Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96328
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志軒zh_TW
dc.contributor.advisorChih-Hsuan Chenen
dc.contributor.author蔡維晏zh_TW
dc.contributor.authorWei-Yen Tsaien
dc.date.accessioned2024-12-24T16:22:33Z-
dc.date.available2024-12-25-
dc.date.copyright2024-12-24-
dc.date.issued2024-
dc.date.submitted2024-11-16-
dc.identifier.citation[1] 李芝媛、吳錫侃, 科儀新知第十六卷 6 (1995) 6.
[2] S. Wu, C. Wayman, Martensitic transformations and the shape memory effect in Ti50Ni10Au40 and Ti50Au50 alloys, Metallography 20(3) (1987) 359-376.
[3] C. Wayman, Shape memory alloys, MRS bulletin 18(4) (1993) 49-56.
[4] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in materials science 50(5) (2005) 511-678.
[5] J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials & Design (1980-2015) 56 (2014) 1078-1113.
[6] J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, G. Eggeler, On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys, Acta Materialia 90 (2015) 213-231.
[7] J.H. Mulder, Investigation of high temperature shape memory alloys from the Ni-Ti-Zr and Ni-Ti-Hf systems, Ph. D. Thesis, University Twente (1995).
[8] J. Li, X. Yi, K. Sun, B. Sun, W. Gao, H. Wang, X. Meng, W. Song, The effect of Zr on the transformation behaviors, microstructure and the mechanical properties of Ti-Ni-Cu shape memory alloys, Journal of Alloys and Compounds 747 (2018) 348-353.
[9] I.U. Rehman, T.-H. Nam, Effect of Mn content on microstructure and transformation behavior of TiZrHfNiCoCu multi-component high-entropy shape memory alloys, Intermetallics 164 (2024) 108081.
[10] T.H. Nam, T. Saburi, K.i. Shimizu, Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys, Materials Transactions, JIM 31(11) (1990) 959-967.
[11] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Advanced Engineering Materials 6(5) (2004) 299-303.
[12] G. Firstov, T. Kosorukova, Y.N. Koval, V. Odnosum, High entropy shape memory alloys, Materials Today: Proceedings 2 (2015) S499-S503.
[13] C.-H. Chen, Y.-J. Chen, Shape memory characteristics of (TiZrHf) 50Ni25Co10Cu15 high entropy shape memory alloy, Scripta Materialia 162 (2019) 185-189.
[14] Y.-T. Chang, M.-H. Lee, M.-W. Chu, C.-H. Chen, Phase formations and microstructures of Ti20Zr15Hf15Ni35Cu15 high-entropy shape memory alloy under different aging conditions, Materials Today Advances 14 (2022) 100223.
[15] 王喜來, 時效處理對 Ti20Zr15Hf15Ni35-xCoxCu15 (x= 0, 5, 10) 高熵形狀記憶合金之顯微結構與相變態的影響, 碩士論文, 2023.
[16] L.C. Chang, T. Read, Plastic deformation and diffusionless phase changes in metals—The gold-cadmium beta phase, Jom 3 (1951) 47-52.
[17] G.B. Kauffman, I. Mayo, The story of nitinol: the serendipitous discovery of the memory metal and its applications, The chemical educator 2 (1997) 1-21.
[18] Z. Zeng, J. Oliveira, M. Yang, D. Song, B. Peng, Functional fatigue behavior of NiTi-Cu dissimilar laser welds, Materials & Design 114 (2017) 282-287.
[19] N. Morgan, Medical shape memory alloy applications—the market and its products, Materials Science and Engineering: A 378(1-2) (2004) 16-23.
[20] T. Yoneyama, S. Miyazaki, Shape memory alloys for biomedical applications, (2008).
[21] G. Costanza, M.E. Tata, Shape memory alloys for aerospace, recent developments, and new applications: A short review, Materials 13(8) (2020) 1856.
[22] L.M. Schetky, Miscellaneous applications of intermetallic compounds, MRS Bulletin 21(5) (1996) 50-55.
[23] J. Van Humbeeck, Non-medical applications of shape memory alloys, Materials Science and Engineering: A 273 (1999) 134-148.
[24] M. Mehrpouya, H. Cheraghi Bidsorkhi, MEMS applications of NiTi based shape memory alloys: a review, Micro and Nanosystems 8(2) (2016) 79-91.
[25] K. Otsuka, C.M. Wayman, Shape memory materials, Cambridge university press1999.
[26] S.H. Mohammed, S.H. Shahatha, Shape memory alloys, properties and applications: a review, AIP Conference Proceedings, AIP Publishing, 2023.
[27] D. Batalu, H. Guoqiu, A. Aloman, G. Coşmeleaţă, L. Xiaoshan, Z. Zhihua, A review on TiNi shape memory alloys (SMA) used for medical applications. Recycling aspects, no. November (2000) 1-10.
[28] R. Wasilewski, 55-Nitinol-the Alloy with a Memory: Its Physical Metallurgy, Properties and Applications; a Report, NASA1972.
[29] J. Nei, K.-H. Young, Gaseous phase and electrochemical hydrogen storage properties of Ti50Zr1Ni44X5 (X= Ni, Cr, Mn, Fe, Co, or Cu) for nickel metal hydride battery applications, Batteries 2(3) (2016) 24.
[30] K. Otsuka, T. Sawamura, K. Shimizu, Crystal structure and internal defects of equiatomic TiNi martensite, Physica status solidi (a) 5(2) (1971) 457-470.
[31] L. Gou, Y. Liu, T.Y. Ng, Effect of Cu Content on Atomic Positions of Ti50Ni50−xCux Shape Memory Alloys Based on Density Functional Theory Calculations, Metals 5(4) (2015) 2222-2235.
[32] M. Nishida, H. Ohgi, I. Itai, A. Chiba, K. Yamauchi, Electron microscopy studies of twin morphologies in B19′ martensite in the Ti-Ni shape memory alloy, Acta metallurgicaet materialia 43(3) (1995) 1219-1227.
[33] K. Knowles, D. Smith, The crystallography of the martensitic transformation in equiatomic nickel-titanium, Acta Metallurgica 29(1) (1981) 101-110.
[34] O. Matsumoto, S. Miyazaki, K. Otsuka, H. Tamura, Crystallography of martensitic transformation in TiNi single crystals, Acta Metallurgica 35(8) (1987) 2137-2144.
[35] C. Hwang, M. Meichle, M. Salamon, C. Wayman, Transformation behaviour of a Ti50Ni47Fe3 alloy II. Subsequent premartensitic behaviour and the commensurate phase, Philosophical Magazine A 47(1) (1983) 31-62.
[36] S.-K. Wu, H. Lin, The effect of precipitation hardening on the Ms temperature in a Ti49. 2Ni50. 8 alloy, Scripta metallurgica et materialia 25(7) (1991) 1529-1532.
[37] K. Otsuka, X. Ren, Recent developments in the research of shape memory alloys, Intermetallics 7(5) (1999) 511-528.
[38] T. Duerig, A. Pelton, C. Trepanier, Nitinol-PART I Mechanism and Behaviour, SMST e-Elastic newsletter, ASM International (2011).
[39] H. Hosoda, S. Hanada, K. Inoue, T. Fukui, Y. Mishima, T. Suzuki, Martensite transformation temperatures and mechanical properties of ternary NiTi alloys with offstoichiometric compositions, Intermetallics 6(4) (1998) 291-301.
[40] Y. Kishi, Z. Yajima, K.i. Shimizu, Relation between tensile deformation behavior and microstructure in a Ti-Ni-Co shape memory alloy, Materials Transactions 43(5) (2002) 834-839.
[41] 張至善, Ti35-xZr15HfxNi35-yCoyCu15 (x= 5, 10, 15; y= 5, 10) 擬二元高熵形狀記憶合金之麻田散體相變態行為與機械性質之研究, 碩士論文, 2021.
[42] T. Saburi, T. Komatsu, S. Nenno, Y. Watanabe, Electron microscope observation of the early stages of thermoelastic martensitic transformation in a TiNiCu alloy, Journal of the Less Common Metals 118(2) (1986) 217-226.
[43] T. Tadaki, C. Wayman, Electron microscopy studies of martensitic transformations in Ti50Ni50− xCux alloys. Part I. Compositional dependence of one-third reflections from the matrix phase, Metallography 15(3) (1982) 233-245.
[44] T.H. Nam, T. Saburi, K.i. Shimizu, Effect of thermo-mechanical treatment on shape memory characteristics in a Ti-40Ni-10Cu (at%) alloy, Materials Transactions, JIM 32(9) (1991) 814-820.
[45] T.H. Nam, T. Saburi, Y. Kawamura, K.i. Shimizu, Shape Memory Characteristics Associated with the B2 - B19 and B19 - B19′ Transformations in a Ti-40Ni-10Cu (at.%) Alloy, Materials Transactions, JIM 31(4) (1990) 262-269.
[46] S.-H. Chang, P.-T. Lin, C.-W. Tsai, High-temperature martensitic transformation of CuNiHfTiZr high-entropy alloys, Scientific reports 9(1) (2019) 19598.
[47] S. Hsieh, S. Wu, A study on ternary Ti-rich TiNiZr shape memory alloys, Materials characterization 41(4) (1998) 151-162.
[48] J.-W. Yeh, Alloy design strategies and future trends in high-entropy alloys, Jom 65 (2013) 1759-1771.
[49] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345(6201) (2014) 1153-1158.
[50] M. Aizenshtein, E. Brosh, Z. Ungarish, S. Levi, M. Tubul, D. Fadel, E. Greenberg, S. Hayun, High entropy uranium-based alloys: Thermodynamics, characterization and mechanical properties, Journal of Nuclear Materials 558 (2022) 153378.
[51] B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A 375 (2004) 213-218.
[52] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid‐solution phase formation rules for multi‐component alloys, Advanced engineering materials 10(6) (2008) 534-538.
[53] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Materials Chemistry and Physics 132(2-3) (2012) 233-238.
[54] S. Guo, Phase selection rules for cast high entropy alloys: an overview, Materials Science and Technology 31(10) (2015) 1223-1230.
[55] C.Y. Cheng, Y.C. Yang, Y.Z. Zhong, Y.Y. Chen, T. Hsu, J.W. Yeh, Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys, Current Opinion in Solid State & Materials Science 21(6) (2017) 299-311.
[56] J.W. Yeh, Physical Metallurgy of High-Entropy Alloys, Jom 67(10) (2015) 2254-2261.
[57] Y.-F. Kao, T.-J. Chen, S.-K. Chen, J.-W. Yeh, Microstructure and mechanical property of as-cast,-homogenized, and-deformed AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys, Journal of Alloys and Compounds 488(1) (2009) 57-64.
[58] M.A. Tunes, H. Le, G. Greaves, C.G. Schön, H. Bei, Y. Zhang, P.D. Edmondson, S.E. Donnelly, Investigating sluggish diffusion in a concentrated solid solution alloy using ion irradiation with in situ TEM, Intermetallics 110 (2019) 106461.
[59] K.-Y. Tsai, M.-H. Tsai, J.-W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Materialia 61(13) (2013) 4887-4897.
[60] X. Wang, W. Guo, Y. Fu, High-entropy alloys: emerging materials for advanced functional applications, Journal of Materials Chemistry A 9(2) (2021) 663-701.
[61] J.-W. Yeh, Physical metallurgy of high-entropy alloys, Jom 67(10) (2015) 2254-2261.
[62] W. Dong, Z. Zhou, M. Zhang, Y. Ma, P. Yu, P.K. Liaw, G. Li, Applications of high-pressure technology for high-entropy alloys: A review, Metals 9(8) (2019) 867.
[63] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Progress in materials science 61 (2014) 1-93.
[64] P. Bhattacharjee, G. Sathiaraj, M. Zaid, J. Gatti, C. Lee, C.-W. Tsai, J.-W. Yeh, Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy, Journal of Alloys and Compounds 587 (2014) 544-552.
[65] B. Murtu, J. Yeh, S. Ranganathan, High-Entropy Alloys. 1st Editio. Butterworth-Heinemann: Elsevier, (2014).
[66] G. Firstov, T. Kosorukova, Y.N. Koval, P. Verhovlyuk, Directions for high-temperature shape memory alloys’ improvement: straight way to high-entropy materials?, Shape memory and Superelasticity 1 (2015) 400-407.
[67] J. Yaacoub, W. Abuzaid, F. Brenne, H. Sehitoglu, Superelasticity of (TiZrHf)50Ni25Co10Cu15 high entropy shape memory alloy, Scripta Materialia 186 (2020) 43-47.
[68] I.U. Rehman, S. Li, T.-H. Nam, Transformation behavior and superelasticity of TiZrHfNiCoCu multi-component high-temperature shape memory alloys, Journal of Alloys and Compounds 884 (2021) 161108.
[69] G. Firstov, Y.M. Koval, V. Filatova, V. Odnosum, G. Gerstein, H. Maier, DEVELOPMENT OF HIGH-ENTROPY SHAPE-MEMORY ALLOYS: STRUCTURE AND PROPERTIES, Uspehi Fiziki Metallov 24(4) (2023).
[70] H.-C. Lee, Y.-J. Chen, C.-H. Chen, Effect of solution treatment on the shape memory functions of (TiZrHf)50Ni25Co10Cu15 high entropy shape memory alloy, Entropy 21(10) (2019) 1027.
[71] A. Evirgen, I. Karaman, R. Santamarta, J. Pons, R. Noebe, Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy, Acta Materialia 83 (2015) 48-60.
[72] M. Prasher, D. Sen, R. Tewari, M. Krishnan, Tuning the thermal cyclic stability of martensitic transformation in Ni50.3Ti29.7Hf20 high temperature shape memory alloy, Materials Research Bulletin 133 (2021) 111056.
[73] Y.-T. Chang, M.-H. Lee, M.-W. Chu, Y.-T. Hsu, C.-H. Chen, Ti30Zr10Hf10Ni35Cu15 high-entropy shape memory alloy with tunable transformation temperature and elastocaloric performance by heat treatment, Materials Today Advances 20 (2023) 100440.
[74] D.J. Fernandes, R.V. Peres, A.M. Mendes, C.N. Elias, Understanding the shape-memory alloys used in orthodontics, International Scholarly Research Notices 2011 (2011).
[75] S. Saghaian, H. Karaca, H. Tobe, A.S. Turabi, S. Saedi, S. Saghaian, Y. Chumlyakov, R. Noebe, High strength NiTiHf shape memory alloys with tailorable properties, Acta Materialia 134 (2017) 211-220.
[76] X. Han, R. Wang, Z. Zhang, D. Yang, A new precipitate phase in a TiNiHf high temperature shape memory alloy, Acta materialia 46(1) (1998) 273-281.
[77] S. Li, D. Cong, X. Sun, Y. Zhang, Z. Chen, Z. Nie, R. Li, F. Li, Y. Ren, Y. Wang, Wide-temperature-range perfect superelasticity and giant elastocaloric effect in a high entropy alloy, Materials Research Letters 7(12) (2019) 482-489.
[78] S. Li, D. Cong, Z. Chen, S. Li, C. Song, Y. Cao, Z. Nie, Y. Wang, A high-entropy high-temperature shape memory alloy with large and complete superelastic recovery, Materials Research Letters 9(6) (2021) 263-269.
[79] K.F. Hane, T. Shield, Microstructure in the cubic to monoclinic transition in titanium–nickel shape memory alloys, Acta materialia 47(9) (1999) 2603-2617.
[80] Y. Tong, H. Gu, R.D. James, W. Qi, A.V. Shuitcev, L. Li, Novel TiNiCuNb shape memory alloys with excellent thermal cycling stability, Journal of Alloys and Compounds 782 (2019) 343-347.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96328-
dc.description.abstract本研究以 Co 取代 Ni 或 Cu 的四種成分之 Ti20Zr15Hf15(NiCuCo)50 高熵形狀記憶合金 , 分別為 Ni30Cu15Co5、 Ni25Cu15Co10 、 Ni35Cu5Co10 和 Ni35Cu10Co5 ,進行 400-700°C 的時效處理後研究合金的麻田散體相變態行為 、顯微結構、 熱循環穩定性和形狀記憶效應。所有合金在 400°C 和 500°C 下進行時效處理後會析出分布密集之H 相,此 H 相周圍會產生應力場抑制麻田散體相變態且對基地造成析出強化的效果,導致合金的相變溫度變低而熱循環穩定性則有所提升。在 SEM 中,所有合金在 400°C 和 500°C 下進行時效處理後之試片皆只有觀察到基地和 Ti2Ni 二次相,在 TEM 中進一步觀察到 H 相,並發現添加 Co 可以抑制此 H 相的析出反應以減緩相變溫度變低的幅度。另一方面,Ni30Cu15Co5 、Ni25Cu15Co10 和 Ni35Cu5Co10 合金在在 600°C 和 700°C 下進行時效處理後,因為析出富(Ni, Cu)的 Zr7Cu10 析出物使基地中的(Ti+Hf+Zr)之含量增加,導致相變溫度變高,而此 Zr7Cu10 析出物因尺寸太大無法有效地對基地造成析出強化使熱循環穩定性沒有變佳的趨勢,且此Zr7Cu10 析出物會使合金之形狀記憶效能較差,最大可恢復應變下降。在 SEM 觀察中,發現添加 Co 也可以抑制 Zr7Cu10 的析出,因此使相變溫度變高和最大可恢復應變下降的幅度皆趨緩 ,而以 Co 取代 Cu 更加顯著地抑制 Zr7Cu10 析出物的反應 ,其中 Ni35Cu5Co10 因沒有 Zr7Cu10 析出物而使相變態溫度和最大可恢復應變幾乎維持恆定。最後在 XRD 分析中,得到 Ni35Cu5Co10 和 Ni35Cu10Co5 合金的晶格常數並計算 B19’麻田散體相和 B2 沃斯田體相之間的幾何晶格相容性,發現 400°C 時效處理後的試片之晶格相容性無明顯的改變,因此合金的熱循環穩定性提升仍主要歸因於 H 相的析出強化現象。本研究結果發現以 Co 取代 Ni 或 Cu 皆會抑制TiZrHfNiCuCo 高熵形狀記憶合金在低溫和高溫時效的析出反應,進而影響合金的性能,因此可藉由調整時效處理條件和合金成分來設計應用於不同領域的高熵形狀記憶合金。zh_TW
dc.description.abstractThis study researches following four compositions of Ti20Zr15Hf15(NiCuCo)50 high-entropy shape memory alloys (HESMAs) with Co substituting for Ni or Cu, Ni30Cu15Co5, Ni25Cu15Co10, Ni35Cu5Co10, and Ni35Cu10Co5, to investigate their martensitic phase transformation behaviors, microstructures, thermal cyclic stability, and shape memory effect aged at 400-700°C. After 400°C and 500°C aging treatments, widely distributed nano-scale H-phases precipitates were observed, inhibiting the martensitic phase transformation and inducing precipitation hardening in the matrix, which lowered the phase transformation temperature and enhanced the thermal cycling stability. SEM observations exhibited only the matrix and Ti2Ni precipitates, while TEM observations further showed the presence of H-phases. Adding Co suppressed the precipitation of the H-phases, mitigating the decrease in the phase transformation temperature. On the contrary, aging at 600°C and 700°C led to the precipitation of (Ni, Cu)-rich Zr7Cu10, increasing the (Ti+Hf+Zr) ratio of the matrix, which increased the phase transformation temperature. However, these Zr7Cu10 precipitates were too large to cause precipitation hardening in the matrix; thus, the thermal cycling stability did not improve and caused deterioration of the shape memory effect with reduced maximum reversible strain. SEM observations indicated that Co addition also suppressed the Zr7Cu10 precipitation, mitigating the increase in the phase transformation temperature and the decrease in the maximum reversible strain. Co substitution for Cu showed more significant suppression of the Zr7Cu10 precipitation, with the Ni35Cu5Co10 alloy exhibiting no Zr7Cu10 precipitates and thus maintaining nearly constant phase transformation temperature and maximum reversible strain after aging. Lastly, XRD analysis determined the lattice constants of Ni35Cu5Co10 and Ni35Cu10Co5 alloys and calculated the geometric lattice compatibility between B19’ martensite and B2 austenite. No significant change in the lattice compatibility was observed after the 400°C aging treatment, suggesting that the enhancement in the thermal cyclic stability was mainly attributed to the precipitation hardening of the H-phases precipitates. It is concluded that the substitution of Co for Ni or Cu reduced the precipitation after low- and high-temperature aging, affecting the properties of the TiZrHfNiCuCo high-entropy shape memory alloys (HESMAs), which introduced a new approach for developing HESMAs for different applications by adjusting their compositions and aging treatments.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:22:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-12-24T16:22:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 .................................................................................................................. i
誌謝 ............................................................................................................................... ii
摘要 ................................................................................................................................ iii
Abstract ............................................................................................................................. iv
目次 ................................................................................................................................ vi
圖次 ................................................................................................................................. ix
表次 ................................................................................................................................. xv
Chapter 1 Introduction ................................................................................................... 1
Chapter 2 Literature Review .......................................................................................... 3
2-1 Introduction to Shape Memory Alloys .................................................................... 3
2-1-1 Shape Memory Effect ...................................................................................... 4
2-1-2 Superelasticity ................................................................................................. 7
2-2 TiNi-based Shape Memory Alloys ........................................................................ 10
2-2-1 Martensitic phase transformation types of TiNi shape memory alloys ......... 10
2-2-2 The Effect of Alloying Elements on Martensitic Transformation behavior of TiNi shape memory alloys ..13
2-3 High-Entropy Alloys ............................................................................................. 17
2-3-1 High Entropy Effect....................................................................................... 18
2-3-2 Cocktail Effect ............................................................................................... 20
2-3-3 Sluggish Diffusion Effect .............................................................................. 21
2-3-4 Lattice Distortion Effect ................................................................................ 21
2-4 High-Entropy Shape Memory Alloys .................................................................... 23
2-4-1 TiNi-Based High-Entropy Shape Memory Alloys ........................................ 24
2-4-2 Effect of Aging Treatment on TiNi-Based High-Entropy Shape Memory Alloys .. 29
Chapter 3 Materials and experimental details............................................................ 34
3-1 Sample preparation ................................................................................................ 35
3-1-1 Vacuum Arc Remelting (VAR) ..................................................................... 35
3-1-2 Solution Treatment and Aging Treatment ..................................................... 37
3-2 Differential Scanning Calorimeter (DSC) measurement ....................................... 40
3-3 Dynamic Mechanical Analyzer (DMA) measurement .......................................... 41
3-4 Scanning Electron Microscopy (SEM) observation and Energy-Dispersive X-ray Spectroscopy (EDS) analysis ...................................................................................................................... 44
3-5 Electron Probe X-Ray Microanalyzer (EPMA) analysis ....................................... 45
3-6 Transmission Electron Microscope (TEM) observation ....................................... 45
3-7 X-ray Diffractometer (XRD) analysis ................................................................... 47
Chapter 4 Results and Discussion ................................................................................ 48
4-1 Martensitic transformation temperature (DSC) ..................................................... 48
4-1-1 Phase transformation temperature of solution-treated specimens ................. 48
4-1-2 The effects of Co replacing Ni on phase transformation temperatures of aged TiZrHfNiCuCo Alloys ... 52
4-1-3 The effects of Co replacing Cu on phase transformation temperatures of aged TiZrHfNiCuCo Alloys .. 56
4-2 Thermal cyclic stability (DSC cycling) ................................................................. 60
4-2-1 The effects of Co replacing Ni on the thermal cyclic stability of aged TiZrHfNiCuCo Alloys ......... 60
4-2-2 The effects of Co replacing Cu on the thermal cyclic stability of aged TiZrHfNiCuCo Alloys ........ 67
4-3 Shape Memory Effect (DMA) ............................................................................... 74
4-3-1 The effects of Co replacing Ni on the shape memory effect of aged TiZrHfNiCuCo Alloys ............ 74
4-3-1-1 400°C aging treatment ............................................................................ 74
4-3-1-2 500°C aging treatment .......................................................................... 82
4-3-1-3 600°C aging treatment ...................................................................... 87
4-3-1-4 700°C aging treatment ...................................................................... 92
4-3-2 The effects of Co replacing Cu on the shape memory effect of aged TiZrHfNiCuCo Alloys ..... 102
4-3-2-1 400°C aging treatment ...................................................................... 102
4-3-2-2 500°C aging treatment ...................................................................... 109
4-3-2-3 600°C aging treatment ........................................................................ 114
4-3-2-4 700°C aging treatment ........................................................................ 119
4-4 Microstructures (SEM and TEM observations) .................................................. 129
4-4-1 The effects of Co replacing Ni on the microstructures of aged TiZrHfNiCuCo Alloys (SEM observations) ............................................................................................................................. 129
4-4-1-1 Low temperatures aging treatments (400°C and 500°C) ..................... 129
4-4-1-2 High temperatures aging treatments (600°C and 700°C) ..................... 136
4-4-2 The effects of Co replacing Ni on the microstructures of aged TiZrHfNiCuCo Alloys (TEM observations) ................................................................................................................................ 149
4-4-2-1 Ni30Cu15Co5 specimen aged at 500 oC for 168 hours ........................... 149
4-4-2-2 Ni25Cu15Co10 specimen aged at 600 oC for 24 hours ........................... 151
4-4-3 The effects of Co replacing Cu on the microstructures of aged TiZrHfNiCuCo Alloys (SEM observations) ................................................................................................................................... 154
4-4-3-1 Low temperatures aging treatments (400°C and 500°C) ..................... 154
4-4-3-2 High temperatures aging treatments (600°C and 700°C) ............... 161
4-4-4 The effects of Co replacing Cu on the microstructures of aged TiZrHfNiCuCo Alloys (TEM observations) ............................................................................................................................ 171
4-4-4-1 Ni35Cu10Co5 specimen aged at 500 oC for 168 hours ........................... 171
4-4-4-2 Ni35Cu5Co10 specimen aged at 700 oC for 168 hours ........................... 173
4-5 Crystal structures (XRD) ..................................................................................... 175
4-6 The effects of Co atoms on aged TiZrHfNiCuCo alloys ..................................... 179
Chapter 5 Conclusions ................................................................................................ 182
References..................................................................................................................... 184
-
dc.language.isoen-
dc.subject熱循環穩定性zh_TW
dc.subject形狀記憶效應zh_TW
dc.subject麻田散體相變態zh_TW
dc.subject時效處理zh_TW
dc.subject形狀記憶合金zh_TW
dc.subjectshape memory effecten
dc.subjecthigh-entropy shape memory alloysen
dc.subjectaging treatmenten
dc.subjectmartensitic phase transformationen
dc.subjectthermal cyclic stabilityen
dc.titleCo含量對時效處理後的Ti20Zr15Hf15(NiCoCu)50高熵形狀記憶合金之顯微結構和功能性能的影響zh_TW
dc.titleEffects of Co content on the Microstructure and Functional Properties of aged Ti20Zr15Hf15(NiCoCu)50 High Entropy Shape Memory Alloysen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳建彰;林新智zh_TW
dc.contributor.oralexamcommitteeJian-Zhang Chen;Hsin-Chih Linen
dc.subject.keyword形狀記憶合金,時效處理,麻田散體相變態,熱循環穩定性,形狀記憶效應,zh_TW
dc.subject.keywordhigh-entropy shape memory alloys,aging treatment,martensitic phase transformation,thermal cyclic stability,shape memory effect,en
dc.relation.page191-
dc.identifier.doi10.6342/NTU202402905-
dc.rights.note未授權-
dc.date.accepted2024-11-16-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  未授權公開取用
21.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved