Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96214
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高振宏zh_TW
dc.contributor.advisorC Robert Kaoen
dc.contributor.author張至佳zh_TW
dc.contributor.authorChih-Chia Changen
dc.date.accessioned2024-11-28T16:13:35Z-
dc.date.available2024-11-29-
dc.date.copyright2024-11-28-
dc.date.issued2024-
dc.date.submitted2024-10-07-
dc.identifier.citation1. Zhang, H., et al. A Novel Lead-Free Low-Temperature Solder with Excellent Drop-Shock Re-sistance. in 2021 16th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). 2021. IEEE.
2. Stoyanov, S., A. Dabek, and C. Bailey. Thermo-mechanical sub-modelling of BGA components in PCB reflow. in Proceedings of the 36th International Spring Seminar on Electronics Technology. 2013. IEEE.
3. Lee, C.C., P.J. Wang, and J.S. Kim. Are intermetallics in solder joints really brittle? in 2007 Proceedings 57th Electronic Components and Technology Conference. 2007. IEEE.
4. Li, X., et al., Effect of isothermal aging and thermal cycling on interfacial IMC growth and fracture behavior of SnAgCu/Cu joints. Journal of electronic materials, 2011. 40: p. 51-61.
5. Zhong, W., et al. Mechanical properties of intermetallic compounds in solder joints. in 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging. 2010. IEEE.
6. Karnowsky, M.M. and F.G. Yost, The Au-In-Pb system:The AuIn2-In-Pb portion. Metallurgical Transactions A, 1976. 7(8): p. 1149-1156.
7. Collier, T.Q., Choosing the Best Bump for the Buck, in Advanced Packaging. 2008, PennWell.
8. Zhou, J., et al., Mechanical Properties and Microstructure of Binary In-Sn Alloys for Flexible Low Temperature Electronic Joints. Materials, 2022. 15(23): p. 8321.
9. McClure, P. and Y. Wang, Indium thermal interface material microstructure as a function of thermal history and bonding metallization. Journal of Materials Science: Materials in Electronics, 2022. 33(29): p. 22810-22820.
10. Wołcyrz, M., R. Kubiak, and S. Maciejewski, X‐ray investigation of thermal expansion and atomic thermal vibrations of tin, indium, and their alloys. physica status solidi (b), 1981. 107(1): p. 245-253.
11. Rhines, F.N., W.M. Urquhart, and H.R. Hoge, Constitution of the System Indium-Tin. Transactions of the AIME, 1947. 39: p. 694-711.
12. Wojtaszek, Z. and H. Kuzyk, Phase diagram of the In-Sn system in the range 0-60 atomic percent of tin. Zeszyty Naukowe Uniwersytetu Jagiellońskiego Prace Chemiczne, 1976. 21: p. 27-32.
13. Heumann, T. and O. Alpaut, Das Zustandsdiagramm Indium-Zinn. Journal of the Less Common Metals, 1964. 6(2): p. 108-117.
14. Hellner, E. and F. Laves, Kristallchemie des In und Ga in Legierungen mit einigen Übergangselementen (Ni, Pd, Pt, Cu, Ag und Au). Zeitschrift für Naturforschung A, 1947. 2(3): p. 177-184.
15. 入戸野修, 岩崎仁志, and 小山泰正, In-Sn 合金の相変化と形状記憶効果. 日本金属学会誌, 1980. 44(8): p. 899-907.
16. Evans, D.S. and A. Prince, The In–Sn Phase Diagram. MRS Proceedings, 1982. 19: p. 389.
17. Valentiner, S., Das System Indium—Zınn. International Journal of Materials Research, 1940. 32(2): p. 31-35.
18. Fink, C.G., et al., The Binary Alloys of Indium and Tin. Transactions of The Electrochemical Society, 1945. 88(1): p. 229.
19. Kaplun, A.B., Phase Transformations Near the Liquidus Temperature in the Indium–Tin System. Teplofiz, Svoistva Rastvorov, 1983: p. 65–69.
20. Subramanian, P. and D. Laughlin, The Cu− In (copper-indium) system. Bulletin of Alloy Phase Diagrams, 1989. 10(5): p. 554-568.
21. Bolcavage, A., et al., Phase equilibria of the Cu-In system I: Experimental investigation. Journal of phase equilibria, 1993. 14: p. 14-21.
22. Bahari, Z., et al., The equilibrium phase diagram of the copper–indium system: a new investigation. Thermochimica Acta, 2003. 401(2): p. 131-138.
23. Madito, M., H. Swart, and J. Terblans. AES and XRD study of In/Cu thin films deposited onto SiO2 by electron beam evaporation. in Proceedings of the 56th Annual Conference of the South African Institute of Physics (SAIP), Pretoria, South Africa. 2011.
24. Keppner, W., et al., Compound formation at Cu-In thin-film interfaces detected by perturbed γ− γ angular correlations. Physical review letters, 1985. 54(21): p. 2371.
25. Parretta, A. and A. Rubino, Kinetics of intermetallics transformation in sputtered Cu In alloys studied by electrical resistance measurements. Solid state communications, 1995. 96(10): p. 767-770.
26. Gossla, M., H. Metzner, and H.-E. Mahnke, Coevaporated Cu–In films as precursors for solar cells. Journal of applied physics, 1999. 86(7): p. 3624-3632.
27. Wronkowska, A., et al., Structural analysis of In/Ag, In/Cu and In/Pd thin films on tungsten by ellipsometric, XRD and AES methods. Applied surface science, 2008. 254(14): p. 4401-4407.
28. Bickel, S., et al. Low Temperature Solid State Bonding of Cu-In Fine-Pitch Interconnects. in 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC). 2020. IEEE.
29. Panchenko, I., et al., Characterization of low temperature Cu/In bonding for fine-pitch interconnects in three-dimensional integration. Japanese Journal of Applied Physics, 2017. 57(2S1): p. 02BC05.
30. Lin, Y., et al., Phase stabilities and interfacial reactions of the Cu–In binary systems. Journal of Materials Science: Materials in Electronics, 2020. 31: p. 10161-10169.
31. Liu, H., et al., Thermodynamic assessment of the Cu-In binary system. Journal of Phase Equilibria, 2002. 23: p. 409-415.
32. Subramanian, K., et al., Phase diagrams of Pb-free solders and their related materials systems. Lead-Free Electronic Solders: A Special Issue of the Journal of Materials Science: Materials in Electronics, 2007: p. 19-37.
33. Chung, C., et al., Phase formation and control of morphology in sputtered Cu–In alloy layers. Solid state communications, 2003. 126(4): p. 185-190.
34. Chang, F.-L., et al., Experimental and thermodynamic assessment of the Cu–In system. Calphad, 2024. 85: p. 102700.
35. Chang, F., Y. Lin, and C. Kao. Investigation of the Stability of CuIn 2 in Cu-In Phase Diagram. in 2023 International Conference on Electronics Packaging (ICEP). 2023. IEEE.
36. Elding-Pontén, M., L. Stenberg, and S. Lidin, The η-phase field of the Cu-In system. Journal of alloys and compounds, 1997. 261(1-2): p. 162-171.
37. Lidin, S. and S. Piao, Cu5In3‐Cu3In2 Revisited. European Journal of Inorganic Chemistry, 2018. 2018(31): p. 3548-3553.
38. Rajasekharan, T.P. and K. Schubert, Kristallstruktur von Cu11In9. International Journal of Materials Research, 1981. 72(4): p. 275-278.
39. Okamoto, H., Cu-In (copper-indium). Journal of Phase Equilibria and Diffusion, 2005. 26(6): p. 645-645.
40. Koster, W., T. Godecke, and D. Heine, Cu-In-Sn System in the Range 100 to 50 At. Percent Cu. Z. Metallkunde, 1972. 63(12): p. 802-807.
41. Liu, X., et al., Experimental determination and thermodynamic calculation of the phase equilibria in the Cu-In-Sn system. Journal of Electronic Materials, 2001. 30: p. 1093-1103.
42. Lin, S.-k., et al., 250° C isothermal section of ternary Sn-In-Cu phase equilibria. Journal of Materials Research, 2009. 24(8): p. 2628-2637.
43. Riani, P., et al., Phase equilibria in the In–Sn-rich part of the Cu–In–Sn ternary system. Journal of Alloys and Compounds, 2009. 487(1-2): p. 90-97.
44. Tumminello, S., et al., Multiphase Characterization of Cu-In-Sn Alloys with 17 at.% Cu and Comparison with Calculated Phase Equilibria. Journal of Phase Equilibria and Diffusion, 2017. 38: p. 276-287.
45. Kim, D.-G. and S.-B. Jung, Interfacial reactions and growth kinetics for intermetallic compound layer between In–48Sn solder and bare Cu substrate. Journal of alloys and compounds, 2005. 386(1-2): p. 151-156.
46. Tian, F.-f. and Z.-q. Liu. The interfacial microstructure and Kirkendall voids in In-48Sn/Cu solder joint. in 2013 14th International Conference on Electronic Packaging Technology. 2013. IEEE.
47. Tian, F., et al., Phase identification on the intermetallic compound formed between eutectic SnIn solder and single crystalline Cu substrate. Journal of alloys and compounds, 2014. 591: p. 351-355.
48. Tian, F., P.-J. Shang, and Z.-Q. Liu, Precise Cr-marker investigation on the reactive interface in the eutectic SnIn solder joint. Materials Letters, 2014. 121: p. 185-187.
49. Li, Y., et al., Phase segregation, interfacial intermetallic growth and electromigration-induced failure in Cu/In–48Sn/Cu solder interconnects under current stressing. Journal of Alloys and Compounds, 2016. 673: p. 372-382.
50. Tian, F., et al., The interfacial reaction between In-48Sn solder and polycrystalline Cu substrate during solid state aging. Journal of Alloys and Compounds, 2018. 740: p. 500-509.
51. Freer, J.L. and J.W. Morris, Microstructure and creep of eutectic indium/tin on copper and nickel substrates. Journal of electronic materials, 1992. 21: p. 647-652.
52. Goldstein, J.L.F. and J.W. Morris, The effect of substrate on the microstructure and creep of eutectic In-Sn. Metallurgical and Materials Transactions A, 1994. 25(12): p. 2715-2722.
53. Morris, J.W., J.L.F. Goldstein, and Z. Mei, Microstructure and mechanical properties of Sn-In and Sn-Bi solders. JOM, 1993. 45: p. 25-27.
54. Susan, D.F., et al., The Solidification Behavior and Microstructure of In-Sn-Cu Solder Alloys with Low Cu. 2008, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
55. Daghfal, J.P. and J. Shang, Current-induced phase partitioning in eutectic indium-tin Pb-free solder interconnect. Journal of electronic materials, 2007. 36: p. 1372-1377.
56. Susan, D., et al., Very long-term aging of 52In–48Sn (at.%) solder joints on Cu-plated stainless steel substrates. Journal of materials science, 2009. 44: p. 545-555.
57. Le Han, D., et al., Effect of Cu addition on the microstructure and mechanical properties of In–Sn-based low-temperature alloy. Materials Science and Engineering: A, 2021. 804: p. 140785.
58. Han, D.L., et al., Microstructure evolution and shear strength of tin-indium-xCu/Cu joints. Metals, 2021. 12(1): p. 33.
59. Luo, X., et al., CALPHAD-guided alloy design of Sn–In based solder joints with multiphase structure and their mechanical properties. Materials Science and Engineering: A, 2022. 860: p. 144284.
60. Weibke, F. and H. Eggers, Das Zustandsdiagramm des Systems Silber–Indium. Zeitschrift für anorganische und allgemeine Chemie, 1935. 222(2): p. 145-160.
61. Campbell, A., R. Wagemann, and R. Ferguson, The silver–indium system: thermal analysis, photomicrography, electron microprobe, and X-ray powder diffraction results. Canadian Journal of Chemistry, 1970. 48(11): p. 1703-1715.
62. Moser, Z., et al., Studies of the Ag-In phase diagram and surface tension measurements. Journal of electronic Materials, 2001. 30: p. 1120-1128.
63. Bahari, Z., et al., Study of the Ag–In–Te ternary system: II. Description of the quadrilateral Ag–Ag2Te–In2Te3–In. Journal of alloys and compounds, 1999. 289(1-2): p. 99-115.
64. Bahari, Z., et al., Experimental study of the ternary Ag–Cu–In phase diagram. Journal of alloys and compounds, 2009. 477(1-2): p. 152-165.
65. Bahari, Z. and J. Dugué, Thermodynamic studies of the binary systems Ag-In and Cu-In. The European Physical Journal Special Topics, 2017. 226: p. 1137-1142.
66. Okamoto, H. and T. Massalski, Binary alloy phase diagrams requiring further studies. Journal of phase equilibria, 1994. 15: p. 500-521.
67. Okamoto, H., Ag-In (silver-indium). Journal of Phase Equilibria and Diffusion, 2006. 27(5): p. 535.
68. Morris, D. and I. Williams, The β-Ag3In phase. Acta Crystallographica, 1961. 14(1): p. 74-74.
69. Uemura, O. and T. Satow, Order-disorder transition of Ag3In. Transactions of the Japan Institute of Metals, 1973. 14(3): p. 199-201.
70. Hellner, E., Das Zweistoffsystem Silber-Indium. Zeitschrift für Metallkunde, 1951. 42(1): p. 17-19.
71. Brandon, J., et al., γ-Brasses with I and P cells. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1977. 33(2): p. 527-537.
72. Baren, M.R., Ag-In (Silver-Indium), in Indium alloys and their engineering applications, C.E.T. White and H. Okamoto, Editors. 1992, ASM International.
73. Riad, S.M. and M.E. Strauman, Solubility Limit of Indium in Silver and Thermal-Expansion Coefficients of Solid Solutions. Transactions of the Metallurgical Society of AIME, 1965. 233(5): p. 964-967.
74. Owen, E. and E.W. Roberts, XXIX. Factors affecting the limit of solubility of elements in copper and silver. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1939. 27(182): p. 294-327.
75. Hume-Rothery, W., G. Mabbott, W, and K. Channel Evans, The freezing points, melting points, and solid solubility limits of the alloys of sliver and copper with the elements of the b sub-groups. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1934. 233(721-730): p. 1-97.
76. King, H. and T. Massalski, Lattice spacing relationships and the electronic structure of HCP ζ phases based on silver. Philosophical Magazine, 1961. 6(65): p. 669-682.
77. Giacovazzo, C., Fundamentals of crystallography. 2002: Oxford university press, USA.
78. Pecharsky, V.K. and P.Y. Zavalij, Fundamentals of diffraction. 2003: Springer.
79. INTERPRETATION OF DIFFRACTED INTENSITIES, in International Tables for Crystallography Vol. C, E. Prince, Editor. 2004.
80. Cullity, B.D., Elements of X-ray Diffraction. 1956: Addison-Wesley Publishing.
81. Ida, T., Efficiency in the calculation of absorption corrections for cylinders. Journal of Applied Crystallography, 2010. 43(5): p. 1124-1125.
82. Larson, A.C. and R.B.V. Dreele, General Structure Analysis System. 2000, Los Alamos National Laboratory. p. 138-140.
83. Kao, C.R., Diffusion and reactions between copper and lead-indium alloys: A theoretical and experimental study, Dissertation, The University of Wisconsin - Madison, 1994
84. Mostafa, A. and M. Medraj, On the atomic interdiffusion in Mg–{Ce, Nd, Zn} and Zn–{Ce, Nd} binary systems. Journal of Materials Research, 2014. 29(13): p. 1463-1479.
85. Borivent, D., J. Paret, and B. Billia, Reactive interdiffusion in the binary system Ni-Si: Morphology of the Ni3Si2 phase. Journal of Phase Equilibria and Diffusion, 2006. 27(6): p. 561-565.
86. Mehta, A., et al., Interdiffusion and Reaction Between Al and Zr in the Temperature Range of 425 to 475 °C. Journal of Phase Equilibria and Diffusion, 2019. 40(4): p. 482-494.
87. van Loo, F.J.J., Multiphase diffusion in binary and ternary solid-state systems. Progress in Solid State Chemistry, 1990. 20(1): p. 47-99.
88. Ke, J.H., et al., Pattern formation during interfacial reaction in-between liquid Sn and Cu substrates – A simulation study. Acta Materialia, 2016. 113: p. 245-258.
89. Jellison, J.E., Gold-Indium Intermetallic Compounds: Properties and Growth Rates. 1979, NASA.
90. Zhang, W. and W. Ruythooren, Study of the Au/In Reaction for Transient Liquid-Phase Bonding and 3D Chip Stacking. Journal of Electronic Materials, 2008. 37(8): p. 1095-1101.
91. G. W. Powell and J.D. Braun, Diffusion in the Gold-Indium System. Transactions of the metallurgical society of AIME, 1964. 230: p. 694.
92. Okamoto, H., Au-In (gold-indium). Journal of Phase Equilibria and Diffusion, 2004. 25(2): p. 197-198.
93. Millares, M., B. Pieraggi, and E. Lelièvre, Multiphase reaction-diffusion in the Au-In system. Scripta Metallurgica et Materialia, 1992. 27(12): p. 1777-1782.
94. Deillon, L., Soudure par interdiffusion dans les systèmes Au-In et In-Ni: application à des composants microélectroniques, Dissertation, École Polytechnique Fédérale de Lausanne (EPFL), 2012
95. Deillon, L., et al., Growth of intermetallic compounds in the Au–In system: Experimental study and 1-D modelling. Acta Materialia, 2014. 79: p. 258-267.
96. Goldstein, J.I., et al., Scanning electron microscopy and X-ray microanalysis. A text for biologists, materials scientists, and geologists. 1981.
97. Practical Techniques for Microprobe Analysis. 1983: Jeol training center.
98. Jeol, JAX-ISP100 JAX-IHP200F EPMA application software manual.
99. Llovet, X., et al., Reprint of: Electron probe microanalysis: A review of recent developments and applications in materials science and engineering. Progress in Materials Science, 2021. 120: p. 100818.
100. Flammersheim, H., W. Hemminger, and G. Höhne, Differential scanning calorimetry. 2003, Springer-Verlag, Berlin Heidelberg.
101. Pus̆elj, M. and K. Schubert, Kristallstrukturen von Au9In4(h) und Au7In3. Journal of the Less Common Metals, 1975. 41(1): p. 33-44.
102. Zintl, E., A. Harder, and W. Haucke, Legierungsphasen mit Fluoritstruktur. Zeitschrift für Physikalische Chemie, 1937. 35B(1): p. 354-362.
103. Folkers, L.C., et al., The Mystery of the AuIn 1:1 Phase and Its Incommensurate Structural Variations. Inorganic Chemistry, 2018. 57(5): p. 2791-2796.
104. Massalski, T.B., The lattice spacings of close-packed hexagonal Au-In, Au-Cd, and Au-Hg alloys. Acta Metallurgica, 1957. 5(10): p. 541-547.
105. Hiscocks, S. and W. Hume-Rothery, The equilibrium diagram of the system gold-indium. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1964. 282(1390): p. 318-330.
106. Schubert, K., et al., Einige strukturelle Ergebnisse an metallischen Phasen II. Naturwissenschaften, 1957. 44(7): p. 229-230.
107. Schubert, K., et al., Einige strukturelle Ergebnisse an metallischen Phasen IV. Naturwissenschaften, 1959. 46(23): p. 647-648.
108. Dybkov, V.I., Reaction diffusion in heterogeneous binary systems. Journal of Materials Science, 1986. 21(9): p. 3078-3084.
109. Chen, S.-W., C.-C. Lin, and C. Chen, Determination of the melting and solidification characteristics of solders using differential scanning calorimetry. Metallurgical and Materials Transactions A, 1998. 29: p. 1965-1972.
110. Gierlotka, W., Thermodynamic description of the quaternary Ag-Cu-In-Sn system. Journal of electronic materials, 2012. 41: p. 86-108.
111. Muzzillo, C.P. and T. Anderson, Thermodynamic assessment of Ag–Cu–In. Journal of materials science, 2018. 53: p. 6893-6910.
112. Liu, X., et al., Fabrication and thermo-mechanical properties of Ag9In4 intermetallic compound. Intermetallics, 2023. 162: p. 108028.
113. van Smaalen, S., Incommensurate Crystallography. 2007, Oxford University Press.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96214-
dc.description.abstract低溫銲料的使用在工業界日益受到重視。其降低製程溫度的所帶來的優勢包括,減少電力加溫產生的碳排放、減輕PCB載板翹曲引發的失效,降低對熱敏感元件的損傷等,並且可以用於step soldering的後半段製程。鑒於銦及錫銦合金的低熔點及延展性,以及銅、銀、金為常用的端點連接金屬及表面處理鍍層,本研究探討了金銦固態擴散偶的界面化合物生長行為,以及銅銦錫三元系統暨銀銦二元系統之相平衡,為焊接的冶金學提供基礎科學資料。
研究方法包括試片製備恆溫熱處理的合金及擴散偶,並使用SEM、EPMA、EBSD、XRD、DSC、TEM等工具進行微結構的觀察及實驗相圖的測定。
在金銦固態界面反應的部分,本人將金銦擴散偶置於攝氏125及150度持溫後,分析接合處微結構隨時間的演變。除了展現組構及描述生長動力曲線,本研究確認金銦擴散偶會產生雙相共存區,乃非典型的二元擴散偶會產生的微結構。
在銅銦錫相平衡的部分,本實驗建立了攝氏一百度及一百四十度的等溫截面,並分析各相的晶體結構。其中Cu(In,Sn)2擁有相當程度的Sn固溶度,直至銅與共晶銦錫之界面反應經常觀測到的組成比為2Cu3In1Sn的介金屬,且前人所報導的Cu2In-Cu6Sn5連續單相區實際上被至少一個tie triangle所分割,並不連續。
在銀銦相平衡的部分,本實驗修正了相邊界及各invariant reaction的數值,釐清不同版本的銀銦相圖之爭議部分,如γ-ζ之不對稱相邊界等。此外,富銦之ζ (hcp)相存放在室溫數十天後即可觀察到部分區域相變成室溫平衡二相共存的組織。
zh_TW
dc.description.abstractThe use of low-temperature solder materials has garnered increasing attention in the industry. The advantages of reducing process temperatures include minimizing the carbon emission associated with electric heating, alleviating failure caused by warping of printed circuit boards (PCBs), reducing damage to heat-sensitive components, and facilitating step soldering in later stages of the process. Given the low melting point and ductility of indium and indium-tin alloys, along with the widespread use of copper, silver, and gold as connecting metals and surface treatment coatings, this study investigates the growth behavior of intermetallic compounds at the gold-indium solid-state diffusion couple interface, as well as the phase equilibria of the copper-indium-tin ternary system and the silver-indium binary system. These findings aim to provide fundamental metallurgical knowledge for soldering applications.
The research methods include preparing alloy samples and diffusion couples for isothermal heat treatment, followed by microstructural analysis and phase diagram determination using SEM, EPMA, EBSD, XRD, DSC, and TEM techniques.
For the gold-indium solid-state interface reaction, gold-indium diffusion couples were placed at temperatures of 125°C and 150°C, and the microstructural evolution at the joint was analyzed over time. In addition to characterizing the texture and describing growth kinetics, the study confirms the formation of a two-phase coexistence region in the gold-indium diffusion couple, an atypical microstructure for a binary diffusion couple.
For the copper-indium-tin phase equilibria, isothermal sections at 100°C and 140°C were constructed, and the crystal structure of each phase was analyzed. The Cu(In,Sn)₂ phase exhibited significant Sn solubility, leading to the frequent observation of the intermetallic with the composition ratio of 2Cu3In1Sn at the interface between copper and the eutectic indium-tin alloy. Moreover, the previously reported continuous single-phase region between Cu₂In and Cu₆Sn₅ is, in fact, interrupted by at least one tie triangle, forming separate single-phase fields.
For the silver-indium phase equilibria, phase boundaries and the invariant values of several invariant reactions were revised, clarifying contentious features of previous silver-indium phase diagrams, such as the asymmetric phase boundary between the γ and ζ phases. Additionally, after several weeks of storage at room temperature, a partial phase transformation was observed in the indium-rich ζ (hcp) phase, resulting in a microstructure containing the corresponding room-temperature equilibrium two-phase coexistence.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:13:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-11-28T16:13:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 ii
Abstract iii
Table of contents v
List of figures viii
List of tables xvii
Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Aim and scope 3
Chapter 2. Literature review 5
2.1. Phase equilibria 5
2.1.1. In-Sn binary system 5
2.1.2. Cu-In binary system 9
2.1.3. Cu-In-Sn ternary system 12
2.1.4. Ag-In binary system 15
2.2. X-ray diffraction of crystals [77-79] 23
2.2.1. Lorentz factor 24
2.2.2. Polarization factor 26
2.2.3. Absorption factor 28
2.2.4. Extinction factor 30
2.2.5. Structure factor 31
2.3. Morphology of solid-state binary diffusion couples 35
2.4. Au-In diffusion couples 38
Chapter 3. Experimental procedures 44
3.1. Sample preparation 44
3.1.1. Specimens for phase equilibria determination 44
3.1.2. Specimens for Au-In binary diffusion couples 46
3.2. Argon ion cross-section polisher 46
3.3. X-ray diffraction 48
3.3.1. Single crystal X-ray diffraction 48
3.3.2. Powder X-ray diffraction 48
3.3.3. X-ray diffraction-based phase identification 49
3.4. EPMA [96-99] 51
3.4.1. Background determination 51
3.4.2. ZAF correction 53
3.4.3. Experimenetal procedure 55
3.5. DSC [100] 56
Chapter 4. Results and discussion 60
4.1. Au-In interfacial reaction 60
4.1.1. Microstructural evolution 60
4.1.2. TEM analysis 76
4.1.3. Kinetics 78
4.2. Cu-In-Sn phase equilibria and crystallography 83
4.2.1. The isotherms and EPMA analysis 90
4.2.2. DSC analysis 93
4.2.3. Single-crystal diffraction of Cu(In,Sn)2 96
4.2.4. Powder diffraction 99
4.2.5. The existence of η1 and η2 101
4.3. Ag-In phase equilibria 103
4.3.1. Phase boundary determination 109
4.3.2. Invariant reaction determination 110
4.3.3. Room-temperature phase separation 116
Chapter 5. Conclusion 120
Appendix 122
Chapter 6. Reference 125
-
dc.language.isoen-
dc.title金銦、銀銦、銅銦錫之界面反應及相平衡zh_TW
dc.titleInterfacial Reactions and Phase Equilibria in Au-In, Ag-In, and Cu-In-Sn Systemsen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee楊挺立;王儀雯;陳志銘;何政恩zh_TW
dc.contributor.oralexamcommitteeTing-Li Yang;Yi-Wun Wang;Chih-Ming Chen;Cheng-En Hoen
dc.subject.keyword電子封裝,相平衡,擴散偶,介金屬,晶體結構,zh_TW
dc.subject.keywordelectronic packaging,phase equilibria,diffusion couple,intermetallic,crystal structure,en
dc.relation.page135-
dc.identifier.doi10.6342/NTU202404413-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-10-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2025-10-30-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf
  此日期後於網路公開 2025-10-30
68.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved