Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9620
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊東漢
dc.contributor.authorCheng-Ting Chenen
dc.contributor.author陳正庭zh_TW
dc.date.accessioned2021-05-20T20:31:52Z-
dc.date.available2013-08-06
dc.date.available2021-05-20T20:31:52Z-
dc.date.copyright2008-08-06
dc.date.issued2008
dc.date.submitted2008-07-30
dc.identifier.citation1. Gordon Moore, “Cramming More Components Onto Integrated Circuits”, Electronics, 38 , pp.114-114, 1965.
2. R. Mahajan, K. Brown and Atluri V., “The Evolution of Microprocessor Packaging ”, Intel Journal of Technology, 3rd Quarter, 2000.
3. Anand Lal Shimpi, 'Intel's Core 2 Extreme & Core 2 Duo: The Empire Strikes Back', July 14th,2006,
http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2795
4. “2nd Annual Business & Technology Summit for Thermal Management of Electronics”, Marlborough, MA, Aug.28-29, 2002.
5. R.Viswanath,V.Wakharkar,A.Watwe, andV.Lebonheur, “Thermal Performance Challenges from Silicon to Systems”, Intel Technology Journal, Q3,pp.1-16, 2000.
6. Lee, N.C. 'Getting ready for lead-free solders', Soldering & Surface Mount Technology, Vol. 9 No.2, pp.65-9., 1997.
7. Yovanovich, M. M., Culham, J. R., and Teertstra, P., 'Calculating Interface Resistance,' ElectronicsCooling, Vol. 3, No. 2, May, pp. 24 – 29, 1997.
8. J. P. Gwinn and R. L. Webb, “Performance and testing of thermal interface materials”, Microelectronics Journal, 34 , pp. 215-222, 1993.
9. Daniel Blazej, Ph.D.Emerson & Cuming,'Thermal Interface Materials', http://electronics-cooling.com/articles/2003/2003_november_a1.php
10. H. B. Ma and G. P. Peterson, “The Influence of the Thermal Conductivity on the Heat Transfer Performance in a Heat Sink”, Transactions of the ASME 124, 9, pp.164-169,2002.
11. Dr. Miksa deSorgo, Chomerics Division, Parker Hannifin Corporation., 'Thermal Interface Materials', Vol.2, No.3, September 1996.
12. R.Viswanath,V.Wakharkar,A.Watwe, andV.Lebonheur, “Thermal Performance Challenges from Silicon to Systems”, Intel Technology Journal, Q3,pp.1-16, 2000.
13. Vishal Singhal, Thomas Siegmund, and Suresh V. Garimella,” Optimization of Thermal Interface Materials for Electronics Cooling Applications”,IEEE Trans.Compon.Packag.Technol.Vol.27,no.2,pp.244-252,Jun.2004.
14. Rauch B.,” Understanding The Performance Characteristics of Phase-Change Thermal Interface Materials ” Inter Society Conference on Thermal Phenomena,2000.
15. Ravi Prasher, “Thermal Interface Materials:Historical Perspective, Status, and Future Directions”, Proceedings of the IEEE, 94, pp.1571, 2006.
16. Cook, R.S. and Token, K.H.1983. “ Simple Thermal Joint, ” U.S. Patent 4,384,610, May 24, 1983 (Issued to McDonnel Douglas Corp)
17. Cook R.S., Token, K. H. and Calkins, R.L. “A Novel Concept for Reducing Thermal Resistance”, J. Spacecraft, Vol.21, 1, pp.122-124. 1984.
18. J.P. Gwinn, R.L. Webb, “Low melting point thermal interface material”, Proc. ITherm., pp. 671–676, 2002.
19. Carl Deppisch, Thomas Fitzgerald, Arun Raman, Fay Hua, Charles Zhang, Pilin Liu and Mikel Miller, 'The material optimization and reliability characterization of an indium-solder thermal interface material for CPU packaging ', JOM Journal of the Minerals, Metals and Materials Society, Volume 58, Number 6 / (2006)
20. Gowda, A. Esler, D. Tonapi, S. Nagarkar, K. Srihari, K. 'Voids in thermal interface material layers and their effect on thermal performance', Electronics Packaging Technology Conference, 2004. EPTC 2004. Proceedings of 6th, 8-10 Dec. 2004.
21. Yimin Zhang, Allison Xiao, and Jeff McVey , 'Advanced Thermal Interface Materials', Mater. Res. Soc. Symp. Proc. Vol. 968 © 2007 Materials Research Society
22. H. K abassis, J.W. Rutter, and W.C. Winegard: Mater. Sci. Technol., vol. 2. p. 985. 1986,
23. M.A. Ruggiero and J.W. Rutter : Mater. Sci. Technol., vol. 11. p. 136. 1995,
24. Seung Wook Yoon, Byung-Sup Rho, Hyuck Mo Lee, Choong-Un Kim, and Byeong-Joo Lee, “Investigation of the phase equilibria in the Sn-Bi-In alloy system”, Metallurgical and Materials Transactions, 30A, pp. 1503, 1999.
25. V.T. Witusiewicz , U. Hecht, B. B¨ottger, S. Rex, “Thermodynamic re-optimisation of the Bi–In–Sn system based on new experimental data”, Journal of Alloys and Compounds, 428, pp. 115, 2007.
26. S. SENGUPTA, H. SODA, A. MCLEAN, 'Evolution of microstructure in bismuth–indium–tin eutectic alloy', JOURNAL OF MATERIALS SCIENCE 40 2607 – 2610, 2005.
27. E. Çadırlı, H. Kaya , N. Maraşlı , U. Böyük , K. Keşlioğlu, S. Akbulut and Y. Ocak, “The effect of growth rate on microstructure and microindentation hardness in the In-Bi-Sn ternary alloy at low melting point”, Journal of Alloys And Compounds, in press (2008)
28. KOZO SHIMIZU, TERU NAKANISHI, KAZUAKI KARASAWA,KAORU HASHIMOTO, and KOICHI NIWA, 'Solder Joint Reliability of Indium-Alloy Interconnection', Journal of Electronic Materials, Vol. 24, No. 1, 1995.
29. CR. Kao , 'Microstructures developed in solid-liquid reactions: using Cu-Sn reaction, Ni-Bi reaction, and Cu-In reaction as examples ', Materials Science and Engineering A238 196-201 (1997)
30. Nese Orbey, Glover A. Jones, Robert W. Birkmire, and T.W. Fraser Russell, 'Copper-Indium Alloy Transformations', Journal of Phase Equilibria and Diffusion,Volume 21, Number 6 / (2000)
31. C.L. YU, S.S.WANG, and T.H. CHUANG, 'Intermetallic Compounds Formed at the Interface between Liquid Indium and Copper Substrates', Journal of ELECTRONIC MATERIALS, Vol. 31, No. 5, 2002.
32. P.T. Vianco, A.C. Kilgo and R. Grant, “Solid State intermetallic compound layer growth between copper and hot dipped indium coatings”, Journal of Materials Science, 30, pp.4871-1878, 1995.
33. T.H. CHUANG, C.L. YU, S.Y. CHANG, and S.S.WANG, 'Phase Identification and Growth Kinetics of the Intermetallic Compounds Formed during In-49Sn/Cu Soldering Reactions', Journal of ELECTRONIC MATERIALS, Vol. 31, No. 6, 2002.
34. HARRY N. KELLER , 'Solder Connections with a Ni Barrier ', IEEE TRANSACTIONS ON COMPONENTS, HYBRIDS, AND MANUFACTURING TECHNOLOGY, VOL. CHMT-9, NO. 4, DECEMBER 1986.
35. KWANG-LUNG LIN, CHUN-JEN CHEN , 'The interactions between In-Sn solders and an electroless Ni-P deposit upon heat treatment ', JOURNAL OF MATERIALS SCIENCE MATERIALS IN ELECTRONICS 7 ,397 401, 1996.
36. Y.H. TSENG, M.S. YEH, and T.H. CHUANG, 'Interfacial Reactions between Liquid Indium and Nickel Substrate', Journal of ELECTRONIC MATERIALS, Vol. 28, No. 2, 1999.
37. J.W. Jang, P.G. Kim, and K.N.Tu “Crystallization of Electroless Ni-P Under Bump Metallization Induced by Solder Reaction ” International Symposium on Advanced Package Materials pp.252-255, 1999.
38. M.S. LEE, C.M. LIU, and C.R. KAO, 'Interfacial Reactions between Ni Substrate and the Component Bi in Solders', Journal of ELECTRONIC MATERIALS, Vol. 28, No. 1, 1999.
39. Jing-Chie Lin, Long-Wei Huang, Guh-Yaw Jang, Sheng-Long Lee, 'Solid–liquid interdiffusion bonding between In-coated silver thick films', Thin Solid Films, Volume 410, pp. 212-221(10) , Number 1, 1 May 2002 .
40. Campbell AN, Wagemann R, Ferguson RB Canad J Chem 48:1703, 1970.
41. Ts. Dobrovolska & G. Beck & I. Krastev & A. Zielonka, 'Phase composition of electrodeposited silver-indium alloys', Journal of Solid State Electrochemistry ,1432-8488 (Print) 1433-0768 (Online), 11 January 2008
42. Y.M. LIU, Y.L. CHEN, and T.H. CHUANG, 'Interfacial Reactions between Liquid Indium and Silver Substrates', Journal of ELECTRONIC MATERIALS, Vol. 29, No. 8, 2000.
43. Yi-Chia Chen, William W. So, and Chin C. Lee, Senior Member, IEEE, 'A Fluxless Bonding Technology Using Indium–Silver Multilayer Composites', IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY—PART A, VOL. 20, NO. 1, MARCH 1997.
44. Prince, 'The Au-Pb-Sn Ternary System', Journal of the Less-Common Metals,12,, pp. 107-116, 1967.
45. W.B. Harding and H.B. Pressly, 'Soldering to Gold Plating', Am. Electroplat.Soc., 50th Annu. Proc., pp. 90-106, 1963.
46. V. Simic, and Z. Marinkovic, “Thin Film Interdiffusion of Au and In at Room Temperature”, Thin Solid Films, 41, pp.57-61, 1977.
47. J. Bjointegaard, L. Buene, T. Finstad, O. Lonsjo, and T. Olsen, “Low Temperature Interdiffusion in Au/In Thin Film Couple”, Thin Solid Films, 101, pp.253-262, 1983.
48. F.S. Shieu , Z.C. Chang, J.G. Sheen, C.F. Chen, 'Microstructure and shear strength of a Au–In microjoint', Intermetallics, Volume 8, pp. 623-627(5), Number 5, May 2000.
49. Y.M. LIU and T.H. CHUANG, 'Interfacial Reactions between Liquid Indium and Au-Deposited Substrates', Journal of ELECTRONIC MATERIALS, Vol. 29, No. 4, 2000.
50. Ching-Yu Huang and Shinn-Wen Chen, “Interfacial Reactions in In-Sn/Ni Couples and Phase Equilibria of the In-Sn-Ni System”, Journal of electronic materials, 31, pp.152, 2000.
51. T.B. Massalski, “ Binary Alloys Phase Diagram(2nd ed) ”, by Materials Park, OH:ASM intl.,1991.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9620-
dc.description.abstract本研究針對熱界面材料Bi-25In-18Sn與各種不同金屬基板間之界面反應機構、介金屬化合物型態、介金屬成長動力學以及基材溶解速率反應學等實驗進行研究,金屬基板方面選用銅、鎳、銀、金基板;另外也藉由SEM、DSC觀察熱界面材料Bi-25In-18Sn之微結構金相組織以及其熔點區間。
在Bi-25In-18Sn與銅基板之界面反應中,其所生成之界面介金屬為Cu6(In,Sn)5,且在高溫觀察到有轉變為Cu3(In,Sn)之傾向,屬於擴散控制反應,活化能為53.782 kJ/mol。與鎳基板之界面反應中,其界面生成物為Ni3(In,Sn)4,反應同樣為擴散控制,活化能為70.01 kJ/mol。與銀基板之界面反應中在界面處可以觀察到Ag2In之生成,且在高溫時其內部Ag含量逐漸上升,有逐漸轉變為Ag3In之趨勢,其介金屬生長規則亦符合拋物線定律,活化能為44.90 kJ/mol。而在與金基板之界面反應中發現100℃時可觀察到AuIn2、AuIn兩相,而在125℃以上則可觀察到由上而下依序為AuIn2、AuIn、Au7In3之三相介金屬層,此三層介金屬之活化能分別為53.94、103.26、103.61 kJ/mol。最後在基材溶解速率反應當中發現銅基材之消耗速率約為鎳基材的五倍左右,而略小於銀基材之消耗速率。
zh_TW
dc.description.abstractThis research is focus on the following parts of thermal interface materials: the mechanism between matrix and different metallic substrates、IMC morphology、IMC growth kinetics and substrates dissolving reaction. Take copper、nickel、silver、gold plate as the metal substrates. Also observe the microstructures of thermal interface materials Bi-25In-18Sn and measure the melting temperature section by SEM and DSC.
The intermetallic compound formed at the interface of Bi-25In-18Sn/Cu is Cu6(In,Sn)5 ,and it tends to transform into Cu3(In,Sn) at higher temperature. The growth of the IMC, Cu6(In,Sn)5, is diffusion-controlled, and the activation energy for the growth of Cu6(In,Sn)5 is calculated to be 53.782 KJ/mol. The intermetallic compound formed at the interface of Bi-25In-18Sn/Ni is Ni3(In,Sn)4. The growth of the IMC, Ni3(In,Sn)4, is diffusion-controlled, and the activation energy for the growth of Ni3(In,Sn)4 is calculated to be 70.01 KJ/mol. The intermetallic compound formed at the interface of Bi-25In-18Sn/Ag is Ag2In ,and it tends to transform into Ag3In at higher temperature. The growth of the IMC, Ag2In, is diffusion-controlled, and the activation energy for the growth of Ag2In is calculated to be 44.90 KJ/mol. The intermetallic compound formed at the interface of Bi-25In-18Sn/Au are AuIn2 and AuIn at 100℃, while the intermetallic compound are to be AuIn2、AuIn and Au7In3 above 125℃. The activation energy for the growth of AuIn2、AuIn and Au7In3 is calculated to be 53.94 KJ/mol、103.26 KJ/mol and 103.61 KJ/mol, respectively. Finally, Cu substrate is about five times the consuming rate of the Ni substrate, and is a little smaller than Ag substrate.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:31:52Z (GMT). No. of bitstreams: 1
ntu-97-R95527053-1.pdf: 9300308 bytes, checksum: 9c4294948f534ddfc74e7902700e874e (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents壹、前言 1
貳、文獻回顧 4
2.1. 熱界面材料 4
2.1.1. 熱界面材料簡介 4
2.1.2. 熱界面材料種類 6
2.1.3. 熱界面相關文獻回顧 9
2.2. Bi-In-Sn 合金 13
2.3. 界面反應回顧 18
2.3.1. 銅基板文獻回顧 18
2.3.2. 鎳基板文獻回顧 20
2.3.3. 銀基板文獻回顧 22
2.3.4. 金基板文獻回顧 26
2.4. 介金屬成長動力學 28
參、實驗步驟 30
3.1. 材料製備與基本分析 30
3.2. 界面介金屬成長分析 30
3.3. 基材溶解速率反應 31
肆、結果與討論 35
4.1. Bi-25In-18Sn合金基本性質 35
4.1.1. 微結構組織 35
4.1.2. DSC熱差分析 36
4.2. Bi-25In-18Sn與銅基板 37
4.2.1. Bi-25In-18Sn/Cu之界面反應觀察 37
4.2.2. Bi-25In-18Sn/Cu之界面介金屬成長動力學 45
4.2.3. Bi-25In-18Sn/Cu之銅基板溶解速率 47
4.3. Bi-25In-18Sn與鎳基板 50
4.3.1. Bi-25In-18Sn/Ni之界面反應觀察 50
4.3.2. Bi-25In-18Sn/Ni之界面介金屬成長動力學 58
4.3.3. Bi-25In-18Sn/Ni之鎳基板溶解速率 60
4.4. Bi-25In-18Sn與銀基板 63
4.4.1. Bi-25In-18Sn/Ag之界面反應觀察 63
4.4.2. Bi-25In-18Sn/Ag之界面介金屬成長動力學 70
4.4.3. Bi-25In-18Sn/Ag之銀基板溶解速率 72
4.5. Bi-25In-18Sn與金基板 75
4.5.1. Bi-25In-18Sn/Au之界面反應觀察 81
4.5.2. Bi-25In-18Sn/Au之界面介金屬成長動力學 83
伍、結論 92
陸、參考文獻 93
dc.language.isozh-TW
dc.titleBi-25In-18Sn熱界面材料之微結構與界面反應研究zh_TW
dc.titleMicrostructure and Interfacial Reactions of Bi-25In-18Sn Thermal Interface Materialsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林東毅,施漢章,張道智,黃振東
dc.subject.keyword微結構,界面反應,熱界面材料,zh_TW
dc.subject.keywordMicrostructure,Interfacial Reaction,Thermal Interface Materials,en
dc.relation.page98
dc.rights.note同意授權(全球公開)
dc.date.accepted2008-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf9.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved