請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96322
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊志忠 | zh_TW |
dc.contributor.advisor | Chih-Chung Yang | en |
dc.contributor.author | 呂毓豪 | zh_TW |
dc.contributor.author | Yu-Hao Lu | en |
dc.date.accessioned | 2024-12-24T16:20:52Z | - |
dc.date.available | 2024-12-25 | - |
dc.date.copyright | 2024-12-24 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-12-03 | - |
dc.identifier.citation | 1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681-681 (1946).
2. D. Chen, H. Xiao, and J. Han, “Nanopores in GaN by electrochemical anodization in hydrofluoric acid formation and mechanism,” J. Appl. Phys. 112(6), 064303 (2012). 3. P. H. Griffin and R. A. Oliver, “Porous nitride semiconductors reviewed,” J. Phys. D: Appl. Phys, 53(38), 383002 (2020). 4. M. J. Schwab, D. Chen, J. Han, and L. D. Pfefferle, “Aligned mesopore arrays in GaN by anodic etching and photoelectrochemical surface etching,” J. Phys. Chem. C, 117(33), 16890-16895 (2013). 5. M. J. Schwab, J. Han, and L. D. Pfefferle, “Neutral anodic etching of GaN for vertical or crystallographic alignment,” Appl. Phys. Lett. 106(24), 241603 (2015). 6. W. J. Tseng, D. H. van Dorp, R. R. Lieten, P. M. Vereecken, and G. Borghs, “Anodic etching of n-GaN epilayer into porous GaN and its photoelectrochemical properties,” J. Phys. Chem. C 118(51), 29492-29498 (2014). 7. C. H. Chen, S. Y. Kuo, H. Y. Feng, Z. H. Li, S. Yang, S. H. Wu, H. Y. Hsieh, Y. S. Lin, Y. C. Lee, W. C. Chen, P. H. Wu, J. C. Chen, Y. Y. Huang, Y. J. Lu, Y. Kuo, C. F. Lin, and C. C. Yang, “Photon color conversion enhancement of colloidal quantum dots inserted into a subsurface laterally-extended GaN nano-porous structure in an InGaN/GaN quantum-well template,” Opt. Express 31(4), 6327-6341 (2023). 8. S. Yang, H. Y. Feng, Y. S. Lin, W. C. Chen, Y. Kuo, and C. C. Yang, “Effects of surface plasmon coupling on the color conversion from an InGaN/GaN quantum-well structure into colloidal quantum dots inserted into a nearby porous structure,” Nanomaterials 13(2), 328 (2023). 9. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602-606 (2010). 10. C. Krishman, M. Brossard, K.-Y. Lee, J.-K. Huang, C.-H. Lin, H.-C. Kuo, M. D. B. Charlton, and P. G. Lagoudakis, “Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield,” Optica 3(5), 503-509 (2016 ). 11. Z. Zhuang, X. Guo, B. Liu, F. Hu, Y. Li, T. Tao, J. Dai, T. Zhi, Z. Xie, P. Chen, D. Chen, H. Ge, X. Wang, M. Xiao, Y. Shi, Y. Zheng, and R. Zhang, “High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes,” Adv. Funct. Mater. 26(1), 36-43 (2016). 12. M. Athanasiou, P. Papagiorgis, A. Manoli, C. Bernasconi, N. Poyiatzis, P.-M. Coulon, P. Shields, M. I. Bodnarchuk, M. V. Kovalenko, T. Wang, and G. Itskos, “InGaN nanohole arrays coated by lead halide perovskite nanocrystals for solid-state lighting,” ACS Appl. Nano Mater. 3(3), 2167-2175 (2020). 13. R. Wan, G. Li, X. Gao, Z. Liu, J. Li, X. Yi, N. Chi, and L. Wang, “Nanohole array structured GaN-based white LEDs with improved modulation bandwidth via plasmon resonance and non-radiative energy transfer,” Photon. Res. 9(7), 1213-1217 (2021). 14. Z. Du , D. Li, W. Guo, F. Xiong, P. Tang, X. Zhou, Y. Zhang, T. Guo, Q. Yan, and J. Sun, “Quantum dot color conversion efficiency enhancement in micro-light-emitting diodes by non-radiative energy transfer,” IEEE Electron Dev. Lett. 42(8), 1184-1187 (2021). 15. Y. Y. Huang, Z. H. Li, Y. C. Lai, J. C. Chen, S. H. Wu, S. Yang, Y. Kuo, C. C. Yang, T. C. Hsu, and C. L. Lee, “Nanoscale-cavity enhancement of color conversion with colloidal quantum dots embedded in the surface nano-holes of a blue-emitting light-emitting diode,” Opt. Express 30(17), 31322-31335 (2022). 16. T. Förster, “Energy transport and fluorescence,” Naturwissenschaften 33, 166-175 (1946). 17. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22(5), 602-606 (2010). 18. H. V. Demira, S. Nizamoglub, T. Erdemb, E. Mutluguna, N. Gaponikc, and A. Eychmuller, “Quantum dot integrated LEDs using photonic and excitonic color conversion,” Nano Today 6(6), 632-647 (2011). 19. F. Zhang, J. Liu, G. You, C. Zhang, S. E. Mohney, M. J. Park, J. S. Kwak, Y. Wang, D. D. Koleske, and J. Xu, “Nonradiative energy transfer between colloidal quantum dot-phosphors and nanopillar nitride LEDs,” Opt. Express 20(S2), A333-A339 (2012). 20. C. C. Ni, S. Y. Kuo, Z. H. Li, S. H. Wu, R. N. Wu, C. Y. Chen, and C. C. Yang, “Förster resonance energy transfer in surface plasmon coupled color conversion processes of colloidal quantum dots,” Opt. Express 29(3), 4067-4081 (2021). 21. Y. P. Chen, C. C. Ni, R. N. Wu, S. Y. Kuo, Y. C. Su, Y. Y. Huang, J. W. Chen, Y. C. Hsu, S. H. Wu, C. Y. Chen, P. H. Wu, Y. W. Kiang, and C. C. Yang, “Combined effects of surface plasmon coupling and Förster resonance energy transfer on the light color conversion behaviors of colloidal quantum dots on an InGaN/GaN quantum-well nanodisk structure,” Nanotechnology 32(13), 135206 (2021). 22. S. Yang, Y. C. Lai, H. Y. Feng, Y. C. Lee, Z. H. Li, S. H. Wu, Y. S. Lin, H. Y. Hsieh, C. J. Chu, W. C. Chen, Y. Kuo, and C. C. Yang, “Enhanced color conversion of quantum dots located in the hot spot of surface plasmon coupling,” IEEE Photon. Technol. Lett. 35(5), 273-276 (2023). 23. Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19(14), A914-A929 (2011). 24. Y. Kuo, W. Y. Chang, C. H. Lin, C. C. Yang, and Y. W. Kiang, “Evaluating the blue-shift behaviors of the surface plasmon coupling of an embedded light emitter with a surface Ag nanoparticle by adding a dielectric interlayer or coating,” Opt. Express 23(24), 30709-30720 (2015). 25. C. J. Cai, Y. T. Wang, C. C. Ni, R. N. Wu, C. Y. Chen, Y. W. Kiang, and C. C. Yang, “Emission behaviors of colloidal quantum dots linked onto synthesized metal nanoparticles,” Nanotechnology 31(9), 095201 (2020) 26. Y. T. Wang, C. W. Liu, P. Y. Chen, R. N. Wu, C. C. Ni, C. J. Cai, Y. W. Kiang, and C. C. Yang, “Color conversion efficiency enhancement of colloidal quantum dot through its linkage with synthesized metal nanoparticle on a blue light-emitting diode,” Opt. Lett. 44(23), 5691-5694 (2019). 27. W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Simulation study on light color conversion enhancement through surface plasmon coupling,” Opt. Express 27(12), A629-A642 (2019). 28. C. H. Lin, H. C. Chiang, Y. T. Wang, Y. F. Yao, C. C. Chen, W. F. Tse, R. N. Wu, W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Efficiency enhancement of light color conversion through surface plasmon coupling,” Opt. Express 26(18), 23629-23640 (2018). 29. C. Y. Chen, C. C. Ni, R. N. Wu, S. Y. Kuo, C. H. Li, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling effects on the Förster resonance energy transfer from quantum dot into rhodamine 6G,” Nanotechnology 32(29), 295202 (2021). 30. Y. C. Lai, S. Yang, H. Y. Feng, Y. C. Lee, Z. H. Li, S. H. Wu, Y. S. Lin, H. Y. Hsieh, C. J. Chu, W. C. Chen, Y. Y. Huang, Y. Kuo, and C. C. Yang, “Surface plasmon coupling effects on the photon color conversion behaviors of colloidal quantum dots in a GaN nanoscale hole with a nearby quantum-well structure,” Opt. Express 31(10), 16010-16024 (2023). 31. P. Ghenuche, M. Mivelle, J. de Torres, S. B. Moparthi, H. Rigneault, N. F. V. Hulst, M. F. G. Parajó, and J. Wenger, “Matching nanoantenna field confinement to FRET distances enhances Förster energy transfer rates,” Nano Lett. 15(9), 6193-6201 (2015). 32. H. Y. Tseng, W. F. Chen, C. K. Chu, W. Y. Chang, Y. Kuo, Y. W. Kiang, and C. C. Yang, “On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application,” Nanotechnology 24(6), 065102 (2013). 33. C. A. J. Lin, R. A. Sperling, J. K. Li, T. A. Yang, P. Y. Li, M. Zanella, W. H. Chang, and W. J. Parak, “Design of an amphiphilic polymer for nanoparticle coating and functionalization,” Small 4(3), 334-341 (2008). 34. S. Yang, Y. C. Lee, Y. S. Lin, L. P. Liang, Y. Kuo, and C. C. Yang, “Emission and Förster resonance energy transfer behaviors of colloidal quantum dots in a metal nanohole,” to appear in Plasmonics. 10.1007/s11468-024-02404-3 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96322 | - |
dc.description.abstract | 本研究是透過在氮化銦鎵/氮化鎵量子井結構上製作銀奈米管,並將膠體量子點的光阻溶液塞入其中,來提升量子井結構向量子點的福斯特共振能量轉移效率。研究顯示這種金屬奈米管設計相較於將量子點置於沒有金屬的氮化鎵奈米洞內,前者的能量轉移效率顯著提升。這樣的結果是因為具金屬側壁的奈米洞中產生了更強的奈米腔體效應,並且表面電漿子耦合也產生關鍵作用。銀奈米管的製作過程包括在量子井模板上製作表面奈米洞,接著沉積指定厚度的銀,然後通過氬離子反應離子蝕刻進行二次濺鍍,最後塞入量子點的光阻溶液。我們比較不同銀沉積厚度及相應不同二次濺鍍時間的樣品,發現銀沉積厚度為30奈米時,可達到最高的福斯特共振能量轉移效率。 | zh_TW |
dc.description.abstract | By fabricating an Ag nanotube above an InGaN/GaN quantum-well (QW) structure and inserting a photoresist solution of colloidal quantum dot (QD) inside, the efficiency of the Förster resonance energy transfer (FRET) from the QW structure into the QD can be enhanced, when compared with that with QD in a GaN nanohole, i.e., no metal deposition. Such a result is caused by the stronger nanoscale-cavity effect in a nanohole of a metallic sidewall and the surface plasmon coupling with the sidewall metal. The Ag nanotube is implemented through the steps of the surface nanohole fabrication on a QW template, the Ag deposition of a designated thickness, the secondary sputtering via reactive ion etching with Ar ions, and the insertion of the photoresist solution of QD. By comparing the samples of different Ag deposition thicknesses and correspondingly different secondary sputtering durations, it is found that the Ag thickness of 30 nm leads to the highest FRET efficiency. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-12-24T16:20:52Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-12-24T16:20:52Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
中文摘要 ii Abstract iii 目次 iv 圖次 v 表次 ix 第一章 介紹 1 1.1 奈米腔體效應 1 1.2 奈米腔體效應的理論與數值研究 2 1.3 量子點發光、福斯特共振能量轉移與表面電漿子耦合在表面奈米洞陣列中的行為 4 1.4 研究動機 6 1.5 論文架構 7 第二章 樣品結構、製造流程及測量方法 15 2.1 長晶結構與表面奈米洞製作 15 2.2 金屬奈米洞與金屬奈米管的製作 16 2.3 量子點溶液的製備 16 第三章 測量結果 25 3.1 電子顯微鏡研究結果 25 3.2 光學特性分析結果 27 第四章 討論 62 4.1 銀奈米洞結構中的福斯特共振能量轉移 62 4.2 表面電漿子耦合效應 62 第五章 結論 67 參考文獻: 68 | - |
dc.language.iso | zh_TW | - |
dc.title | 從一個氮化銦鎵/氮化鎵量子井結構到塞入銀奈米管內膠體量子點的福斯特共振能量轉換行為 | zh_TW |
dc.title | Behaviors of the Förster Resonance Energy Transfer from an InGaN/GaN Quantum-well Structure into Inserted Colloidal Quantum Dots in an Ag Nanotube | en |
dc.type | Thesis | - |
dc.date.schoolyear | 113-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃建璋;林建中;廖哲浩 | zh_TW |
dc.contributor.oralexamcommittee | Jian-Jang Huang;Chien-Chung Lin;Che-Hao Liao | en |
dc.subject.keyword | 銀奈米管,氮化銦鎵/氮化鎵量子井,膠體量子點,福斯特共振能量轉移,奈米腔體效應,表面電漿子耦合,二次濺鍍, | zh_TW |
dc.subject.keyword | Ag nanotube,InGaN/GaN quantum well,colloidal quantum dot,Förster resonance energy transfer,nanoscale-cavity effect,surface plasmon coupling,secondary sputtering, | en |
dc.relation.page | 71 | - |
dc.identifier.doi | 10.6342/NTU202404663 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-12-03 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 光電工程學研究所 | - |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-113-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。