比單一菌株更具療效。然而,它們對腸道菌群失衡的影響及對MAFLD進展的整體影響仍然有限,這表明需要進一步探索。zh_TW
dc.description.abstractMetabolic dysfunction-associated fatty liver disease (MAFLD) is a prevalent chronic liver disease worldwide, affecting approximately 30% of the global population. MAFLD encompasses a broad spectrum of liver disease, starting with steatosis and progressing to metabolic dysfunction-associated steatohepatitis (MASH), which can lead to cirrhosis and even hepatocellular carcinoma. Several studies indicate that the human gut microbiota plays an important role in the progression of MAFLD through the gut-liver axis. Consequently, numerous studies have successfully used next-generation probiotics (NGP) for preventive or therapeutic functions against fatty liver disease. To investigate the role of gut microbiota on MAFLD, our research team developed a model of human microbiota-associated (HMA) mice by transplanting fecal microbiota obtained from six obese patients with different degrees of MAFLD to germ-free mice and examining the phenotype associated with MAFLD. We observed that among six donors, the gut microbiota of donor D in HMA mice (HMA_D group) exhibited the best hepatoprotective effect against MASH. Gut microbiota analysis revealed that Roseburia hominis and Bacteroides stercoris were enriched in HMA_D mice, which might be beneficial for MAFLD amelioration. Therefore, this study aims to verify the relationship between the novel intestinal microbiome derived from the microbiomics data of HMA mice and the progression of MASH in a Gubra-Amylin NASH (GAN) mice model. The results indicated that R. hominis and B. stercoris had limited effects in preventing GAN diet-induced liver injury in mice. However, when administered as a combined bacterial suspension, there was a decreasing trend in MAFLD incidence, suggesting that the mixed strains were more effective in preventing MAFLD compared to individual strains. Moreover, this study found that administering R. hominis or B. stercoris to mice effectively decreased liver weight gain and significantly reduced plasma total cholesterol. However, the underlying mechanisms behind these improvements remain unclear and warrant further investigation. What’s more, an important finding of this experiment is that R. hominis alleviated insulin resistance in MAFLD mice by upregulating key molecules in the insulin signaling pathway, such as IRS1 and PI3K, and significantly lowered fasting blood glucose levels. Finally, gut microbiota analysis revealed an imbalance in MAFLD mice, characterized by a reduction in beneficial bacteria and an increase in harmful bacteria. However, the reversal effects of R. hominis and B. stercoris were limited. In summary, R. hominis and B. stercoris demonstrated some efficacy in alleviating liver damage and metabolic disturbances in MAFLD mice, with combined strains showing better results than individual strains. However, their impact on gut microbiota imbalance and the overall progression of MAFLD was limited, suggesting the need for further exploration.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-19T16:10:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-19T16:10:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 I
謝辭 II
中文摘要 III
英文摘要 V
目次 VII
圖次 XI
表次 XIV
縮寫表 XV
第一章 文獻回顧 1
第一節 代謝性脂肪肝病 1
一、 代謝性脂肪肝病定義 1
二、 代謝性脂肪肝的診斷與疾病進程 1
第二節 代謝性脂肪肝病致病機轉 3
一、 基因變異 4
二、 不良飲食習慣 5
三、 胰島素阻抗與脂質、葡萄糖代謝異常 6
四、 發炎反應 8
五、 粒線體功能受損與內質網壓力 11
六、 腸道菌失衡 13
第三節 代謝性脂肪肝病之動物誘導模式 16
第四節 代謝性脂肪肝病的治療 20
第五節 菌株篩選 24
一、 仿人體腸道菌鼠 (human microbiota-associated mice, HMA mice) 24
二、 微生物基因體數據 (microbiomics data) 之結果與篩選 26
第六節 菌株介紹 31
一、 Roseburia hominis 介紹 31
二、 Bacteroides stercoris 介紹 32
三、 Akkermansia muciniphila 介紹 33
第二章 研究假說與實驗架構 34
第一節 研究假說 34
第二節 研究架構 35
第三章 實驗材料與方法 37
第一節 材料與儀器設備 37
一、 實驗儀器與設備 37
二、 動物實驗 38
三、 肝臟均質液與相關分析 38
四、 血糖試驗及血漿胰島素分析 39
五、 糞便 DNA 萃取 39
六、 肝臟 RNA 萃取 39
七、 即時聚合酶連鎖反應 (Quantitative real time PCR, RT-PCR) 39
第二節 實驗方法 40
一、 菌株培養與製備 40
二、 動物實驗 41
三、 血液生化值測定 43
四、 組織病理切片及染色分析、NAFLD activity score 判讀 44
五、 肝臟三酸甘油酯、促發炎細胞激素分析 45
六、 腸道菌相分析 47
七、 即時聚合酶連鎖反應 (Quantitative real time PCR, RT-PCR) 48
八、 統計分析 49
第四章 結果 51
第一節 管餵不同菌株介入 8 週後體種變化 51
第二節 各組別小鼠每日平均攝食量 51
第三節 各組別小鼠脂肪組織相對重量 51
第四節 各組別小鼠血糖恆定相關結果 52
第五節 各組別小鼠肝臟重量及肝臟相對重量 53
第六節 各組別小鼠肝臟組織病理切片及NAFLD activity score 53
第七節 各組別小鼠肝臟三酸甘油脂含量分析 54
第八節 各組別小鼠肝臟促發炎激素分析結果 54
第九節 各組別小鼠血漿中肝臟功能指數 54
第十節 各組別小鼠血脂分析結果 55
第十一節 R. hominis對於胰島素阻抗路徑RT-PCR 的結果 55
第十二節 腸道菌分析結果 56
一、 腸道菌相α-多樣性分析 56
二、 腸道菌相 β-多樣性分析 56
三、 熱力圖 57
四、 管餵 R. hominis, B. stercoris, A. muciniphila標準菌株及R. hominis, B. stercoris混合菌液在糞便中的相對豐富度 57
五、 火山圖 58
六、 具代表性的菌種討論 59
第五章 討論 61
第一節 不同菌株介入對MAFLD疾病嚴重程度的討論 61
第二節 不同菌株介入對肝臟促發炎激素的討論 64
第三節 不同菌株介入對肝臟和血漿中脂肪含量的討論 65
第四節 B. stercoris和A. muciniphila對血糖恆定及血液胰島素濃度討論 67
第五節 R. hominis 對於血糖恆定及胰島素阻抗路徑的討論 68
第六節 不同菌株介入對腸道菌相組成的討論 69
第六章 結論 72
第七章 圖表 74
第八章 參考文獻 96
第九章 補充資料 110
附錄Manuscript 114
-
dc.language.isozh_TW-
dc.subject代謝性脂肪肝炎zh_TW
dc.subject腸肝軸線zh_TW
dc.subject微生物基因體zh_TW
dc.subject腸道微生物zh_TW
dc.subject仿人體腸道菌鼠zh_TW
dc.subject次世代益生菌zh_TW
dc.subject代謝性脂肪肝病zh_TW
dc.subjectmicrobiomicsen
dc.subjectgut-liver axisen
dc.subjectnext-generation probiotics (NGP)en
dc.subjectmetabolic dysfunction-associated steatohepatitis (MASH)en
dc.subjectmetabolic dysfunction-associated fatty liver disease (MAFLD)en
dc.subjecthuman microbiota-associated (HMA) miceen
dc.subjectGubra-Amylin NASH (GAN) dieten
dc.subjectmicrobiotaen
dc.title探討來自仿人體腸道菌鼠的微生物基因體數據篩選出之新興腸道菌株對於代謝性脂肪肝炎進展的影響zh_TW
dc.titleInvestigating the role of the novel intestinal microbiome from human microbiota-associated mice's microbiomics data on metabolic dysfunction-associated steatohepatitis progressionen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳明賢;吳偉愷zh_TW
dc.contributor.oralexamcommitteeMing-Shiang Wu;Wei-Kai Wuen
dc.subject.keyword代謝性脂肪肝病,代謝性脂肪肝炎,次世代益生菌,仿人體腸道菌鼠,腸道微生物,微生物基因體,腸肝軸線,zh_TW
dc.subject.keywordmetabolic dysfunction-associated fatty liver disease (MAFLD),metabolic dysfunction-associated steatohepatitis (MASH),next-generation probiotics (NGP),human microbiota-associated (HMA) mice,Gubra-Amylin NASH (GAN) diet,microbiota,microbiomics,gut-liver axis,en
dc.relation.page154-
dc.identifier.doi10.6342/NTU202500124-
dc.rights.note未授權-
dc.date.accepted2025-01-15-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
dc.date.embargo-liftN/A-
Appears in Collections:食品科技研究所

Files in This Item:
File SizeFormat 
ntu-113-1.pdf
  Restricted Access
18.34 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved