Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96339
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中平zh_TW
dc.contributor.advisorChung-Ping Chenen
dc.contributor.author黃冠瑋zh_TW
dc.contributor.authorKuan-Wei Huangen
dc.date.accessioned2024-12-24T16:25:44Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-12-17-
dc.identifier.citation[1] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algorithm. SIAM Journal on Matrix Analysis and Applications, 17(4):886–905, 1996.
[2] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. Gropp, et al. Petsc users manual. 2019.
[3] J. Bellavita, M. Jacquelin, E. G. Ng, D. Bonachea, J. Corbino, and P. H. Hargrove. sympack: a gpu-capable fan-out sparse cholesky solver. In Proceedings of the SC’23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis, pages 1171–1184, 2023.
[4] T.-H. Chen, J.-L. Tsai, C. C. Chen, and T. Karnik. Hisim: hierarchical interconnect centric circuit simulator. In IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004., pages 489–496. IEEE, 2004.
[5] Y.Chen,T.A.Davis,W.W.Hager,andS.Rajamanickam. Algorithm887: Cholmod, supernodal sparse cholesky factorization and update/downdate. ACM Transactions on Mathematical Software(TOMS), 35(3):1–14, 2008.
[6] V. A. Chhabria, V. Ahuja, A. Prabhu, N. Patil, P. Jain, and S. S. Sapatnekar. Thermal and ir drop analysis using convolutional encoder-decoder networks. In Proceedings of the 26th Asia and South Pacific Design Automation Conference, pages 690–696, 2021.
[7] V. A. Chhabria, Y. Zhang, H. Ren, B. Keller, B. Khailany, and S. S. Sapatnekar. Mavirec: Ml-aided vectored ir-drop estimation and classification. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 1825–1828. IEEE, 2021.
[8] C.-H. Chou, N.-Y. Tsai, H. Yu, C.-R. Lee, Y. Shi, and S.-C. Chang. On the preconditioner of conjugate gradient method—a power grid simulation perspective. In 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 494–497. IEEE, 2011.
[9] L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory programming. IEEE computational science and engineering, 5(1):46–55, 1998.
[10] C.-T. Ho and A. B. Kahng. Incpird: Fast learning-based prediction of incremental ir drop. In 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2019.
[11] G. S. P. Kadagala and V. A. Chhabria. The CAD Contest at ICCAD Problem C: Static IR Drop Estimation Using Machine Learning, 2023.
[12] Z. Li, F. Liu, R. Balasubramanian, and S. Nassif. Tau 2011 power grid analysis contest. In TAU Workshop, 2011.
[13] MathWorks. amd function, 2024. Accessed: 2024-07-17.
[14] L. W. Nagel and D. Pederson. Spice (simulation program with integrated circuit emphasis). Technical Report UCB/ERL M382, EECS Department, University of California, Berkeley, Apr 1973.
[15] S. R. Nassif. Power grid analysis benchmarks. In 2008 Asia and South Pacific Design Automation Conference, pages 376–381, 2008.
[16] C.-H. Pao, A.-Y. Su, and Y.-M. Lee. Xgbir: An xgboost-based ir drop predictor for power delivery network. In 2020 Design, Automation & Test in Europe Conference &Exhibition (DATE), pages 1307–1310. IEEE, 2020.
[17] M. Roser, H. Ritchie, and E. Mathieu. What is moore’s law? Our World in Data, 2023. https://ourworldindata.org/moores-law.
[18] B. N. Sheehan. Ticer: Realizable reduction of extracted rc circuits. In 1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No. 99CH37051), pages 200–203. IEEE, 1999.
[19] E. Wang, Q.Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, Y.Wang, E.Wang, Q.Zhang, B. Shen, et al. Intel math kernel library. High-Performance Computing on the Intel® Xeon Phi™: How to Fully Exploit MIC Architectures, pages 167–188, 2014.
[20] Z. Xie, H. Ren, B. Khailany, Y. Sheng, S. Santosh, J. Hu, and Y. Chen. Powernet: Transferable dynamic ir drop estimation via maximum convolutional neural network. In 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), pages 13–18. IEEE, 2020.
[21] J. Yang and Z. Li. Thu power grid benchmarks. http://tiger.cs.tsinghua. edu.cn/PGBench/, 2024. [Online; accessed 16-July-2024].
[22] J. Yang, Z. Li, Y. Cai, and Q. Zhou. Powerrush: A linear simulator for power grid. In 2011IEEE/ACMInternationalConferenceonComputer-AidedDesign(ICCAD), pages 482–487. IEEE, 2011.
[23] Z.Zeng,T.Xu,Z.Feng,andP.Li. Faststaticanalysisofpowergrids: Algorithms and implementations. In 2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 488–493. IEEE, 2011.
[24] 张先轶,王茜,and张云泉. openblas: a high performance blas library on loongson 3a cpu. Journal of Software, 22(zk2):208–216, 2012.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96339-
dc.description.abstract在先進製程的持續發展下,由於電壓持續下降,帶寬需求又持續上升,電路實體設計的演算法較以往更為困難。因此,設計電源供應網絡(PDN)需要充分考慮線寬比、電壓降甚至是熱效應等多個方面,確保電路在穩定的工作電壓上。
本文著重於開發基於節點分析法的階層式電壓降模擬器,並結合多執行緒平行處理的矩陣解算器。在IBMPG基準上,一般方法速度相較於黃金工具 Synopsys HSPICE 達到了 10 倍的提升,並將準確性損失控制在10-6伏特。在預先切割好的自製基準中,階層式方法跟一般方法比較速度快了32%。而在預先切割好的且有部分重複子電路的自製基準中,階層式方法跟一般方法比較速度快了118%。
zh_TW
dc.description.abstractWith the continuous advancement in advanced processes, the decreasing voltage and increasing bandwidth demands make circuit physical design algorithms more challenging than before. Therefore, designing the power delivery network (PDN) requires thorough consideration of various aspects such as line width ratio, voltage drop, and even thermal effects to ensure that the circuit operates at a stable working voltage.
This paper focuses on developing a hierarchical voltage drop simulator based on the nodal analysis method combined with a multi-thread matrix solver. On the IBM benchmark, the speed achieved is 10 times faster than the golden tool Synopsys HSPICE, with at most 10−6V accuracy loss. The hierarchical method is 32% faster than the general method in the pre-cut homemade benchmarks. In the pre-cut homemade benchmarks with duplicated subcircuits, the hierarchical method is 118% faster than the general method.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:25:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:25:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter i
Acknowledgements i
摘要 iii
Abstract iv
Contents v
List of Figures viii
List of Tables ix
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Chapter 2 Background 6
2.1 SPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Sparse Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Compressed Sparse Row (CSR) Format . . . . . . . . . . . . . . . 8
2.3 Cholesky Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Aproximated Minimum Degree Ordering . . . . . . . . . . . . . . . 12
2.5 Preconditioned Conjugate Gradient . . . . . . . . . . . . . . . . . . 14
2.5.1 Conjugate Gradient Method . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.3 Preconditioner Selection . . . . . . . . . . . . . . . . . . . . . . . 16
Chapter 3 Proposed Methods 18
3.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 Preallocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Supernodal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Hierarchical Approach . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Multithread and GPU Acceleration . . . . . . . . . . . . . . . . . . 28
3.5.1 Multithread Linear Solver . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.2 Multithreading in the Hierarchical Approach . . . . . . . . . . . . . 29
Chapter 4 Experimental Results 30
4.1 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 Non-hierarchical Simulation . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Hierarchical Simulation . . . . . . . . . . . . . . . . . . . . . . . . 39
Chapter 5 Conclusion and Future Work 42
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.1 SYMPACK GPU Acceleration . . . . . . . . . . . . . . . . . . . . 43
5.2.2 Subcircuit Partitioning . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.3 Multithread Hierarchical Optimization . . . . . . . . . . . . . . . . 44
5.2.4 Combining with Machine Learning . . . . . . . . . . . . . . . . . . 44
5.2.5 Dynamic Voltage Drop . . . . . . . . . . . . . . . . . . . . . . . . 44
References 46
-
dc.language.isoen-
dc.title應用於VLSI電源傳輸網絡之階級式多執行緒靜態電壓模擬zh_TW
dc.titleHierarchical Multithread Static IR Drop Simulation for VLSI Power Delivery Networken
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭士康;洪士灝zh_TW
dc.contributor.oralexamcommitteeShyh-Kang Jeng;Shih-Hao Hungen
dc.subject.keyword電源供應網絡,多執行緒,電路分析,實體設計,電壓降,階級式模擬,zh_TW
dc.subject.keywordPower Delivery Network(PDN),Multithread,Circuit Analyze,Physical Design,IR Drop,Hierarchical Simulation,en
dc.relation.page49-
dc.identifier.doi10.6342/NTU202404717-
dc.rights.note未授權-
dc.date.accepted2024-12-17-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  目前未授權公開取用
1.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved