Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96205
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor白奇峰zh_TW
dc.contributor.advisorChi-Feng Paien
dc.contributor.author黃宇豪zh_TW
dc.contributor.authorYu-Hao Huangen
dc.date.accessioned2024-11-28T16:10:55Z-
dc.date.available2025-10-30-
dc.date.copyright2024-11-28-
dc.date.issued2024-
dc.date.submitted2024-10-01-
dc.identifier.citation[1] C. M. Hurd, Varieties of magnetic order in solids, Contemp. Phys. 23, 469 (2006).
[2] D. T. Denny and P. Chi-Feng, Magnetism and Magnetic Materials, (2021)
[3] S. Blundell, Magnetism in condensed matter, (2001)
[4] V. Chaudhary and R. V. Ramanujan, Magnetocaloric Properties of Fe-Ni-Cr Nanoparticles for Active Cooling, Sci. Rep. 6, 35156 (2016).
[5] R. O'handley, Modern magnetic materials, (2000)
[6] J. B. Goodenough, Theory of the Role of Covalence in the Perovskite-Type Manganites[La, M(II)]MnO3, Phys. Rev. 100, 564 (1955).
[7] M. A. Ruderman and C. Kittel, Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons, Phys. Rev. 96, 99 (1954).
[8] T. Kasuya, A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model, Prog. Theor. Phys. 16, 45 (1956).
[9] K. Yosida, Magnetic Properties of Cu-Mn Alloys, Phys. Rev. 106, 893 (1957).
[10] S. H. Schoenmaker, The interlayer Dzyaloshinskii-Moriya interaction, 2021.
[11] J. Wei, X. Wang, B. Cui, C. Guo, H. Xu, Y. Guang, Y. Wang, X. Luo, C. Wan, J. Feng et al., Field‐Free Spin–Orbit Torque Switching in Perpendicularly Magnetized Synthetic Antiferromagnets, Adv. Funct. Mater. 32 (2021).
[12] S. S. Parkin, Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals, Phys. Rev. Lett. 67, 3598 (1991).
[13] S. Yuasa, Introduction to Magnetic Random‐Access Memory, (2017), p. 29.
[14] I. Dzyaloshinsky, A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics, J. Phys. Chem. Sol. 4, 241 (1957).
[15] T. Moriya, Anisotropic Superexchange Interaction and Weak Ferromagnetism, Phys. Rev. 120, 91 (1960).
[16] A. Fert, M. Chshiev, A. Thiaville, and H. Yang, From Early Theories of Dzyaloshinskii–Moriya Interactions in Metallic Systems to Today’s Novel Roads, J. Phys. Soc. Jpn. 92, 081001 (2023).
[17] D. A. Smith, New mechanisms for magnetic anisotropy in localised S-state moment materials, J. Magn. Magn. Mater. 1, 214 (1976).
[18] K. Wang, K. Ren, Y. Cheng, S. Chen, and G. Zhang, The impacts of molecular adsorption on antiferromagnetic MnPS3 monolayers: enhanced magnetic anisotropy and intralayer Dzyaloshinskii–Moriya interaction, Materials Horizons 9, 2384 (2022).
[19] J. C. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159, L1 (1996).
[20] J. C. Sankey, Y.-T. Cui, J. Z. Sun, J. C. Slonczewski, R. A. Buhrman, and D. C. Ralph, Measurement of the spin-transfer-torque vector in magnetic tunnel junctions, Nat. Phys. 4, 67 (2008).
[21] I. M. Miron, K. Garello, G. Gaudin, P.-J. Zermatten, M. V. Costache, S. Auffret, S. Bandiera, B. Rodmacq, A. Schuhl, and P. Gambardella, Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection, Nature 476, 189 (2011).
[22] S. Emori, U. Bauer, S. M. Ahn, E. Martinez, and G. S. Beach, Current-driven dynamics of chiral ferromagnetic domain walls, Nat. Mater. 12, 611 (2013).
[23] S. S. P. Parkin, M. Hayashi, and L. Thomas, Magnetic Domain-Wall Racetrack Memory, Science 320, 190 (2008).
[24] S. Parkin and S. H. Yang, Memory on the racetrack, Nat. Nanotechnol. 10, 195 (2015).
[25] A. Fert, V. Cros, and J. Sampaio, Skyrmions on the track, Nat. Nanotechnol. 8, 152 (2013).
[26] F. Kammerbauer, F. Freimuth, R. Frömter, Y. Mokrousov, and M. Kläui, Dzyaloshinskii–Moriya Interaction and Its Current-Induced Manipulation, J. Phys. Soc. Jpn. 92 (2023).
[27] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82, 1539 (2010).
[28] M. Hayashi, J. Kim, M. Yamanouchi, and H. Ohno, Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements, Phys. Rev. B 89, 144425 (2014).
[29] M.-H. Nguyen and C.-F. Pai, Spin–orbit torque characterization in a nutshell, APL Materials 9 (2021).
[30] D. Maryenko, A. S. Mishchenko, M. S. Bahramy, A. Ernst, J. Falson, Y. Kozuka, A. Tsukazaki, N. Nagaosa, and M. Kawasaki, Observation of anomalous Hall effect in a non-magnetic two-dimensional electron system, Nat. Comm. 8, 14777 (2017).
[31] C. O. Avci, Current-induced effects in ferromagnetic heterostructures due to spin-orbit coupling, 2015.
[32] M. Manfrini, Spin orbit torques in magnetic materials, 2017.
[33] A. Hoffmann, Spin Hall Effects in Metals, IEEE Transactions on Magnetics 49, 5172 (2013).
[34] C. Stamm, C. Murer, M. Berritta, J. Feng, M. Gabureac, P. M. Oppeneer, and P. Gambardella, Magneto-Optical Detection of the Spin Hall Effect in Pt and W Thin Films, Phys. Rev. Lett. 119, 087203 (2017).
[35] T. Tanaka, H. Kontani, M. Naito, T. Naito, D. S. Hirashima, K. Yamada, and J. Inoue, Intrinsic spin Hall effect and orbital Hall effect in4dand5dtransition metals, Phys. Rev. B 77 (2008).
[36] L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum, Science 336, 555 (2012).
[37] C. O. Avci, K. Garello, A. Ghosh, M. Gabureac, S. F. Alvarado, and P. Gambardella, Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers, Nat. Phys. 11, 570 (2015).
[38] Y.-T. Liu, T.-Y. Chen, T.-H. Lo, T.-Y. Tsai, S.-Y. Yang, Y.-J. Chang, J.-H. Wei, and C.-F. Pai, Determination of Spin-Orbit-Torque Efficiencies in Heterostructures with In-Plane Magnetic Anisotropy, Phys. Rev. Appl. 13, 044032 (2020).
[39] Y.-T. Liu, Y.-H. Huang, C.-C. Huang, Y.-C. Li, C.-L. Cheng, and C.-F. Pai, Field-Free Type-x Spin-Orbit-Torque Switching by Easy-Axis Engineering, Phys. Rev. Appl. 18, 034019 (2022).
[40] M. Ali, Growth And Study Of Magnetostrictive FeSiBC Thin Films For Device Applications, (1999).
[41] Z. Q. Qiu and S. D. Bader, Surface magneto-optic Kerr effect, Review of Scientific Instruments 71, 1243 (2000).
[42] D. A. Allwood, G. Xiong, M. D. Cooke, and R. P. Cowburn, Magneto-optical Kerr effect analysis of magnetic nanostructures, J. Phys. D: Appl. Phys. 36, 2175 (2003).
[43] J. Hamrle, Magneto-optical Kerr effect (MOKE), 17 (2014).
[44] M. Montazeri, P. Upadhyaya, M. C. Onbasli, G. Q. Yu, K. L. Wong, M. R. Lang, Y. B. Fan, X. Li, P. K. Amiri, R. N. Schwartz et al., Magneto-optical investigation of spin-orbit torques in metallic and insulating magnetic heterostructures, Nat. Comm. 6 (2015).
[45] H. Huang, H. Wu, T. Yu, Q. Pan, B. Dai, A. Razavi, K. Wong, B. Cui, S. K. Chong, and D. Wu, Electrical and optical characterizations of spin-orbit torque, Appl. Phys. Lett. 118, 072405 (2021).
[46] A. Fert and P. M. Levy, Role of Anisotropic Exchange Interactions in Determining the Properties of Spin-Glasses, Phys. Rev. Lett. 44, 1538 (1980).
[47] G. Yu, P. Upadhyaya, K. L. Wong, W. Jiang, J. G. Alzate, J. Tang, P. K. Amiri, and K. L. Wang, Magnetization switching through spin-Hall-effect-induced chiral domain wall propagation, Phys. Rev. B 89, 104421 (2014).
[48] T. P. Dao, M. Muller, Z. Luo, M. Baumgartner, A. Hrabec, L. J. Heyderman, and P. Gambardella, Chiral Domain Wall Injector Driven by Spin-Orbit Torques, Nano Lett. 19, 5930 (2019).
[49] A. Soumyanarayanan, M. Raju, A. L. Gonzalez Oyarce, A. K. C. Tan, M. Y. Im, A. P. Petrovic, P. Ho, K. H. Khoo, M. Tran, C. K. Gan et al., Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers, Nat. Mater. 16, 898 (2017).
[50] C. Moreau-Luchaire, S. C. Mouta, N. Reyren, J. Sampaio, C. A. Vaz, N. Van Horne, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke et al., Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature, Nat. Nanotechnol. 11, 444 (2016).
[51] J. H. Franken, M. Herps, H. J. Swagten, and B. Koopmans, Tunable chiral spin texture in magnetic domain-walls, Sci. Rep. 4, 5248 (2014).
[52] E. Y. Vedmedenko, P. Riego, J. A. Arregi, and A. Berger, Interlayer Dzyaloshinskii-Moriya Interactions, Phys. Rev. Lett. 122, 257202 (2019).
[53] Y.-H. Huang, C.-C. Huang, W.-B. Liao, T.-Y. Chen, and C.-F. Pai, Growth-Dependent Interlayer Chiral Exchange and Field-Free Switching, Phys. Rev. Appl. 18, 034046 (2022).
[54] A. N. Bogdanov and U. K. Rossler, Chiral symmetry breaking in magnetic thin films and multilayers, Phys. Rev. Lett. 87, 037203 (2001).
[55] M. Bode, M. Heide, K. von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blugel, and R. Wiesendanger, Chiral magnetic order at surfaces driven by inversion asymmetry, Nature 447, 190 (2007).
[56] S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel, Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nat. Phys. 7, 713 (2011).
[57] J. Y. Chauleau, W. Legrand, N. Reyren, D. Maccariello, S. Collin, H. Popescu, K. Bouzehouane, V. Cros, N. Jaouen, and A. Fert, Chirality in Magnetic Multilayers Probed by the Symmetry and the Amplitude of Dichroism in X-Ray Resonant Magnetic Scattering, Phys. Rev. Lett. 120, 037202 (2018).
[58] D. S. Han, K. Lee, J. P. Hanke, Y. Mokrousov, K. W. Kim, W. Yoo, Y. L. W. van Hees, T. W. Kim, R. Lavrijsen, C. Y. You et al., Long-range chiral exchange interaction in synthetic antiferromagnets, Nat. Mater. 18, 703 (2019).
[59] S. Liang, R. Chen, Q. Cui, Y. Zhou, F. Pan, H. Yang, and C. Song, Ruderman-Kittel-Kasuya-Yosida-Type Interlayer Dzyaloshinskii-Moriya Interaction in Synthetic Magnets, Nano Lett. 23, 8690 (2023).
[60] Z. Wang, P. Li, M. Fattouhi, Y. Yao, Y. L. W. Van Hees, C. F. Schippers, X. Zhang, R. Lavrijsen, F. Garcia-Sanchez, E. Martinez et al., Field-free spin-orbit torque switching of synthetic antiferromagnet through interlayer Dzyaloshinskii-Moriya interactions, Cell Rep. 4, 101334 (2023).
[61] K. Wang, L. Qian, S.-C. Ying, and G. Xiao, Spin-orbit torque switching of chiral magnetization across a synthetic antiferromagnet, Commun. Phys. 4, 10 (2021).
[62] W. He, C. Wan, C. Zheng, Y. Wang, X. Wang, T. Ma, Y. Wang, C. Guo, X. Luo, M. E. Stebliy et al., Field-Free Spin-Orbit Torque Switching Enabled by the Interlayer Dzyaloshinskii-Moriya Interaction, Nano Lett. 22, 6857 (2022).
[63] F. S. Gao, S. Q. Liu, R. Zhang, J. H. Xia, W. Q. He, X. H. Li, X. M. Luo, C. H. Wan, G. Q. Yu, G. Su et al., Experimental evidence of the oscillation behavior of the interlayer DMI effect, Appl. Phys. Lett. 123, 192401 (2023).
[64] A. Fernandez-Pacheco, E. Vedmedenko, F. Ummelen, R. Mansell, D. Petit, and R. P. Cowburn, Symmetry-breaking interlayer Dzyaloshinskii-Moriya interactions in synthetic antiferromagnets, Nat. Mater. 18, 679 (2019).
[65] C. O. Avci, C. H. Lambert, G. Sala, and P. Gambardella, Chiral Coupling between Magnetic Layers with Orthogonal Magnetization, Phys. Rev. Lett. 127, 167202 (2021).
[66] C.-F. Pai, M. Mann, A. J. Tan, and G. S. D. Beach, Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy, Phys. Rev. B 93, 144409 (2016).
[67] J. Torrejon, J. Kim, J. Sinha, S. Mitani, M. Hayashi, M. Yamanouchi, and H. Ohno, Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers, Nat. Comm. 5, 4655 (2014).
[68] B. Cui, C. Song, G. Y. Wang, Y. Y. Wang, F. Zeng, and F. Pan, Perpendicular magnetic anisotropy in CoFeB/X (X=MgO, Ta, W, Ti, and Pt) multilayers, J. Alloys Compd. 559, 112 (2013).
[69] M. Akyol, Origin of Interfacial Magnetic Anisotropy in Ta/CoFeB/MgO and Pt/CoFeB/MgO Multilayer Thin Film Stacks, J. Supercond. Nov. Magn. 32, 457 (2019).
[70] P. F. Carcia, Perpendicular magnetic anisotropy in Pd/Co and Pt/Co thin‐film layered structures, J. Appl. Phys. 63, 5066 (1988).
[71] N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, Perpendicular Magnetic Anisotropy Caused by Interfacial Hybridization via Enhanced Orbital Moment in Co/Pt Multilayers: Magnetic Circular X-Ray Dichroism Study, Phys. Rev. Lett. 81, 5229 (1998).
[72] C.-C. Huang, C.-C. Tsai, W.-B. Liao, T.-Y. Chen, and C.-F. Pai, Deep learning for spin-orbit torque characterizations with a projected vector field magnet, Phys. Rev. Res. 4, 033040 (2022).
[73] R. Shindou, J.-i. Ohe, R. Matsumoto, S. Murakami, and E. Saitoh, Chiral spin-wave edge modes in dipolar magnetic thin films, Phys. Rev. B 87, 174402 (2013).
[74] K. S. Ryu, L. Thomas, S. H. Yang, and S. Parkin, Chiral spin torque at magnetic domain walls, Nat. Nanotechnol. 8, 527 (2013).
[75] C.-Y. Hu, Y.-F. Chiu, C.-C. Tsai, C.-C. Huang, K.-H. Chen, C.-W. Peng, C.-M. Lee, M.-Y. Song, Y.-L. Huang, S.-J. Lin et al., Toward 100% Spin–Orbit Torque Efficiency with High Spin–Orbital Hall Conductivity Pt–Cr Alloys, ACS Appl. Electron. Mater. 4, 1099 (2022).
[76] V. M. P, K. R. Ganesh, and P. S. A. Kumar, Spin Hall effect mediated current-induced deterministic switching in all-metallic perpendicularly magnetized Pt/Co/Pt trilayers, Phys. Rev. B 96, 104412 (2017).
[77] H. J. Kim, K. W. Moon, B. X. Tran, S. Yoon, C. Kim, S. Yang, J. H. Ha, K. An, T. S. Ju, J. I. Hong et al., Field‐Free Switching of Magnetization by Tilting the Perpendicular Magnetic Anisotropy of Gd/Co Multilayers, Adv. Funct. Mater. 32, 2112561 (2022).
[78] H. F. Ding, S. Pütter, H. P. Oepen, and J. Kirschner, Experimental method for separating longitudinal and polar Kerr signals, J. Magn. Magn. Mater. 212, 5 (2000).
[79] C.-Y. Hu, W.-D. Chen, Y.-T. Liu, C.-C. Huang, and C.-F. Pai, The Central Role of Tilted Anisotropy for Field-Free Spin-Orbit Torque Switching of Perpendicular Magnetization, arXiv e-prints, arXiv:2306.06357 (2023).
[80] S. Emori, E. Martinez, K.-J. Lee, H.-W. Lee, U. Bauer, S.-M. Ahn, P. Agrawal, D. C. Bono, and G. S. D. Beach, Spin Hall torque magnetometry of Dzyaloshinskii domain walls, Phys. Rev. B 90 (2014).
[81] J. Ryu, R. Thompson, J. Y. Park, S.-J. Kim, G. Choi, J. Kang, H. B. Jeong, M. Kohda, J. M. Yuk, J. Nitta et al., Efficient spin–orbit torque in magnetic trilayers using all three polarizations of a spin current, Nat. Electron. 5, 217 (2022).
[82] H. Wu, J. Zhang, B. Cui, S. A. Razavi, X. Che, Q. Pan, D. Wu, G. Yu, X. Han, and K. L. Wang, Field-free approaches for deterministic spin–orbit torque switching of the perpendicular magnet, Mater. Futures 1 (2022).
[83] W. L. Yang, Z. R. Yan, Y. W. Xing, C. Cheng, C. Y. Guo, X. M. Luo, M. K. Zhao, G. Q. Yu, C. H. Wan, M. E. Stebliy et al., Role of an in-plane ferromagnet in a T-type structure for field-free magnetization switching, Appl. Phys. Lett. 120, 122402 (2022).
[84] H. Wu, J. Nance, S. A. Razavi, D. Lujan, B. Dai, Y. Liu, H. He, B. Cui, D. Wu, K. Wong et al., Chiral Symmetry Breaking for Deterministic Switching of Perpendicular Magnetization by Spin–Orbit Torque, Nano Lett. 21, 515 (2021).
[85] F. Wang, X. Zhang, Z. Zhang, and Y. Liu, Deterministic magnetization switching by spin–orbit torque in a ferromagnet with tilted magnetic anisotropy: A macrospin modeling, J. Magn. Magn. Mater. 527, 167757 (2021).
[86] C.-Y. Hu, W.-D. Chen, Y.-T. Liu, C.-C. Huang, and C.-F. Pai, The central role of tilted anisotropy for field-free spin–orbit torque switching of perpendicular magnetization, NPG Asia Mater. 16 (2024).
[87] Y. C. Lau, D. Betto, K. Rode, J. M. Coey, and P. Stamenov, Spin-orbit torque switching without an external field using interlayer exchange coupling, Nat. Nanotechnol. 11, 758 (2016).
[88] Y. W. Oh, S. H. Chris Baek, Y. M. Kim, H. Y. Lee, K. D. Lee, C. G. Yang, E. S. Park, K. S. Lee, K. W. Kim, G. Go et al., Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures, Nat. Nanotechnol. 11, 878 (2016).
[89] A. van den Brink, G. Vermijs, A. Solignac, J. Koo, J. T. Kohlhepp, H. J. M. Swagten, and B. Koopmans, Field-free magnetization reversal by spin-Hall effect and exchange bias, Nat. Comm. 7, 10854 (2016).
[90] L. Liu, C. Zhou, X. Shu, C. Li, T. Zhao, W. Lin, J. Deng, Q. Xie, S. Chen, J. Zhou et al., Symmetry-dependent field-free switching of perpendicular magnetization, Nat. Nanotechnol. 16, 277 (2021).
[91] S. Fukami, T. Anekawa, C. Zhang, and H. Ohno, A spin-orbit torque switching scheme with collinear magnetic easy axis and current configuration, Nat. Nanotechnol. 11, 621 (2016).
[92] T.-Y. Tsai, T.-Y. Chen, C.-T. Wu, H.-I. Chan, and C.-F. Pai, Spin-orbit torque magnetometry by wide-field magneto-optical Kerr effect, Sci. Rep. 8, 5613 (2018).
[93] N. Murray, W.-B. Liao, T.-C. Wang, L.-J. Chang, L.-Z. Tsai, T.-Y. Tsai, S.-F. Lee, and C.-F. Pai, Field-free spin-orbit torque switching through domain wall motion, Phys. Rev. B 100, 104441 (2019).
[94] E. Y. Vedmedenko, R. K. Kawakami, D. D. Sheka, P. Gambardella, A. Kirilyuk, A. Hirohata, C. Binek, O. Chubykalo-Fesenko, S. Sanvito, B. J. Kirby et al., The 2020 magnetism roadmap, J. Phys. D: Appl. Phys. 53 (2020).
[95] Z. Luo, A. Hrabec, T. P. Dao, G. Sala, S. Finizio, J. Feng, S. Mayr, J. Raabe, P. Gambardella, and L. J. Heyderman, Current-driven magnetic domain-wall logic, Nature 579, 214 (2020).
[96] T. P. D. Zhaochu Luo, AlešHrabec, Jaianth Vijayakumar, Armin Kleibert, Manuel Baumgartner, Eugenie Kirk, Jizhai Cui, Tatiana Savchenko, Gunasheel Krishnaswamy, Laura J. Heyderman, Pietro Gambardella, Chirally couped nanomagnets, Science 363 (2019).
[97] Y.-C. Li, Y.-H. Huang, C.-C. Huang, Y.-T. Liu, and C.-F. Pai, Field-Free Switching in Symmetry-Breaking Multilayers: The Critical Role of Interlayer Chiral Exchange, Phys. Rev. Appl. 20, 024036 (2023).
[98] J. Torrejon, F. Garcia-Sanchez, T. Taniguchi, J. Sinha, S. Mitani, J.-V. Kim, and M. Hayashi, Current-driven asymmetric magnetization switching in perpendicularly magnetized CoFeB/MgO heterostructures, Phys. Rev. B 91 (2015).
[99] H. Masuda, T. Seki, Y. Yamane, R. Modak, K.-i. Uchida, J. i. Ieda, Y.-C. Lau, S. Fukami, and K. Takanashi, Large Antisymmetric Interlayer Exchange Coupling Enabling Perpendicular Magnetization Switching by an In-Plane Magnetic Field, Phys. Rev. Appl. 17, 054036 (2022).
[100] K. P. T. J. Klemmer, Seed layer control for tilted magnetic recording media, Appl. Phys. Lett. 88, 162507 (2006).
[101] C. Li, G. Chai, C. Yang, W. Wang, and D. Xue, Tunable zero-field ferromagnetic resonance frequency from S to X band in oblique deposited CoFeB thin films, Sci. Rep. 5, 17023 (2015).
[102] Y. H. Huang, J. H. Han, W. B. Liao, C. Y. Hu, Y. T. Liu, and C. F. Pai, Tailoring Interlayer Chiral Exchange by Azimuthal Symmetry Engineering, Nano Lett. 24, 649 (2024).
[103] J. A. Arregi, P. Riego, A. Berger, and E. Y. Vedmedenko, Large interlayer Dzyaloshinskii-Moriya interactions across Ag-layers, Nat. Comm. 14, 6927 (2023).
[104] S. Chen, D. Li, B. Cui, L. Xi, M. Si, D. Yang, and D. Xue, Temperature dependence of spin–orbit torques in Pt/Co/Pt multilayers, J. Phys. D: Appl. Phys. 51 (2018).
[105] F. Kammerbauer, W. Y. Choi, F. Freimuth, K. Lee, R. Fromter, D. S. Han, R. Lavrijsen, H. J. M. Swagten, Y. Mokrousov, and M. Klaui, Controlling the Interlayer Dzyaloshinskii-Moriya Interaction by Electrical Currents, Nano Lett. 23, 7070 (2023).
[106] A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, Perspectives on oblique angle deposition of thin films: From fundamentals to devices, Prog. Mater. Sci. 76, 59 (2016).
[107] H. Hajihoseini, M. Kateb, S. Ingvarsson, and J. T. Gudmundsson, Oblique angle deposition of nickel thin films by high-power impulse magnetron sputtering, Beilstein J. Nanotechnol 10, 1914 (2019).
[108] L. González-García, I. González-Valls, M. Lira-Cantu, A. Barranco, and A. R. González-Elipe, Aligned TiO2 nanocolumnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells, Energy Environ. Sci. 4 (2011).
[109] T. C. Chuang, C. F. Pai, and S. Y. Huang, Cr-induced Perpendicular Magnetic Anisotropy and Field-Free Spin-Orbit-Torque Switching, Phys. Rev. Appl. 11, 016005 (2019).
[110] H. Chu, S. Song, C. Li, and D. Gibson, Surface Enhanced Raman Scattering Substrates Made by Oblique Angle Deposition: Methods and Applications, Coatings 7 (2017).
[111] K. Garello, I. M. Miron, C. O. Avci, F. Freimuth, Y. Mokrousov, S. Blugel, S. Auffret, O. Boulle, G. Gaudin, and P. Gambardella, Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures, Nat Nanotechnol 8, 587 (2013).
[112] R. H. Koch, J. A. Katine, and J. Z. Sun, Time-resolved reversal of spin-transfer switching in a nanomagnet, Phys. Rev. Lett. 92, 088302 (2004).
[113] B. Dieny and M. Chshiev, Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications, Rev. Mod. Phys. 89 (2017).
[114] W.-B. Liao, T.-Y. Chen, Y.-C. Hsiao, and C.-F. Pai, Pulse-width and temperature dependence of memristive spin–orbit torque switching, Appl. Phys. Lett. 117 (2020).
[115] S. Jaiswal, K. Lee, J. Langer, B. Ocker, M. Kläui, and G. Jakob, Tuning of interfacial perpendicular magnetic anisotropy and domain structures in magnetic thin film multilayers, J. Phys. D: Appl. Phys. 52 (2019).
[116] T. Liu, J. W. Cai, and L. Sun, Large enhanced perpendicular magnetic anisotropy in CoFeB/MgO system with the typical Ta buffer replaced by an Hf layer, AIP Advances 2 (2012).
[117] T.-C. Wang, T.-Y. Chen, C.-T. Wu, H.-W. Yen, and C.-F. Pai, Comparative study on spin-orbit torque efficiencies from W/ferromagnetic and W/ferrimagnetic heterostructures, Phys. Rev. Mater. 2 (2018).
[118] W.-B. Liao, T.-Y. Chen, Y. Ferrante, S. S. P. Parkin, and C.-F. Pai, Current‐Induced Magnetization Switching by the High Spin Hall Conductivity α‐W, Phys. Status Solidi RRL 13 (2019).
[119] W. Skowroński, Ł. Karwacki, S. Ziętek, J. Kanak, S. Łazarski, K. Grochot, T. Stobiecki, P. Kuświk, F. Stobiecki, and J. Barnaś, Determination of Spin Hall Angle in Heavy-Metal/Co−Fe−B-Based Heterostructures with Interfacial Spin-Orbit Fields, Phys. Rev. Appl. 11 (2019).
[120] X. W. Zhou and H. N. G. Wadley, Atomistic simulation of the vapor deposition of Ni/Cu/Ni multilayers: Incident adatom angle effects, J. Appl. Phys. 87, 553 (2000).
[121] C. Sun, Y. Jiao, C. Zuo, X. Hu, Y. Tao, F. Jin, W. Mo, Y. Hui, J. Song, and K. Dong, Field-free switching of perpendicular magnetization through spin-orbit torque in FePt/[TiN/NiFe](5) multilayers, Nanoscale 13, 18293 (2021).
[122] S. S. Parkin and D. Mauri, Spin engineering: Direct determination of the Ruderman-Kittel-Kasuya-Yosida far-field range function in ruthenium, Phys. Rev. B 44, 7131 (1991).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/96205-
dc.description.abstract近年來,Dzyaloshinskii-Moriya交互作用(DMI)因其在產生非共線鐵磁性方面的關鍵作用而受到了不少關注,它在手性磁域壁的形成以及穩定斯格明子等拓撲結構等情況中至關重要。科學家們已經探索了各種創新性的想法,嘗試通過電流來操縱這些具有DMI結構,以期創造可行的基於自旋的賽道/邏輯元件。不過,由於薄膜的堆疊順序可以自然產生垂直平面的對稱性破缺,DMI至今主要被限制於介面的情況中。在這篇論文中,我將展示如何通過引入一個平面內的對稱性破缺,將DMI擴充到一個新穎的(IL-DMI)的情況。在這個系統中,被一個非磁性的間隔層分開的兩個磁化量會因IL-DMI而傾向垂直排列。
首先,我在具有正交磁化量的磁多層膜系統中觀察到了不低的IL-DMI。通過利用特殊設計的變角度的磁場掃描,在實驗中觀察到了IL-DMI的反對稱性質及其飽和行為。利用反常霍爾效應(AHE)和橫向磁光克爾效應(L-MOKE)探測分別具有垂直磁化(PMA)和平面內磁化(IMA)的兩個鐵磁層,我在驗證了IL-DMI的對稱性的同時計算了IL-DMI的強度。透過同時觀測兩個鐵磁層並在實驗上證明兩者同時發生磁化翻轉的行為,我展示了如何通過IL-DMI將針對特定磁化的操縱轉移到與其正交的另一個鐵磁層上。
隨後,我對不同對稱性破缺要素的有效性進行了研究。首先,我將IL-DMI的重要性與PMA層中的傾斜磁各向異性進行了比較,這兩種效應由於在材料成長中使用了斜角沉積(OAD)而會共存於磁薄膜中。我接著通過IMA和PMA的磁化翻轉特性的比較確認了IL-DMI的重要性。其次,與OAD不同,我研究了實現平面內對稱性破缺的另一種方法:在外加的平面場Hext下進行樣品生長。我確認了雖然OAD和使用Hext都能在IMA層中產生磁各向異性,但基於磁異向性的的對稱性破壞對IL-DMI的強度和方向幾無影響,這強烈暗示了IL-DMI的起源是結構性的。
接著通過利用多個OAD膜層,我發現了IL-DMI的整體強度和方向是由各個楔形層的貢獻所決定。這些獨立貢獻與總體強度之間明顯的線性關係,以及觀察到的相反特徵方向都啟發了我,發展了基於Fert-Lévy三位元點模型的玩具模型。此一模型可以良好的整合實驗結果並解釋IL-DMI的物理起源。此外,通過適當的OAD設計策略,可以抑制由OAD引起的空間不均勻性的同時最小化對IL-DMI強度的降低,對元件的實用化有益。最後,我明確展示了當相互作用由Ru傳導時,IL-DMI強度有明顯的阻尼振盪行為。根據理論預測的擬和得出約1納米的振盪週期證實了理論預測,即DMI是RKKY相互作用的一個附加項。
zh_TW
dc.description.abstractIn recent years, Dzyaloshinskii-Moriya interaction (DMI) has garnered enormous attention for its pivotal role in facilitating noncollinear magnetism, such as the formation of chiral domain walls and stabilizing topologically distinct structures like magnetic skyrmions. Various innovative proposals have been explored to manipulate these DMI mediated structures via electric currents, to create viable spin-based racetrack/logic devices. Thus far, DMI has primarily been confined to an interfacial case due to the out-of plane symmetry breaking naturally generated by the film’s stacking order. In this dissertation, I showcase that by introducing an in-plane symmetry breaking element, DMI can be extended to a novel interlayer scenario (IL-DMI). Here, perpendicular alignment of spins is mediated between two discrete magnetizations, separated by a nonmagnetic spacer.
Firstly, sizable IL-DMI is observed within a multilayer system with orthogonal magnetic orientations. The antisymmetric nature of IL-DMI and its saturating behavior are both experimentally observed utilizing an angle-dependent field-scan protocol. The directionality of IL-DMI is confirmed to obey the symmetry pointed out by Moriya. By probing both perpendicularly magnetized (PMA) and in-plane magnetized (IMA) layers via anomalous Hall effect (AHE) and longitudinal magneto-optical Kerr effect (L-MOKE), respectively, the reciprocity of IL-DMI is verified, with the strength of IL-DMI estimated. Particularly, supported by the coherent switching of both IMA and PMA magnetizations, I demonstrate how manipulation of one magnetization can be transposed to an orthogonal axis through IL-DMI.
The efficacy of different symmetry breaking factors are subsequently investigated. First, the importance of IL-DMI is compared to the tilted magnetic anisotropy in the PMA layer where both effects coexist due to the oblique angle deposition (OAD). Their relative magnitudes are evaluated, affirming the importance of IL-DMI by comparing the IMA and PMA switching characteristics. Secondly, in contrast to the OAD process, we investigate an alternative means of achieving in-plane symmetry breaking: sample growth under an external in-plane field Hext. It’s concluded that while both OAD and Hext can induce magnetic anisotropy in the IMA layer, magnetically based symmetry breaking factor has a negligible impact on IL-DMI’s strength and direction. This strongly suggests that the origin of IL-DMI is structural.
Lastly, by exploiting multiple OAD opportunities, I unveil the overall strength and direction of IL-DMI to be governed by individual wedged layer’s contributions. The evident linearity, and the opposite characteristic directions observed among these individual contributions inspired the development of a toy model based on the Fert-Lévy three site model. This model can explain the physical origin of the IL-DMI while incorporating experimental findings. Furthermore, by implementing proper OAD design strategies, spacial inhomogeneity created by OAD can be suppressed while minimizing the reduction in IL-DMI strength. Finally, I definitively showcase a damped oscillation of IL-DMI when the interaction is mediated by Ru, a conventional Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction spacer. The identical oscillation period of ~ 1 nm confirms the theoretical prediction that DMI arises from an additional term in RKKY interaction.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-11-28T16:10:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-11-28T16:10:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iv
Abstract vi
CONTENTS viii
LIST OF FIGURES xi
LIST OF TABLES xxv
Chapter 1 Introduction 1
1.1 Exchange interactions 1
1.1.1 Direct Exchange 2
1.1.2 Indirect exchange: Superexchange 5
1.1.3 Indirect exchange: RKKY Interaction 6
1.1.4 Dzyaloshinskii-Moriya Interaction 9
1.2 Transport Phenomena 13
1.2.1 Anomalous Hall Effect and Spin Hall Effect 13
1.2.2 Unidirectional Magnetoresistance 16
1.3 Magneto-optical Kerr effect (MOKE) 17
1.3.1 Overview of the MOKE signal 18
1.3.2 L-MOKE instrument setup and verification 20
1.4 Motivations 23
Chapter 2 Observation of Interlayer Dzyaloshinskii-Moriya interaction in symmetry broken systems 25
2.1 Generation and Detection of IL-DMI 26
2.1.1 In-plane symmetry breaking 26
2.1.2 Observation of IL-DMI 28
2.2 Reciprocal Effect and Energy Density 36
2.3 IL-DMI’s role in Current-Induced Field-Free Switching 39
2.4 Brief Conclusions 45
Chapter 3 IL-DMI’s Comparison with other Symmetry Breaking effects 47
3.1 Comparative study of IL-DMI versus Tilted Anisotropy 48
3.1.1 Magnitudes of IL-DMI and Tilted Anisotropy 48
3.1.2 Role of Tilted Magnetic Anisotropy and IL-DMI in Current-Induced Field-Free switching 54
3.2 Lack of Evidence Correlating Field-Induced Magnetic Anisotropy to IL-DMI Generation 59
Chapter 4 Azimuthal Engineering and Modelling of Interlayer Chiral Exchange 66
4.1 Tunable IL-DMI Strength by Oblique Angle Deposition Control 67
4.1.1 Type-T structures 68
4.1.2 IL-DMI behavior in a double-PMA system 71
4.1.3 SAF System 73
4.2 IL-DMI Toy model developed from the Fert-Lévy three site triangle 76
4.3 Device-to-device properties homogeneity improved by counter-wedge deposition. 83
4.3.1 Field-Free Switching Characteristics 83
4.3.2 Self Counter-Wedge Design for Structural Homogeneity 87
4.3.3 Ruderman-Kittel-Kasuya-Yoshida (RKKY) type IL-DMI 94
4.4 Brief Conclusions 100
Chapter 5 CONCLUSIONS 101
Chapter 6 Appendix: Sample Preparations 104
6.1 Magnetron Sputtering 104
6.2 Photolithography and device patterns 106
REFERENCE 109
-
dc.language.isoen-
dc.subject磁化翻轉zh_TW
dc.subject賈洛申斯基-守谷交換作用zh_TW
dc.subject自旋電子學zh_TW
dc.subject人工反鐵磁zh_TW
dc.subject磁性隨機存取記憶體zh_TW
dc.subject楔型沉積zh_TW
dc.subjectMagnetic random-access memoryen
dc.subjectSpintronicsen
dc.subjectMagnetization switchingen
dc.subjectDzyaloshinskii-Moriya interactionen
dc.subjectWedge depositionen
dc.subjectsynthetic antiferromagnetsen
dc.title層間反對稱交互作用: 物理行為以及三維磁元件的自旋工程zh_TW
dc.titleInterlayer Dzyaloshinskii-Moriya interaction: Physical behaviors and spin engineering in three-dimensional devicesen
dc.typeThesis-
dc.date.schoolyear113-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee徐斌睿;許紘瑋;黃斯衍;曲丹茹zh_TW
dc.contributor.oralexamcommitteePin-Jui Hsu;Hung-Wei Shiu;Ssu-Yen Huang;Dan-Ru Quen
dc.subject.keyword自旋電子學,磁化翻轉,賈洛申斯基-守谷交換作用,楔型沉積,人工反鐵磁,磁性隨機存取記憶體,zh_TW
dc.subject.keywordSpintronics,Magnetization switching,Dzyaloshinskii-Moriya interaction,Wedge deposition,synthetic antiferromagnets,Magnetic random-access memory,en
dc.relation.page121-
dc.identifier.doi10.6342/NTU202404434-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-10-01-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2025-10-30-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-1.pdf6.39 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved