Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96431
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳景然zh_TW
dc.contributor.advisorChing-Jan Chenen
dc.contributor.author蔡杰儒zh_TW
dc.contributor.authorChieh-Ju Tsaien
dc.date.accessioned2025-02-13T16:26:24Z-
dc.date.available2025-02-14-
dc.date.copyright2025-02-13-
dc.date.issued2025-
dc.date.submitted2025-02-02-
dc.identifier.citation[2-1] J. Xue, M. K. Song, X. Ke, M. Chen and L. Shtargot, "8.7 A 2MHz 4-to-60VIN Buck-Boost Converter for Automotive Use Achieving 95% Efficiency and CISPR 25 Class 5 Standard," in IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb.2019, pp. 158-160.
[2-2] B. Lee, M. K. Song and D. B. Ma, "On-chip inductor DCR self-calibration technique for high frequency integrated multiphase switching converters," in Proc. IEEE APEC, 2017, pp. 2449-2452.
[2-3] Cheung Fai Lee and P. K. T. Mok, "A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique," in IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3-14, Jan. 2004.
[2-4] Yang Zhang, R. Zane, A. Prodic, R. Erickson and D. Maksimovic, "Online Calibration of MOSFET On-State Resistance for Precise Current Sensing," in IEEE Power Electronics Letters, vol. 2, no. 3, pp. 100-103, Sept. 2004.
[2-5] H. P. Forghani-Zadeh and G. A. Rincon-Mora, “Current-sensing techniques for DC-DC converters,” in Proc. IEEE MWSCAS, Aug. 2002, pp. II-577–II-580.
[2-6] Y. Yan and E. Gu, "A Scalable Multiphase Current-Mode Buck Controller With Sub-Milliohm DCR Current Sensing and Synchronized Overcurrent Protection," in IEEE J. Solid-State Circuits, vol. 56, no. 9, pp. 2748-2759, Sept. 2021.
[2-7] M. Sun, Z. Yang, K. Joshi, D. Mandal, P. Adell and B. Bakkaloglu, "A 6 A, 93% Peak Efficiency, 4-Phase Digitally Synchronized Hysteretic Buck Converter With ±1.5% Frequency and ±3.6% Current-Sharing Error," in IEEE J. Solid-State Circuits, vol. 52, no. 11, pp. 3081-3094, Nov. 2017.
[2-8] W.-C. Chen, H.-C. Chen, M.-W. Chien, Y.-W. Chou, K.-H. Chen, Ying-H. Lin, T.-Y. Tsai, S.-R. Lin, C.-C. Lee,” Pseudo-Constant Switching Frequency in On-Time Controlled Buck Converter with Predicting Correction Techniques,” in IEEE Trans. Power Electronics, Vol. 31, Issue 5, pp. 3650 – 3662, May 2016.
[2-9] M. Du and H. Lee, "An Integrated Speed- and Accuracy-Enhanced CMOS Current Sensor With Dynamically Biased Shunt Feedback for Current-Mode Buck Regulators," in IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 57, no. 10, pp. 2804-2814, Oct. 2010.
[2-10] RichTek, “Comparison of DCR Current Sense Topologies”, https://www.richtek.com/Design%20Support/Technical%20Document/AN037?sc_lang=en.
[2-11] Kevin Scott and Henry Zhang, “Switch Mode Power Supply Current Sensing - Part 3: Current Sensing Methods”, Nov. 2016, https://www.analog.com/en/resources/technical-articles/switch-mode-power-supply-current-sensing-part-3-current-sensing-methods.html.
[2-12] Y. Zhou, Q. Cheng, J. Li, Y. Zheng and K. N. Leung, "Full-Wave Sense-FET-Based Inductor-Current Sensor With Wide Dynamic Range for Buck Converters," in IEEE Trans. Circuits Syst II: Express Briefs, vol. 69, no. 4, pp. 2041-2045, April 2022.
[2-13] C. C. Enz, E. A. Vittoz and F. Krummenacher, "A CMOS chopper amplifier," in IEEE J. Solid-State Circuits, vol. 22, no. 3, pp. 335-342, June 1987.
[2-14] C.-J. Chen, Z.-Y. Zeng, C.-H. Cheng, F.-T. Lin, “Comprehensive Analysis and Design of Current-Balance Loop in Constant On-time Controlled Multi-phase Buck Converter,” in IEEE Access, vol. 8, pp. 184752-184764, Oct. 2020.
[2-15] Y. -S. Roh, Y. -J. Moon, J. Park, M. -G. Jeong and C. Yoo, "A Multiphase Synchronous Buck Converter With a Fully Integrated Current Balancing Scheme," in IEEE Trans. Power Electronics, vol. 30, no. 9, pp. 5159-5169, Sept. 2015.
[2-16] Y. -P. Su, W. -C. Chen, Y. -P. Huang, C. -Y. Chen, C. -L. Ni and K. -H. Chen, "Time-Shift Current Balance Technique in Four-Phase Voltage Regulator Module with 90% Efficiency for Cloud Computing," in IEEE Tran. Power Electronics, vol. 30, no. 3, pp. 1521-1534, March 2015.
[2-17] Y. -P. Su, W. -C. Chen, Y. -P. Huang, Y. -H. Lee, K. -H. Chen and H. -Y. Luo, "Pseudo-Ramp Current Balance (PRCB) Technique With Offset Cancellation Control (OCC) in Dual-Phase DC-DC Buck Converter," in IEEE Trans. VLSI Syst., vol. 22, no. 10, pp. 2192-2205, Oct. 2014.
[2-18] N. Desai et al., "17.4 Peak-Current-Controlled Ganged Integrated High-Frequency Buck Voltage Regulators in 22nm CMOS for Robust Cross-Tile Current Sharing," in IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 2021, pp. 262-264.
[2-19] Y. Yan and E. Gu, "A Scalable Multiphase Current-Mode Buck Controller With Sub-Milliohm DCR Current Sensing and Synchronized Overcurrent Protection," in IEEE J. Solid-State Circuits, vol. 56, no. 9, pp. 2748-2759, Sept. 2021.
[3-1] M. Choi, C. -H. Kye, J. Oh, M. -S. Choo and D. -K. Jeong, "A Current-Mode Digital AOT 4-Phase Buck Voltage Regulator," in IEEE Solid-State Circuits Letters, vol. 2, no. 11, pp. 244-247, Nov. 2019.
[3-2] P. -H. Liu, F. C. Lee and Q. Li, "Hybrid interleaving with adaptive PLL loop for adaptive on-time controlled switching converters," in Proc. IEEE ECCE, 2014, pp. 4110-4117.
[3-3] C. -F. Nien et al., "A Novel Adaptive Quasi-Constant On-Time Current-Mode Buck Converter," in IEEE Trans. Power Electronics, vol. 32, no. 10, pp. 8124-8133, Oct. 2017.
[3-4] C. -J. Chen, S. -H. Lu, S. -F. Hsiao, Y. -J. Chen and J. -R. Huang, "A Current-Mode Buck Converter With Reconfigurable On-Chip Compensation and Adaptive Voltage Positioning," in IEEE Trans. Power Electronics, vol. 34, no. 1, pp. 485-494, Jan. 2019.
[3-5] S. Tian, F. C. Lee, J. Li, Q. Li and P. -H. Liu, "A Three-Terminal Switch Model of Constant On-Time Current Mode With External Ramp Compensation," in IEEE Trans. Power Electronics, vol. 31, no. 10, pp. 7311-7319, Oct. 2016.
[3-6] P. Li, L. Xue, P. Hazucha, T. Karnik and R. Bashirullah, "A Delay-Locked Loop Synchronization Scheme for High-Frequency Multiphase Hysteretic DC-DC Converters," in IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3131-3145, Nov. 2009.
[3-7] P. Li, D. Bhatia, L. Xue and R. Bashirullah, "A 90–240 MHz Hysteretic Controlled DC-DC Buck Converter With Digital Phase Locked Loop Synchronization," in IEEE J. Solid-State Circuits, vol. 46, no. 9, pp. 2108-2119, Sept. 2011.
[3-8] M. Sun, Z. Yang, K. Joshi, D. Mandal, P. Adell and B. Bakkaloglu, "A 6 A, 93% Peak Efficiency, 4-Phase Digitally Synchronized Hysteretic Buck Converter With ±1.5% Frequency and ±3.6% Current-Sharing Error," in IEEE J. Solid-State Circuits, vol. 52, no. 11, pp. 3081-3094, Nov. 2017.
[3-9] Texas Instruments Incorporated. TPS589650. Accessed: Dec. 2011. [Online]. Available: https://www.ti.com/product/zh-tw/TPS59650.
[3-10] Richtek Technology. RT8859M. Accessed: Apr. 2012. [Online]. Available: https://www.richtek.com/Products/Vcore/intel-vcore/RT8859M?sc_lang=zh-TW.
[3-11] Y.-C. Lin, C.-J. Chen, D. Chen, B. Wang, “A Ripple-Based Constant On-Time Control With Virtual Inductor Current and Offset Cancellation for DC Power Converters,” in IEEE Trans. Power Electronics, Vol. 27, No.10, pp. 4301 - 4310, 2012.
[3-12] H.-H. Chen, C.-J. Tsai, C.-J. Chen, “A Monolithic 30uA – 1.5A > 85%-Efficiency, Passive-Ramp-Extended-Ton Controlled Buck Converter for Mobile SoC Fast DVS,” in Proc. IEEE APEC, pp. 1211-1216, Mar. 2023.
[3-13] L. Kong, D. Chen, S.-F. Hsiao, C.-F. Nien, C.-J. Chen, G.-F. Li, “A Novel Adaptive-Ramp Ripple-Based Constant On-Time Buck Converter for Stability and Transient Optimization in Wide Operation Range,” in IEEE J. of Emerging and Selected Topics in Power Electronics, vol. 6, no. 3, pp. 1314-1324, Aug. 2018.
[3-14] F. Gardner, "Charge-Pump Phase-Lock Loops," in IEEE Trans. on Communications, vol. 28, no. 11, pp. 1849-1858, November 1980.
[3-15] W. -C. Chen et al., "Pseudo-Constant Switching Frequency in On-Time Controlled Buck Converter with Predicting Correction Techniques," in IEEE Trans. Power Electronics, vol. 31, no. 5, pp. 3650-3662, May 2016.
[3-16] C. -H. Tsai, B. -M. Chen and H. -L. Li, "Switching Frequency Stabilization Techniques for Adaptive On-Time Controlled Buck Converter With Adaptive Voltage Positioning Mechanism," in IEEE Trans. Power Electronics, vol. 31, no. 1, pp. 443-451, Jan. 2016.
[3-17] K. -Y. Hu, C. -H. Tsai and C. -W. Tsai, "Digital V2 Constant ON-Time Control Buck Converter With Adaptive Voltage Positioning and Automatic Calibration Mechanism," in IEEE Trans. Power Electronics, vol. 36, no. 6, pp. 7178-7188, June 2021.
[3-18] S. Pan and P. K. T. Mok, "A 25 MHz Fast Transient Adaptive-On/Off-Time Controlled Three-Level Buck Converter," in IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 6, pp. 2601-2613, June 2022.
[3-19] Y. Yan and E. Gu, "A Scalable Multiphase Current-Mode Buck Controller With Sub-Milliohm DCR Current Sensing and Synchronized Overcurrent Protection," in IEEE J. Solid-State Circuits, vol. 56, no. 9, pp. 2748-2759, Sept. 2021.
[3-20] Y. -W. Huang, T. -H. Kuo, S. -Y. Huang and K. -Y. Fang, "A Four-Phase Buck Converter With Capacitor-Current-Sensor Calibration for Load-Transient-Response Optimization That Reduces Undershoot/Overshoot and Shortens Settling Time to Near Their Theoretical Limits," in IEEE J. Solid-State Circuits, vol. 53, no. 2, pp. 552-568, Feb. 2018.
[3-21] Y. Yan and E. Gu, "A Scalable Multiphase Current-Mode Buck Controller With Sub-Milliohm DCR Current Sensing and Synchronized Overcurrent Protection," IEEE J. Solid-State Circuits, vol. 56, no. 9, pp. 2748-2759, Sept. 2021.
[3-22] Texas Instruments Incorporated, “SLVA867: D-CAP+TM Control for Multiphase, Step-Down Voltage Regulators for Powering Microprocessors,” Accessed: Jan. 2019. [Online]. Available: https://www.ti.com/lit/an/slva867/slva867.pdf.
[3-23] Texas Instruments Incorporated. TPS53667. Accessed: Feb. 2017. [Online]. Available. https://www.ti.com/document-viewer/tps53667/datasheet.
[3-24] K. -Y. B. Cheng, F. C. Lee and P. Mattavelli, "Adaptive ripple-based constant on-time control with internal ramp compensations for buck converters," in Proc. APEC 2014, Fort Worth, TX, USA, 2014, pp. 440-446.
[4-1] T. -C. Huang et al., “A Battery-Free 217 nW Static Control Power Buck Converter for Wireless RF Energy Harvesting with α-Calibrated Dynamic On/Off Time and Adaptive Phase Lead Control”, IEEE J. Solid-State Circuits, vol. 47, no. 4, pp. 852-862, Feb. 2012.
[4-2] P. -H. Chen, C. -S. Wu and K. -C. Lin, "A 50 nW-to-10 mW Output Power Tri-Mode Digital Buck Converter With Self-Tracking Zero Current Detection for Photovoltaic Energy Harvesting," IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 523-532, Feb. 2016.
[4-3] A. Paidimarri and A. P. Chandrakasan, "A Wide Dynamic Range Buck Converter With Sub-nW Quiescent Power," n IEEE Journal of Solid-State Circuits, vol. 52, no. 12, pp. 3119-3131, Dec. 2017.
[4-4] F. Santoro et al., "A Hysteretic Bbuck Converter with 92.1% Maximum Efficiency Designed for Ultra-Low Power and Fast Wake-Up SoC Applications," IEEE J. Solid-State Circuits, vol. 53, no. 6, pp. 1856-1868, June 2018.
[4-5] M. S. Ahmed and A. A. Fayed, "A Current-Mode Delay-Based Hysteretic Buck Regulator With Enhanced Efficiency at Ultra-Light Loads for Low-Power Microcontrollers," IEEE Trans. on Power Electronics, vol. 35, no. 1, pp. 471-483, Jan. 2020.
[4-6] W. -L. Zeng et al., "A 470-nA Quiescent Current and 92.7%/94.7% Efficiency DCT/PWM Control Buck Converter With Seamless Mode Selection for IoT Application," IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 67, no. 11, pp. 4085-4098, Nov. 2020.
[4-7] M. Zhao et al., "An Ultra-Low Quiescent Current Tri-Mode DC-DC Buck Converter With 92.1% Peak Efficiency for IoT Applications," IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 69, no. 1, pp. 428-439, Jan. 2022.
[4-8] W. Huang, L. Liu, X. Liao, C. Xu and Y. Li, "A 240-nA Quiescent Current, 95.8% Efficiency AOT-Controlled Buck Converter With A2-Comparator and Sleep-Time Detector for IoT Application," IEEE Trans. on Power Electronics, vol. 36, no. 11, pp. 12898-12909, Nov. 2021.
[4-9] Z. Gao, Y. Hao, H. Wei, Y. Li and M. Chen, "A 96% Peak Efficiency Adaptively Controlled PSM Buck Converter With Low-Quiescent Current and Wide Dynamic Range for IoT Applications," IEEE Solid-State Circuits Letters, vol. 5, pp. 276-279, 2022.
[4-10] J. -S. Kim, J. -O. Yoon and B. -D. Choi, "A High-Light-Load-Efficiency Low-Ripple-Voltage PFM Buck Converter for IoT Applications," IEEE Trans. on Power Electronics, vol. 37, no. 5, pp. 5763-5772, May 2022.
[4-11] X. Liu et al., "A Sub-nW 93% Peak Efficiency Buck Converter With Wide Dynamic Range, Fast DVFS, and Asynchronous Load-Transient Control," IEEE J. Solid-State Circuits, vol. 57, no. 7, pp. 2054-2067, July 2022.
[4-12] T. -H. Tsai, T. -W. Sun, K. -Y. Liao and C. -C. Chang, "A 180 nA Quiescent Current Digital Control Dual-Mode Buck Converter With a Pulse-Skipping Load Detector for Long-Range Applications," IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 70, no. 7, pp. 3040-3048, July 2023.
[4-13] B. Wang, Y. Xie, J. Guo and L. Cheng, "A 150nA IQ, 850mA ILOAD, <10mV Ripple Buck Converter with >90% Efficiency over 10μA to 400mA Loading Range," in Proc. IEEE Custom Integrated Circuits Conference (CICC), San Antonio, TX, USA, 2023, pp. 1-2.
[4-14] T. Shimogawa et al., "An On-Chip DC-DC Converter and Power Management System Achieving Zero Standby-to-Active Transition Time in MCU," in Proc. IEEE Asian Solid-State Circuits Conference (A-SSCC), Haikou, China, 2023, pp. 1-3.
[4-15] A. Besharati Rad, M. Kargaran, M. Meghdadi and A. Medi, "A Wide-Input-/Output-Voltage-Range Buck Converter With Adaptive Light-Load Efficiency Improvement and Seamless Mode Transition," IEEE Trans. on Power Electronics, vol. 39, no. 2.
[4-16] Y. -W. Huang and T. -H. Kuo, "Fixed-Switching-Frequency Background Capacitor-Current-Sensor Calibration for DC–DC Converters," IEEE J. of Solid-State Circuits, vol. 57, no. 5, pp. 1504-1516, May 2022.
[4-17] Choi M, Kye C H, Oh J, et al. “A synthesizable digital AOT 4-phase buck voltage regulator for digital systems with 0.0054mm2 controller and 80 ns recovery time,” in Proc. IEEE Int. Solid-State Circuits Conf., 2019, pp. 432-434
[4-18] Lee B, Song M K, Maity A, et al. “A 25-MHz four-phase SAW hysteretic control DC–DC converter with 1-cycle active phase count.” IEEE J. Solid-State Circuits, 2019, 54, 1755.
[4-19] K. Wei and D. B. Ma, "A 10-MHz DAB Hysteretic Control Switching Power Converter for 5G IoT Power Delivery," IEEE J. Solid-State Circuits, vol. 56, no. 7, pp. 2113-2122, July 2021.
[4-20] J. -H. Cho et al. “A 1.23W/mm 83.7%-efficiency 400MHz 6-phase fully integrated buck converter in 28nm CMOS with on-chip capacitor dynamic re-allocation for inter-inductor current balancing and fast DVS of 75mV/ns,” in Proc. IEEE Int. Solid-State Circuits Conf. 2022, pp.1-3.
[4-21] Schaef C, Salus T, Rayess R, et al. “A Imax, fully integrated multiphase voltage regulator with 91.5% peak efficiency at 1.8 to 1V, operating at 50MHz and featuring a digitally assisted controller with automatic phase shedding and soft switching in 4nm class FinFET CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf. 2022, pp.1-3.
[4-22] Y. -W. Huang, T. -H. Kuo, S. -Y. Huang and K. -Y. Fang, "A Four-Phase Buck Converter With Capacitor-Current-Sensor Calibration for Load-Transient-Response Optimization That Reduces Undershoot/Overshoot and Shortens Settling Time to Near Their Theoretical Limits," IEEE J. Solid-State Circuits, vol. 53, no. 2, pp. 552-568, Feb. 2018.
[4-23] Hu T X, Huang M, Lu Y, et al. “A 4A 12-to-1 flying capacitor crossconnected DC-DC converter with inserted D>0.5 control achieving >2× transient inductor current slew rate and 0.73× theoretical minimum output undershoot of DSD,” in Proc. IEEE Int. Solid-State Circuits Conf. 2022, pp.1-3.
[4-24] Yuan J Y, Liu Z G, Wu F, et al. “A 12V/24V-to-1V DSD power converter with 56mV droop and 0.9μs 1% settling time for a 3A/20ns load transient,” in Proc. IEEE Int. Solid-State Circuits Conf. 2022, pp.1-3.
[4-25] I-C. Wei, Y.-C. Lin, C.-J. Chen, D. Chen, “Stability Issues and Modelling of Ripple-Based Constant On-Time Control Schemes Operating in Discontinuous Conduction Mode,” IET Power Electronics, vol. 7, Issue 4, pp. 868-875, 2014.
[4-26] Y.-C. Lin, C.-J. Chen, D. Chen, B. Wang, “A Ripple-Based Constant On-Time Control With Virtual Inductor Current and Offset Cancellation for DC Power Converters,” IEEE Transactions on Power Electronics, Vol. 27, No.10, pp. 4301 - 4310, 2012.
[4-27] R. Nagulapalli and R. K. Palani, "A Novel 22.7 ppm/0C Voltage mode Sub-Bandgap Reference with robust startup nature," in Proc. 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Lansing, MI, USA, 2021, pp. 844-8471.
[4-28] B. Razavi and B. A. Wooley, "Design Techniques for High-Speed, High-resolution Comparators," IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1916-1926, Dec. 1992.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96431-
dc.description.abstract本論文詳細介紹了針對系統單晶片 (SoC) 應用的三種創新電源管理積體電路 (PMIC) 設計:

行動遊戲應用:
本研究提出了多相降壓轉換器中電流平衡和相位交錯的創新技術。我們開發了一款雙相降壓轉換器,採用自減式 RLG 電流感測器,實現了緊湊的設計,同時顯著提升了電流共享的準確性和感測誤差。該轉換器使用台積電 0.18 μm CMOS 製程製造,晶片總面積為 0.586 mm²,其中電流感測器部分佔 0.062 mm²。設計達到了 1 A 至 2 A 負載範圍內的電流平衡誤差小於 2.2%,相間電流共享準確性提升 71%,且在 1.2 A 至 2.6 A 的負載範圍內感測誤差小於 50 mA。
此外,透過引入使用自適應導通時間控制的相位插值器,提高了系統的動態性能和抗噪能力。每相運行頻率為 3 MHz,最大抖動為 30.25 ns,且在波紋消除點的相位誤差為 7.3 度。該原型同樣採用台積電 0.18 μm 製程,佔用 1.41 mm² 的面積(其中相位插值器部分為 0.03 mm²),達到 95.58% 的峰值效率,並在 3 A 負載步階下,電壓下跌 80 mV,回復時間為 2 μs。

AIoT 應用:
我們提出了一款具有超低靜態電流 (55 nA) 的降壓轉換器,採用 AOT V2 拓撲。該轉換器的峰值效率達到 96%,並在 6 µA 至 1.8 A 的負載電流範圍內維持超過 85% 的效率。其動態負載範圍達到 4×10⁶ (500 nA – 2.0 A),在 0.5 µA 至 1 A 的負載步階變化過程中,電壓下跌為 85 mV(理想電壓跌落的 1.99 倍),且負載瞬態回復時間為 1 µs。
zh_TW
dc.description.abstractThe thesis details three innovative power management integrated circuit (PMIC) designs for system-on-chip (SoC) applications:

Mobile Gaming Applications: This study introduces innovative techniques for current balancing and interleaving in multiphase buck converters. We developed a dual-phase buck converter incorporating a self-subtracted RLG current sensor, achieving a compact design with significant improvements in current sharing accuracy and sensing error. Fabricated in a TSMC 0.18 μm CMOS process, the converter includes a 0.586 mm² total chip area with a dedicated 0.062 mm² area for the current sensor. The design achieves a current balance error within 2.2% for loads between 1 A and 2 A, and a 71% improvement in current sharing accuracy between phases, with a sensing error within 50 mA for loads from 1.2 A to 2.6 A.
Additionally, the introduction of a phase interpolator for interleaving using adaptive on-time control enhanced the dynamic performance and noise immunity of the system. Operating at 3 MHz per phase, it exhibits a maximum jitter of 30.25 ns and a phase error of 7.3 degrees at the ripple cancellation point. The prototype, also using a TSMC 0.18 μm process, occupies a compact 1.41 mm² area (including a 0.03 mm² phase-interpolator section) and achieves a peak efficiency of 95.58%, demonstrating excellent dynamic performance during load transitions with an 80 mV voltage drop and a 2 μs settling time under a 3 A load step.

AIoT Applications: We introduce a DC-DC buck converter with an ultra-low quiescent current of 55 nA, utilizing AOT V2 topology. This converter manages an efficiency of 96% at peak and maintains above 85% across load currents from 6 µA to 1.8A. The dynamic load range extends by 4×10⁶ (500 nA – 2.0 A), with a load transient recovery time of 1 µs and an output voltage drop of 85 mV (1.99X ideal voltage drop) during a loading step change from 0.5 µA to 1 A in 200 ns.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-02-13T16:26:24Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-02-13T16:26:24Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsACKNOWLEDGMENTS II
中文摘要 IV
ABSTRACT V
LIST OF FIGURES IX
LIST OF TABLES XV
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 OBJECTIVES 2
1.3 ORGANIZATION 5
CHAPTER 2 CURRENT SENSING IN MULTIPHASE BUCK CONVERTERS FOR MOBILE GAMING CPU/GPU POWERING 8
2.1 CURRENT SENSING FOR MULTIPHASE BUCK CONVERTER 8
2.2 THE PROPOSED SELF-SUBTRACTED RLG CURRENT SENSING METHOD 10
2.3 THE TIME DOMAIN EXPRESSION OF THE SSRLGCS 12
2.4 THE SENSING ERROR ANALYSIS OF THE SSRLGCS 15
2.5 THE SSRLGCS APPLICATION FOR MULTIPHASE AND THE COMPARISON WITH OTHER CURRENT SENSING METHODS 22
2.6 THE SSRLGCS FOR CURRENT BALANCE: CIRCUIT IMPLEMENTATION 26
2.7 EXPERIMENTAL RESULTS FOR THE DUAL-PHASE BUCK CONVERTER WITH SSRLGCS BASED CURRENT SENSING AND BALANCE 32
CHAPTER 3 A PHASE INTERPOLATOR INTERLEAVING TECHNIQUE FOR MULTIPHASE ADAPTIVE ON-TIME CONTROLLED BUCK CONVERTER 41
3.1 INTRODUCTION 41
3.2 REVIEW OF INTERLEAVING METHODS IN MULTIPHASE AOT CONVERTER 42
3.3 THE ARCHITECTURE OF THE DUAL-PHASE AOT CONTROLLED BUCK CONVERTER WITH PHASE INTERPOLATOR BASED INTERLEAVING METHOD 50
3.4 THE CONCEPT AND IMPLEMENTATION OF PI METHOD 52
3.5 SMALL-SIGNAL FREQUENCY RESPONSE ANALYSIS OF PI-METHOD 57
3.6 TRANSIENT RESPONSE ACCELERATOR 63
3.7 MEASUREMENT RESULTS OF THE PROPOSED DUAL-PHASE AOT BUCK CONVERTER WITH PI-BASED INTERLEAVING METHOD 65
CHAPTER 4 FAST TRANSIENT AND WIDE LOADING RANGE LOW IQ BUCK CONVERTERS FOR AIOT 74
4.1 ISSUES AND SURVEY OF LOW IQ WITH FAST TRANSIENT RESPONSE BUCK 75
4.2 CONCEPT AND OPERATION OF THE PROPOSED AOT V2 WITH I-EA AND SAMPLED BGR 81
4.3 THE DELAY COMPENSATED RAMP 87
4.4 CIRCUIT IMPLEMENTATION OF THE PROPOSED BUCK CONVERTER 91
4.4.1 ATON GENERATOR WITH DCM FSW HOPPING AND DCM DETECTOR WITH SEAMLESS TRANSITION SWITCHING BETWEEN DCM-CCM 93
4.4.2 SAMPLED AND HOLD BANDGAP REFERENCE 98
4.4.3 ADAPTIVE BIASED COMPARATOR 100
4.4.4 NN-FINFET POWER STAGE 103
4.5 EXPERIMENTAL RESULTS OF THE ULTRA-LOW FAST TRANSIENT IQ BUCK 106
CHAPTER 5: CONCLUSION AND FUTURE WORKS 115
REFERENCE 117
VITA 131
-
dc.language.isoen-
dc.title應用於電源管理積體電路的先進控制及電路技巧zh_TW
dc.titleAdvanced Control and Circuit Technique for Power Management ICen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳耀銘;陳柏宏;謝俊禹;吳文中;劉邦榮zh_TW
dc.contributor.oralexamcommitteeYaow-Ming Chen;Po-Hung Chen;Chun-Yu Hsieh;Wen-Jong Wu;Pan-Jong Liuen
dc.subject.keyword電源管理積體電路,多相降壓轉換器,電流感測,相位交錯,自適應導通時間V2控制,低靜態電流,快速瞬態響應,zh_TW
dc.subject.keywordPower management integrated circuits (PMICs),multiphase buck converter,current sensing,phase interleaving,adaptive on-time V2 control,low Iq,fast transient,en
dc.relation.page134-
dc.identifier.doi10.6342/NTU202500328-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-02-02-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-lift2025-02-14-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved