請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95871完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙基揚 | zh_TW |
| dc.contributor.advisor | Chi-Yang Chao | en |
| dc.contributor.author | 郭覲豪 | zh_TW |
| dc.contributor.author | Chin-Hao Kuo | en |
| dc.date.accessioned | 2024-09-18T16:28:17Z | - |
| dc.date.available | 2024-09-19 | - |
| dc.date.copyright | 2024-09-18 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-10 | - |
| dc.identifier.citation | (1) Abuzeid, H. R.; EL-Mahdy, A. F.; Kuo, S.-W. Covalent organic frameworks: Design principles, synthetic strategies, and diverse applications. Giant 2021, 6, 100054.
(2) Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355 (6328), eaal1585. (3) El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Designed synthesis of 3D covalent organic frameworks. Science 2007, 316 (5822), 268-272. (4) Lohse, M. S.; Bein, T. Covalent organic frameworks: structures, synthesis, and applications. Advanced Functional Materials 2018, 28 (33), 1705553. (5) Ding, S.-Y.; Wang, W. Covalent organic frameworks (COFs): from design to applications. Chemical Society Reviews 2013, 42 (2), 548-568. (6) Omidvar, A. Assessment of boroxine covalent organic framework as Li-ion battery anodes. Journal of Molecular Liquids 2021, 339, 116822. (7) Lei, Z.; Yang, Q.; Xu, Y.; Guo, S.; Sun, W.; Liu, H.; Lv, L.-P.; Zhang, Y.; Wang, Y. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nature Communications 2018, 9 (1), 1-13. (8) Tan, X.; Tong, Y.; Yang, J.; Du, X.; Yang, A.; Zhang, A.; Xu, Q. A flexible solid-state electrolyte based on comb-like PEG-functionalized covalent organic frameworks for lithium metal batteries. Polymer Chemistry 2024, 15 (5), 454-464. (9) He, J.; Bhargav, A.; Manthiram, A. Covalent Organic Framework as an Efficient Protection Layer for a Stable Lithium‐Metal Anode. Angewandte Chemie 2022, 134 (18), e202116586. (10) Chen, D.; Huang, S.; Zhong, L.; Wang, S.; Xiao, M.; Han, D.; Meng, Y. In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture. Advanced Functional Materials 2020, 30 (7), 1907717. (11) Wright, P. A. Microporous framework solids. 2008. (12) Davis, M. E. Ordered porous materials for emerging applications. Nature 2002, 417 (6891), 813-821. (13) Barrer, R. M. 435. Syntheses and reactions of mordenite. Journal of the Chemical Society (Resumed) 1948, 2158-2163. (14) Williams, K. A.; Boydston, A. J.; Bielawski, C. W. Main-chain organometallic polymers: synthetic strategies, applications, and perspectives. Chemical Society Reviews 2007, 36 (5), 729-744. (15) Hönicke, I. M.; Senkovska, I.; Bon, V.; Baburin, I. A.; Bönisch, N.; Raschke, S.; Evans, J. D.; Kaskel, S. Balancing mechanical stability and ultrahigh porosity in crystalline framework materials. Angewandte Chemie International Edition 2018, 57 (42), 13780-13783. (16) Budd, P. M.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chemical communications 2004, (2), 230-231. (17) Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F.; Simmons, J. M. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angewandte Chemie International Edition 2009, 48 (50), 9457-9460. (18) Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. science 2005, 310 (5751), 1166-1170. (19) Yu, J.; Corma, A.; Li, Y. Functional porous materials chemistry. 2020. (20) Sharma, R. K.; Yadav, P.; Yadav, M.; Gupta, R.; Rana, P.; Srivastava, A.; Zbořil, R.; Varma, R. S.; Antonietti, M.; Gawande, M. B. Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Materials Horizons 2020, 7 (2), 411-454. (21) Mandal, T. K.; Parvin, N.; Mishra, K.; Mohandoss, S.; Lee, Y. R. Sensitive and selective fluorometric determination of DNA by using layered hexagonal nanosheets of a covalent organic framework prepared from p-phenylenediamine and benzene-1, 3, 5-tricarboxaldehyde. Microchimica Acta 2019, 186, 1-8. (22) Anrui, Z.; Yuejie, A. Structure control of covalent organic frameworks (COFs) and their applications in environmental chemistry. Progress in Chemistry 2020, 32 (10), 1564. (23) Yaghi, O. M.; Kalmutzki, M. J.; Diercks, C. S. Introduction to reticular chemistry: metal-organic frameworks and covalent organic frameworks; John Wiley & Sons, 2019. (24) Guan, X.; Chen, F.; Fang, Q.; Qiu, S. Design and applications of three dimensional covalent organic frameworks. Chemical Society Reviews 2020, 49 (5), 1357-1384. (25) Hunt, J. R.; Doonan, C. J.; LeVangie, J. D.; Côté, A. P.; Yaghi, O. M. Reticular synthesis of covalent organic borosilicate frameworks. Journal of the American Chemical Society 2008, 130 (36), 11872-11873. (26) Qin, Y.; Zhu, X.; Huang, R. Covalent organic frameworks: linkage types, synthetic methods and bio-related applications. Biomaterials Science 2023, 11 (21), 6942-6976. (27) Lanni, L. M.; Tilford, R. W.; Bharathy, M.; Lavigne, J. J. Enhanced hydrolytic stability of self-assembling alkylated two-dimensional covalent organic frameworks. Journal of the American chemical society 2011, 133 (35), 13975-13983. (28) Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klock, C.; O’Keeffe, M.; Yaghi, O. M. A crystalline imine-linked 3-D porous covalent organic framework. Journal of the American Chemical Society 2009, 131 (13), 4570-4571. (29) Yang, X.; Zhang, S.; Wang, J.; Wang, W.; Li, J.; Chen, J.; Zhao, Y.; Wang, C.; Wang, Z. Modulated construction of imine-based covalent organic frameworks for efficient adsorption of polycyclic aromatic hydrocarbons from honey samples. Analytica Chimica Acta 2020, 1134, 50-57. (30) Segura, J. L.; Mancheño, M. J.; Zamora, F. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chemical Society Reviews 2016, 45 (20), 5635-5671. (31) Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. Crystalline covalent organic frameworks with hydrazone linkages. Journal of the American Chemical Society 2011, 133 (30), 11478-11481. (32) Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. Journal of the American Chemical Society 2012, 134 (48), 19524-19527. (33) Guo, J.; Xu, Y.; Jin, S.; Chen, L.; Kaji, T.; Honsho, Y.; Addicoat, M. A.; Kim, J.; Saeki, A.; Ihee, H. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nature communications 2013, 4 (1), 2736. (34) Nagai, A.; Chen, X.; Feng, X.; Ding, X.; Guo, Z.; Jiang, D. A squaraine‐linked mesoporous covalent organic framework. Angewandte Chemie International Edition 2013, 52 (13), 3770-3774. (35) Pyles, D. A.; Crowe, J. W.; Baldwin, L. A.; McGrier, P. L. Synthesis of benzobisoxazole-linked two-dimensional covalent organic frameworks and their carbon dioxide capture properties. ACS Macro Letters 2016, 5 (9), 1055-1058. (36) Jiang, S.-Y.; Gan, S.-X.; Zhang, X.; Li, H.; Qi, Q.-Y.; Cui, F.-Z.; Lu, J.; Zhao, X. Aminal-linked covalent organic frameworks through condensation of secondary amine with aldehyde. Journal of the American Chemical Society 2019, 141 (38), 14981-14986. (37) Zhao, H.; Jin, Z.; Su, H.; Jing, X.; Sun, F.; Zhu, G. Targeted synthesis of a 2D ordered porous organic framework for drug release. Chemical communications 2011, 47 (22), 6389-6391. (38) Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine‐based frameworks prepared by ionothermal synthesis. Angewandte Chemie International Edition 2008, 47 (18), 3450-3453. (39) Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J.; Qiu, S.; Yan, Y. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nature communications 2014, 5 (1), 4503. (40) Zhuang, X.; Zhao, W.; Zhang, F.; Cao, Y.; Liu, F.; Bi, S.; Feng, X. A two-dimensional conjugated polymer framework with fully sp 2-bonded carbon skeleton. Polymer Chemistry 2016, 7 (25), 4176-4181. (41) Roeser, J.; Prill, D.; Bojdys, M. J.; Fayon, P.; Trewin, A.; Fitch, A. N.; Schmidt, M. U.; Thomas, A. Anionic silicate organic frameworks constructed from hexacoordinate silicon centres. Nature chemistry 2017, 9 (10), 977-982. (42) Clair, S.; Abel, M.; Porte, L. Growth of boronic acid based two-dimensional covalent networks on a metal surface under ultrahigh vacuum. Chemical Communications 2014, 50 (68), 9627-9635. (43) Li, H.; Chavez, A. D.; Li, H.; Li, H.; Dichtel, W. R.; Bredas, J.-L. Nucleation and growth of covalent organic frameworks from solution: the example of COF-5. Journal of the American Chemical Society 2017, 139 (45), 16310-16318. (44) Koo, B.; Heden, R.; Clancy, P. Nucleation and growth of 2D covalent organic frameworks: polymerization and crystallization of COF monomers. Physical Chemistry Chemical Physics 2017, 19 (15), 9745-9754. (45) Nguyen, V.; Grünwald, M. Microscopic origins of poor crystallinity in the synthesis of covalent organic framework COF-5. Journal of the American Chemical Society 2018, 140 (9), 3306-3311. (46) Bourda, L.; Krishnaraj, C.; Van Der Voort, P.; Van Hecke, K. Conquering the crystallinity conundrum: Efforts to increase quality of covalent organic frameworks. Materials Advances 2021, 2 (9), 2811-2845. (47) Ciaccia, M.; Di Stefano, S. Mechanisms of imine exchange reactions in organic solvents. Organic & biomolecular chemistry 2015, 13 (3), 646-654. (48) Liu, B.; Zhang, J.-G.; Shen, G. Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries. Nano Today 2016, 11 (1), 82-97. (49) Wu, F.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews 2020, 49 (5), 1569-1614. (50) Zhang, X.; Yang, Y.; Zhou, Z. Towards practical lithium-metal anodes. Chemical Society Reviews 2020, 49 (10), 3040-3071. (51) Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G. Lithium metal anodes for rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 513-537. (52) Jiang, G.; Li, K.; Mao, J.; Jiang, N.; Luo, J.; Ding, G.; Li, Y.; Sun, F.; Dai, B.; Li, Y. Sandwich-like Prussian blue/graphene oxide composite films as ion-sieves for fast and uniform Li ionic flux in highly stable Li metal batteries. Chemical Engineering Journal 2020, 385, 123398. (53) Oh, Y. J.; Kim, J. H.; Lee, J. Y.; Park, S.-K.; Kang, Y. C. Design of house centipede-like MoC–Mo2C nanorods grafted with N-doped carbon nanotubes as bifunctional catalysts for high-performance Li–O2 batteries. Chemical Engineering Journal 2020, 384, 123344. (54) Wang, J.; Ge, B.; Li, H.; Yang, M.; Wang, J.; Liu, D.; Fernandez, C.; Chen, X.; Peng, Q. Challenges and progresses of lithium-metal batteries. Chemical Engineering Journal 2021, 420, 129739. (55) Hao, F.; Verma, A.; Mukherjee, P. P. Mechanistic insight into dendrite–SEI interactions for lithium metal electrodes. Journal of Materials Chemistry A 2018, 6 (40), 19664-19671. (56) Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nature nanotechnology 2017, 12 (3), 194-206. (57) Ghazi, Z. A.; Sun, Z.; Sun, C.; Qi, F.; An, B.; Li, F.; Cheng, H. M. Key aspects of lithium metal anodes for lithium metal batteries. Small 2019, 15 (32), 1900687. (58) Tarascon, J.-M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. nature 2001, 414 (6861), 359-367. (59) Wang, S. H.; Yin, Y. X.; Zuo, T. T.; Dong, W.; Li, J. Y.; Shi, J. L.; Zhang, C. H.; Li, N. W.; Li, C. J.; Guo, Y. G. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Advanced Materials 2017, 29 (40), 1703729. (60) Xiong, S.; Xie, K.; Diao, Y.; Hong, X. Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries. Electrochimica Acta 2012, 83, 78-86. (61) Kushima, A.; So, K. P.; Su, C.; Bai, P.; Kuriyama, N.; Maebashi, T.; Fujiwara, Y.; Bazant, M. Z.; Li, J. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams. Nano Energy 2017, 32, 271-279. (62) von Lüders, C.; Keil, J.; Webersberger, M.; Jossen, A. Modeling of lithium plating and lithium stripping in lithium-ion batteries. Journal of Power Sources 2019, 414, 41-47. (63) Li, Q.; Yi, T.; Wang, X.; Pan, H.; Quan, B.; Liang, T.; Guo, X.; Yu, X.; Wang, H.; Huang, X. In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy 2019, 63, 103895. (64) Golozar, M.; Hovington, P.; Paolella, A.; Bessette, S.; Lagacé, M.; Bouchard, P.; Demers, H.; Gauvin, R.; Zaghib, K. In situ scanning electron microscopy detection of carbide nature of dendrites in Li–polymer batteries. Nano Letters 2018, 18 (12), 7583-7589. (65) He, Y.; Ren, X.; Xu, Y.; Engelhard, M. H.; Li, X.; Xiao, J.; Liu, J.; Zhang, J.-G.; Xu, W.; Wang, C. Origin of lithium whisker formation and growth under stress. Nature nanotechnology 2019, 14 (11), 1042-1047. (66) Liu, H.; Cheng, X. B.; Xu, R.; Zhang, X. Q.; Yan, C.; Huang, J. Q.; Zhang, Q. Plating/stripping behavior of actual lithium metal anode. Advanced Energy Materials 2019, 9 (44), 1902254. (67) Yan, K.; Wang, J.; Zhao, S.; Zhou, D.; Sun, B.; Cui, Y.; Wang, G. Temperature‐dependent nucleation and growth of dendrite‐free lithium metal anodes. Angewandte Chemie 2019, 131 (33), 11486-11490. (68) Ko, J.; Yoon, Y. S. Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: is LiF the key to commercializing Li metal batteries? Ceramics International 2019, 45 (1), 30-49. (69) Liu, D.-H.; Bai, Z.; Li, M.; Yu, A.; Luo, D.; Liu, W.; Yang, L.; Lu, J.; Amine, K.; Chen, Z. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chemical Society Reviews 2020, 49 (15), 5407-5445. (70) Cao, X.; Ren, X.; Zou, L.; Engelhard, M. H.; Huang, W.; Wang, H.; Matthews, B. E.; Lee, H.; Niu, C.; Arey, B. W. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nature Energy 2019, 4 (9), 796-805. (71) Yu, S.-H.; Huang, X.; Brock, J. D.; Abruña, H. D. Regulating key variables and visualizing lithium dendrite growth: an operando X-ray study. Journal of the American Chemical Society 2019, 141 (21), 8441-8449. (72) Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of The Electrochemical Society 1979, 126 (12), 2047. (73) Lee, J. I.; Song, G.; Cho, S.; Han, D. Y.; Park, S. Lithium metal interface modification for high‐energy batteries: approaches and characterization. Batteries & Supercaps 2020, 3 (9), 828-859. (74) Zhu, J.; Li, P.; Chen, X.; Legut, D.; Fan, Y.; Zhang, R.; Lu, Y.; Cheng, X.; Zhang, Q. Rational design of graphitic-inorganic Bi-layer artificial SEI for stable lithium metal anode. Energy Storage Materials 2019, 16, 426-433. (75) Gao, Y.; Yan, Z.; Gray, J. L.; He, X.; Wang, D.; Chen, T.; Huang, Q.; Li, Y. C.; Wang, H.; Kim, S. H. Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nature materials 2019, 18 (4), 384-389. (76) Medina, D. D.; Rotter, J. M.; Hu, Y.; Dogru, M.; Werner, V.; Auras, F.; Markiewicz, J. T.; Knochel, P.; Bein, T. Room temperature synthesis of covalent–organic framework films through vapor-assisted conversion. Journal of the American Chemical Society 2015, 137 (3), 1016-1019. (77) Vazquez-Molina, D. A.; Mohammad-Pour, G. S.; Lee, C.; Logan, M. W.; Duan, X.; Harper, J. K.; Uribe-Romo, F. J. Mechanically shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast Li-ion conductivity. Journal of the American Chemical Society 2016, 138 (31), 9767-9770. (78) Lee, H.; Ren, X.; Niu, C.; Yu, L.; Engelhard, M. H.; Cho, I.; Ryou, M. H.; Jin, H. S.; Kim, H. T.; Liu, J. Suppressing lithium dendrite growth by metallic coating on a separator. Advanced Functional Materials 2017, 27 (45), 1704391. (79) Wang, W.; Yang, Z.; Zhang, Y.; Wang, A.; Zhang, Y.; Chen, L.; Li, Q.; Qiao, S. Highly stable lithium metal anode enabled by lithiophilic and spatial-confined spherical-covalent organic framework. Energy Storage Materials 2022, 46, 374-383. (80) Gaddam, R. R.; Katzenmeier, L.; Lamprecht, X.; Bandarenka, A. S. Review on physical impedance models in modern battery research. Physical Chemistry Chemical Physics 2021, 23 (23), 12926-12944. (81) Matsumoto, M.; Dasari, R. R.; Ji, W.; Feriante, C. H.; Parker, T. C.; Marder, S. R.; Dichtel, W. R. Rapid, low temperature formation of imine-linked covalent organic frameworks catalyzed by metal triflates. Journal of the American Chemical Society 2017, 139 (14), 4999-5002. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95871 | - |
| dc.description.abstract | 共價有機框架(Covalent Organic Frameworks, COFs)是一種主要由C、H、O、N和B等輕元素組成的有機多孔材料。其為透過共價鍵結構形成二維或三維網絡結構,具有高孔隙率、大表面積、低密度以及優異的熱穩定性和化學穩定性。透過前驅物的選擇,即可調整COFs的官能基團和孔徑。在此研究中,我們使用4-formylphenylboronic acid 和 p-phenylenediamine作為前驅物,並採用一鍋法合成了同時具有亞胺和環硼氧烷的COFs。我們系統性的研究了包括溶劑、催化劑和反應環境在內的反應參數對COFs結構和性質(如形貌、顆粒大小、結晶度和孔隙率等)的影響。
在此研究中,我們還開發了利用超音波破碎技術,製備均勻分散COFs的液體電解質的方法。在此方法中,液體電解質會滲透到隔離膜中,均勻分散之COFs會在隔離膜和鋰金屬負極之間形成人工固態電解質界面。我們系統性的研究了COF的添加量和結晶度對A-SEI性能的影響。含有COF A-SEI之鋰對稱電池(LSC)的長期界面阻抗明顯低於不含COF的鋰對稱電池,表明COF A-SEI可以透過抑制化學SEI的形成來提高界面穩定性。COF A-SEI LSC的恆電流循環測試還顯示,在1 mA cm⁻²和2 mAh cm⁻²的電流密度下可穩定循環長達550小時,是不含COF的LSC的兩倍,證明了COF A-SEI優異的效能。由於亞胺和環硼氧烷對鋰離子的高親和力,可以促進鋰的均勻沉積和剝離,從而有效抑制鋰金屬表面的鋰枝晶形成。 | zh_TW |
| dc.description.abstract | Covalent Organic Frameworks (COFs) are a type of organic porous material composed primarily of light elements such as C, H, O, N, and B. They are structured through covalent bonds to form two-dimensional or three-dimensional networks possessing high porosity, large surface area, low density as well as excellent thermal and chemical stability. By varying the chemical structure of the precursors, the functional groups and pore size of COFs can be tailored. In this work, a one-pot chemistry using 4-formylphenylboronic acid and p-phenylenediamine as the precursors is adopted to synthesize COFs possessing both imine and boroxine groups. We systematically investigate the effects of reaction parameters including solvents, catalysts, and reaction environments on the structures and the properties of COFs, such as morphology, particle size, crystallinity, and porosity.
In this research, we also developed a methodology to prepare liquid electrolytes containing homogeneously dispersed COFs with the help of ultrasonication. Upon infiltrating the liquid electrolytes into the separator, the dispersed COFs would feasibly form an artificial solid electrolyte interphase (A-SEI) between the separator and the lithium metal anode. We systematically investigate the influence of the amount and the crystallinity of COF on the performance of the corresponding A-SEI. The long term interfacial resistance of the optimized lithium symmetrical cell (LSC) containing COF A-SEI is obviously lower than the counterpart without COF, suggesting the COF A-SEI would improve the interfacial stability by inhibiting chemical SEI formation. Galvanostatic cycling of the COF A-SEI LSC also demonstrates up to 550 h stable cycling at 1 mA cm-2 and 2 mAh cm-2, twice longer than the COF-free LSC. The COF A-SEI proves the strong capability to facilitate homogeneous deposition and stripping of lithium owing to the high affinity of imine and boroxine to lithium ions, and thus to effectively suppress lithium dendrite formation at the lithium metal surface. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-18T16:28:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-18T16:28:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目次 V 圖次 VIII 表次 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與架構 3 第二章 文獻回顧 6 2.1 奈米多孔材料 6 2.1.1 有機共價框架之原理及設計 8 2.1.2 有機共價框架之成長機制 11 2.2 鋰金屬電池 14 2.2.1 鋰金屬電池之發展及優劣勢 14 2.2.2 鋰枝晶及固態電解質介面層(SEI) 15 2.3 A-SEI在鋰金屬電池中的應用 17 2.4 COF在鋰電池中的應用 19 2.4.1 電極材料 19 2.4.2 固態高分子電解質添加劑 23 2.4.3 鋰金屬原位生長之COF A-SEI 27 2.4.4 鋰金屬上沉積COF之A-SEI 34 第三章 實驗步驟與原理 38 3.1 實驗藥品 38 3.2 實驗儀器 40 3.3 材料製備 42 3.3.1 COF之合成 42 3.3.2 COFg電解液之製備 44 3.3.3 COFb電解液之製備 44 3.3.4 CR2032鈕扣型電池組裝 46 3.4 材料分析 47 3.4.1 X光繞射儀 47 3.4.2 傅立葉轉換紅外光譜儀(FT-IR) 47 3.4.3 元素分析儀(EA) 47 3.4.4 X光光電子光譜儀(XPS) 48 3.4.5 掃描式電子顯微鏡(SEM) 48 3.4.6 高解析穿透式電子顯微鏡(HRTEM) 48 3.4.7 熱重分析 48 3.4.8 氮氣吸脫附分析儀(BET) 49 3.4.9 離子傳導度測量 49 3.4.10 鋰離子遷移係數測量 50 3.4.11 恆電流充放電循環測試(Galvanostatic cycling test) 50 3.4.12 鋰金屬表面分析 51 3.4.13 電化學阻抗頻譜 51 第四章 結果與討論 53 4.1 COF之合成與鑑定 53 4.2 以COF作為鋰金屬電池電解液之添加劑 66 4.3 含COF電解液之離子傳導度 72 4.4 含COF電解液與鋰金屬的介面穩定性 75 4.5 含COF電解液的 LSC恆電流充放電循環測試(Galvanostatic cycling) 81 4.6 COF LSC之鋰金屬表面分析 89 第五章 結論 91 第六章 未來展望 92 參考文獻 93 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 含亞胺和環硼氧烷之共價有機框架(COFs): 合成與其在鋰金屬電池的人工固態電解質介面之應用 | zh_TW |
| dc.title | Covalent Organic Frameworks (COFs) Containing Imine and Boroxine: Syntheses and the Applications for Artificial Solid Electrolyte Interphase (A-SEI) of Lithium Metal Batteries | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳乃立;蔡協致 | zh_TW |
| dc.contributor.oralexamcommittee | Nae-Lih Wu;Hsieh-Chih Tsai | en |
| dc.subject.keyword | 共價有機框架,鋰金屬電池,環硼氧烷,人工固態電解質界面,鋰枝晶, | zh_TW |
| dc.subject.keyword | covalent organic frameworks,lithium metal battery,boroxine,artificial solid electrolyte interphase,lithium dendrite, | en |
| dc.relation.page | 100 | - |
| dc.identifier.doi | 10.6342/NTU202403377 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2027-09-01 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2027-09-01 | 8.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
