Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95838
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙基揚zh_TW
dc.contributor.advisorChi-Yang Chaoen
dc.contributor.author藍子揚zh_TW
dc.contributor.authorTzu-Yang Lanen
dc.date.accessioned2024-09-18T16:18:09Z-
dc.date.available2024-09-19-
dc.date.copyright2024-09-18-
dc.date.issued2024-
dc.date.submitted2024-08-10-
dc.identifier.citation(1) Fan, X.; Liu, B.; Liu, J.; Ding, J.; Han, X.; Deng, Y.; Lv, X.; Xie, Y.; Chen, B.; Hu, W. Battery technologies for grid-level large-scale electrical energy storage. Transactions of Tianjin University 2020, 26, 92-103.
(2) Chen, H.; Cong, T. N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Progress in electrical energy storage system: A critical review. Progress in natural science 2009, 19 (3), 291-312.
(3) Ding, C.; Zhang, H.; Li, X.; Liu, T.; Xing, F. Vanadium flow battery for energy storage: prospects and challenges. The journal of physical chemistry letters 2013, 4 (8), 1281-1294.
(4) Gattrell, M.; Qian, J.; Stewart, C.; Graham, P.; MacDougall, B. The electrochemical reduction of VO2+ in acidic solution at high overpotentials. Electrochimica acta 2005, 51 (3), 395-407.
(5) Yang, Y.; Zhang, Y.; Tang, L.; Liu, T.; Huang, J.; Peng, S.; Yang, X. Investigations on physicochemical properties and electrochemical performance of sulfate-chloride mixed acid electrolyte for vanadium redox flow battery. Journal of Power Sources 2019, 434, 226719.
(6) Minerals, B. Life. Powered.; 2023.
(7) Zeng, Y.; Zhao, T.; An, L.; Zhou, X.; Wei, L. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. Journal of Power Sources 2015, 300, 438-443.
(8) Gong, K.; Xu, F.; Grunewald, J. B.; Ma, X.; Zhao, Y.; Gu, S.; Yan, Y. All-soluble all-iron aqueous redox-flow battery. ACS Energy Letters 2016, 1 (1), 89-93.
(9) Archana, K. S.; Suresh, S.; Ragupathy, P.; Ulaganathan, M. Investigations on new Fe–Mn redox couple based aqueous redox flow battery. Electrochimica Acta 2020, 345, 136245.
(10) Qiao, L.; Fang, M.; Liu, S.; Zhang, H.; Ma, X. New-generation iron–titanium flow batteries with low cost and ultrahigh stability for stationary energy storage. Chemical Engineering Journal 2022, 434, 134588.
(11) Schwenzer, B.; Zhang, J.; Kim, S.; Li, L.; Liu, J.; Yang, Z. Membrane development for vanadium redox flow batteries. ChemSusChem 2011, 4 (10), 1388-1406.
(12) Xu, Q.; Zhao, T.; Leung, P. Numerical investigations of flow field designs for vanadium redox flow batteries. Applied energy 2013, 105, 47-56.
(13) Kim, K. H.; Kim, B. G. Development of carbon composite bipolar plate (BP) for vanadium redox flow battery (VRFB). Composite Structures 2014, 109, 253-259.
(14) Cao, L.; Skyllas-Kazacos, M.; Menictas, C.; Noack, J. A review of electrolyte additives and impurities in vanadium redox flow batteries. Journal of energy chemistry 2018, 27 (5), 1269-1291.
(15) Kim, K. J.; Kim, Y.-J.; Kim, J.-H.; Park, M.-S. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries. Materials Chemistry and Physics 2011, 131 (1-2), 547-553.
(16) Buettner, K. M.; Valentine, A. M. Bioinorganic chemistry of titanium. Chemical Reviews 2012, 112 (3), 1863-1881.
(17) Saxena, M.; Loza-Rosas, S. A.; Gaur, K.; Sharma, S.; Otero, S. C. P.; Tinoco, A. D. Exploring titanium (IV) chemical proximity to iron (III) to elucidate a function for Ti (IV) in the human body. Coordination chemistry reviews 2018, 363, 109-125.
(18) FU, G. G., MALCOLM G. AQUEOUS REDOX FLOW BATTERIES COMPRISING METAL LIGAND COORDINATION COMPOUNDS. United States 2020.
(19) FU, G. G., MALCOLM G. METHOD FOR PRODUCING REDOX-ACTIVE TI (IV) COORDINATION COMPOUNDS. EUROPEAN 2017.
(20) Kim, K. J.; Park, M.-S.; Kim, Y.-J.; Kim, J. H.; Dou, S. X.; Skyllas-Kazacos, M. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. Journal of materials chemistry a 2015, 3 (33), 16913-16933.
(21) Yin, C.; Guo, S.; Fang, H.; Liu, J.; Li, Y.; Tang, H. Numerical and experimental studies of stack shunt current for vanadium redox flow battery. Applied Energy 2015, 151, 237-248.
(22) Lee, D.; Ryu, S.; Shin, S.-H.; Kim, J.-H.; Moon, S.-H. A model study on effects of vanadium ion diffusion through ion exchange membranes in a non-aqueous redox flow battery. Journal of Renewable and Sustainable Energy 2019, 11 (3).
(23) Hassan, A.; Tzedakis, T. Enhancement of the electrochemical activity of a commercial graphite felt for vanadium redox flow battery (VRFB), by chemical treatment with acidic solution of K2Cr2O7. Journal of Energy Storage 2019, 26, 100967.
(24) Qiu, X.; Nguyen, T. A.; Guggenberger, J. D.; Crow, M. L.; Elmore, A. C. A field validated model of a vanadium redox flow battery for microgrids. IEEE Transactions on Smart grid 2014, 5 (4), 1592-1601.
(25) Weng, J.-H. Experimental Study on the All Vanadium Redox Flow Battery Performance Enhancement with Electrode Modifications. National Chung Hsing University, 2014.
(26) Skyllas-Kazacos, M.; Kazacos, M. State of charge monitoring methods for vanadium redox flow battery control. Journal of Power Sources 2011, 196 (20), 8822-8827.
(27) Parasuraman, A.; Lim, T. M.; Menictas, C.; Skyllas-Kazacos, M. Review of material research and development for vanadium redox flow battery applications. Electrochimica Acta 2013, 101, 27-40.
(28) Li, L.; Kim, S.; Wang, W.; Vijayakumar, M.; Nie, Z.; Chen, B.; Zhang, J.; Xia, G.; Hu, J.; Graff, G. A stable vanadium redox‐flow battery with high energy density for large‐scale energy storage. Advanced Energy Materials 2011, 1 (3), 394-400.
(29) Xiao, S.; Yu, L.; Wu, L.; Liu, L.; Qiu, X.; Xi, J. Broad temperature adaptability of vanadium redox flow battery—Part 1: Electrolyte research. Electrochimica Acta 2016, 187, 525-534.
(30) Vijayakumar, M.; Li, L.; Graff, G.; Liu, J.; Zhang, H.; Yang, Z.; Hu, J. Z. Towards understanding the poor thermal stability of V5+ electrolyte solution in vanadium redox flow batteries. Journal of Power Sources 2011, 196 (7), 3669-3672.
(31) Roznyatovskaya, N. V.; Roznyatovsky, V. A.; Höhne, C.-C.; Fühl, M.; Gerber, T.; Küttinger, M.; Noack, J.; Fischer, P.; Pinkwart, K.; Tübke, J. The role of phosphate additive in stabilization of sulphuric-acid-based vanadium (V) electrolyte for all-vanadium redox-flow batteries. Journal of Power Sources 2017, 363, 234-243.
(32) Gresser, M. J.; Tracey, A. S.; Parkinson, K. M. Vanadium (V) oxyanions: The interaction of vanadate with pyrophosphate, phosphate, and arsenate. Journal of the American Chemical Society 1986, 108 (20), 6229-6234.
(33) 謝曉峰、楊春、毛宗強. 一種含磷全釩液流電池正極電解液. China 2013.
(34) Wang, G.; Chen, J.; Wang, X.; Tian, J.; Kang, H.; Zhu, X.; Zhang, Y.; Liu, X.; Wang, R. Study on stabilities and electrochemical behavior of V (V) electrolyte with acid additives for vanadium redox flow battery. Journal of Energy Chemistry 2014, 23 (1), 73-81.
(35) Reynard, D.; Dennison, C.; Battistel, A.; Girault, H. H. Efficiency improvement of an all-vanadium redox flow battery by harvesting low-grade heat. Journal of Power Sources 2018, 390, 30-37.
(36) Zhang, H.; Tan, Y.; Li, J.; Xue, B. Studies on properties of rayon-and polyacrylonitrile-based graphite felt electrodes affecting Fe/Cr redox flow battery performance. Electrochimica Acta 2017, 248, 603-613.
(37) Zeng, Y.; Zhao, T.; Zhou, X.; Zou, J.; Ren, Y. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of iron-chromium redox flow batteries. Journal of Power Sources 2017, 352, 77-82.
(38) Hruska, L.; Savinell, R. Investigation of factors affecting performance of the iron‐redox battery. Journal of the Electrochemical Society 1981, 128 (1), 18.
(39) Bae, C.-H.; Roberts, E.; Dryfe, R. Chromium redox couples for application to redox flow batteries. Electrochimica Acta 2002, 48 (3), 279-287.
(40) Xie, C.; Duan, Y.; Xu, W.; Zhang, H.; Li, X. A Low‐Cost Neutral Zinc–Iron Flow Battery with High Energy Density for Stationary Energy Storage. Angewandte Chemie International Edition 2017, 56 (47), 14953-14957.
(41) Sun, C. Y.; Zhang, H. Investigation of Nafion series membranes on the performance of iron‐chromium redox flow battery. International Journal of Energy Research 2019, 43 (14), 8739-8752.
(42) Chen, N.; Zhang, H.; Luo, X.-D.; Sun, C.-Y. SiO2-decorated graphite felt electrode by silicic acid etching for iron-chromium redox flow battery. Electrochimica Acta 2020, 336, 135646.
(43) Wang, W.; Luo, Q.; Li, B.; Wei, X.; Li, L.; Yang, Z. Recent progress in redox flow battery research and development. Advanced Functional Materials 2013, 23 (8), 970-986.
(44) Arroyo-Currás, N.; Hall, J. W.; Dick, J. E.; Jones, R. A.; Bard, A. J. An alkaline flow battery based on the coordination chemistry of iron and cobalt. Journal of the Electrochemical Society 2014, 162 (3), A378.
(45) Hawthorne, K. L.; Wainright, J. S.; Savinell, R. F. Studies of iron-ligand complexes for an all-iron flow battery application. Journal of The Electrochemical Society 2014, 161 (10), A1662.
(46) Murthy, A.; Srivastava, T. Fe (III)/Fe (II)—Ligand systems for use as negative half-cells in redox-flow cells. Journal of power sources 1989, 27 (2), 119-126.
(47) Lab, L. P. A. R. Rechargeable alkaline zinc/ferro-ferricyanide hybrid redox battery. Journal of Power Sources 1980, 5 (4), 384-385.
(48) Wen, Y.; Zhang, H.; Qian, P.; Zhou, H.; Zhao, P.; Yi, B.; Yang, Y. Studies on iron (Fe3+∕ Fe2+)-complex/bromine (Br2∕ Br−) redox flow cell in sodium acetate solution. Journal of the Electrochemical Society 2006, 153 (5), A929.
(49) Chen, Y. W. D.; Santhanam, K.; Bard, A. J. Solution redox couples for electrochemical energy storage: I. Iron (III)‐iron (II) complexes with O‐phenanthroline and related ligands. Journal of the Electrochemical Society 1981, 128 (7), 1460.
(50) Thaller, L. H. Electrically rechargeable redox flow cells. In 9th Intersociety energy conversion engineering conference, 1974; pp 924-928.
(51) Li, B.; Gu, M.; Nie, Z.; Shao, Y.; Luo, Q.; Wei, X.; Li, X.; Xiao, J.; Wang, C.; Sprenkle, V. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery. Nano letters 2013, 13 (3), 1330-1335.
(52) Park, M.; Ryu, J.; Wang, W.; Cho, J. Material design and engineering of next-generation flow-battery technologies. Nature Reviews Materials 2016, 2 (1), 1-18.
(53) Li, B.; Liu, J. Progress and directions in low-cost redox-flow batteries for large-scale energy storage. National Science Review 2017, 4 (1), 91-105.
(54) Tang, X.; Liu, H.; Su, D.; Notten, P. H.; Wang, G. Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries. Nano Research 2018, 11, 3979-3990.
(55) Luo, J.; Sam, A.; Hu, B.; DeBruler, C.; Wei, X.; Wang, W.; Liu, T. L. Unraveling pH dependent cycling stability of ferricyanide/ferrocyanide in redox flow batteries. Nano Energy 2017, 42, 215-221.
(56) Kim, D. J.; Jung, Y. H.; Bharathi, K. K.; Je, S. H.; Kim, D. K.; Coskun, A.; Choi, J. W. An aqueous sodium ion hybrid battery incorporating an organic compound and a prussian blue derivative. Advanced Energy Materials 2014, 4 (12), 1400133.
(57) Song, J.; Wang, L.; Lu, Y.; Liu, J.; Guo, B.; Xiao, P.; Lee, J.-J.; Yang, X.-Q.; Henkelman, G.; Goodenough, J. B. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. Journal of the American Chemical Society 2015, 137 (7), 2658-2664.
(58) Deng, W.; Liang, X.; Wu, X.; Qian, J.; Cao, Y.; Ai, X.; Feng, J.; Yang, H. A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Scientific reports 2013, 3 (1), 2671.
(59) Schon, T. B.; McAllister, B. T.; Li, P.-F.; Seferos, D. S. Correction: The rise of organic electrode materials for energy storage. Chemical Society Reviews 2016, 45 (22), 6405-6406.
(60) Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography 1976, 32 (5), 751-767.
(61) Uppal, R.; Incarvito, C. D.; Lakshmi, K.; Valentine, A. M. Aqueous spectroscopy and redox properties of carboxylate-bound titanium. Inorganic chemistry 2006, 45 (4), 1795-1804.
(62) Collins, J. M.; Uppal, R.; Incarvito, C. D.; Valentine, A. M. Titanium (IV) citrate speciation and structure under environmentally and biologically relevant conditions. Inorganic Chemistry 2005, 44 (10), 3431-3440.
(63) Kakihana, M.; Tada, M.; Shiro, M.; Petrykin, V.; Osada, M.; Nakamura, Y. Structure and Stability of Water Soluble (NH4) 8 [Ti4 (C6H4O7) 4 (O2) 4]⊙ 8H2O. Inorganic Chemistry 2001, 40 (5), 891-894.
(64) Kakihana, M.; Tomita, K.; Petrykin, V.; Tada, M.; Sasaki, S.; Nakamura, Y. Chelating of titanium by lactic acid in the water-soluble diammonium tris (2-hydroxypropionato) titanate (IV). Inorganic chemistry 2004, 43 (15), 4546-4548.
(65) Kappel, M. J.; Raymond, K. N. Ferric ion sequestering agents. 10. Selectivity of sulfonated poly (catechoylamides) for ferric ion. Inorganic Chemistry 1982, 21 (9), 3437-3442.
(66) Park, I.; Tabelin, C. B.; Magaribuchi, K.; Seno, K.; Ito, M.; Hiroyoshi, N. Suppression of the release of arsenic from arsenopyrite by carrier-microencapsulation using Ti-catechol complex. Journal of hazardous materials 2018, 344, 322-332.
(67) Borgias, B. A.; Cooper, S. R.; Koh, Y. B.; Raymond, K. N. Synthetic, structural, and physical studies of titanium complexes of catechol and 3, 5-di-tert-butylcatechol. Inorganic Chemistry 1984, 23 (8), 1009-1016.
(68) Schmidt, J.; Vogelsberger, W. Aqueous long-term solubility of titania nanoparticles and titanium (IV) hydrolysis in a sodium chloride system studied by adsorptive stripping voltammetry. Journal of solution chemistry 2009, 38, 1267-1282.
(69) Charkoudian, L. K.; Franz, K. J. Fe (III)-coordination properties of neuromelanin components: 5, 6-dihydroxyindole and 5, 6-dihydroxyindole-2-carboxylic acid. Inorganic chemistry 2006, 45 (9), 3657-3664.
(70) Stefánsson, A. Iron (III) hydrolysis and solubility at 25 C. Environmental science & technology 2007, 41 (17), 6117-6123.
(71) Goeltz, J.; Amadeo, D.; Esswein, A. J.; Jarvi, T. D.; King, E. R.; Reece, S. Y.; Tyagi, N. Aqueous redox flow batteries comprising metal ligand coordination compounds. Google Patents: 2020.
(72) Joint, F.; Additives, W. E. C. o. F. Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents. (No Title) 1974.
(73) Jalan, V.; Morriseau, B.; Swette, L. Optimization and fabrication of porous carbon electrodes for Fe/Cr Redox flow cells; Giner, Inc., Waltham, MA (USA), 1982.
(74) Agatzini-Leonardou, S.; Oustadakis, P.; Tsakiridis, P.; Markopoulos, C. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure. Journal of hazardous materials 2008, 157 (2-3), 579-586.
(75) He, S.; Sun, H.; g Tan, D.; Peng, T. Recovery of titanium compounds from Ti-enriched product of alkali melting Ti-bearing blast furnace slag by dilute sulfuric acid leaching. Procedia Environmental Sciences 2016, 31, 977-984.
(76) Meng, F.-c.; Xue, T.-y.; Liu, Y.-h.; Zhang, G.-z.; Tao, Q. Recovery of titanium from undissolved residue (tionite) in titanium oxide industry via NaOH hydrothermal conversion and H2SO4 leaching. Transactions of nonferrous metals society of China 2016, 26 (6), 1696-1705.
(77) Sever, M. J.; Wilker, J. J. Visible absorption spectra of metal–catecholate and metal–tironate complexes. Dalton transactions 2004, (7), 1061-1072.
(78) Zhang, S. S.; Xu, K.; Jow, T. EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochimica acta 2006, 51 (8-9), 1636-1640.
(79) Koller, A. J.; Saini, S.; Chaple, I. F.; Joaqui‐Joaqui, M. A.; Paterson, B. M.; Ma, M. T.; Blower, P. J.; Pierre, V. C.; Robinson, J. R.; Lapi, S. E. A General Design Strategy Enabling the Synthesis of Hydrolysis‐Resistant, Water‐Stable Titanium (IV) Complexes. Angewandte Chemie International Edition 2022, 61 (22), e202201211.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95838-
dc.description.abstract近年來,氧化還原液流電池(RFBs)因具有多種優勢,如低自放電率、高能量容量、長期能量儲存時間、長循環壽命與水基系統的高安全性,逐漸受到作為鋰離子電池替代能源儲存技術的關注。然而,商用釩氧化還原液流電池(VRFBs)需要在強酸性環境下運行,以確保釩離子具有良好的溶解性,這大幅增加了電極、膜和其他運行組件對強酸耐受性的基礎設施成本。此外,釩礦的高成本以及與強酸性電解質相關的長期維護和環境問題也需加以解決。本研究旨在構建成本效益高且環境友好的鈦鐵液流電池,因為鈦和鐵在地球上價格低廉且資源豐富。為此,我們在陽極使用兒茶酚螯合鈦以形成Ti(cat)3-2,而在陰極則採用Fe(CN)64-複合物;這兩種電解質在弱鹼性條件下可形成均勻溶液,從而促進更環保的系統。
在本研究中,我們開發了一種製備Ti(cat)3-2的新型一步法,使用鈦醇鹽作為起始材料,避免了已發表文獻中使用強酸溶解鈦氧化物的步驟。所得到的電解質可在空氣中穩定存放數月。我們也組建了相應的鈦鐵液流電池,以評估電池在40 mA cm-2電流密度下的性能和循環穩定性。系統化改變電解質的組成,包括陽離子的類型、支持電解質的濃度以及混合陽離子的使用等,並調整運行條件,如電解質的流速,以優化電池性能。
zh_TW
dc.description.abstractIn recent years, redox flow batteries (RFBs) have gained increasing attention as alternative energy storage technology besides lithium-ion batteries due to several advantages, such as low self-discharge rate, high energy capacity, prolonged energy storage time, long cycle life and high safety water based systems. However, commercial vanadium redox flow batteries (VRFBs) need to operate in strong acidic environments to ensure good solubility of vanadium ions, which severely add up the infrastructure costs for the strong acid tolerance requirements for electrodes, membranes, and other operating components. Furthermore, the high cost of vanadium ore and long-term maintenance and environmental issues associated with strong acidic electrolytes also need to address. This study aims to construct cost-effective and environmentally friendly titanium-iron flow batteries, as titanium and iron are inexpensive and abundantly available on Earth. Hereby, titanium is chelated with catechol to form Ti(cat)32- at the negative electrode while Fe(CN)64- complexes are adopted for the positive electrode; and both the electrolytes could form a homogeneous solution under mild alkaline conditions to facilitate a more environmentally friendly system.
In this study, we also develop a novel one-step method to prepare Ti(cat)32-, by employing titanium alkoxides as the starting materials to avoid the use of strong acid to dissolve raw titanium oxides in the published works. The resulting electrolytes could be stably stored in air for several months. We also build corresponding Ti-Fe flow batteries to evaluate the cell performance and the cycling stability at a current density of 40 mA cm-2. The composition of the electrolytes, including the types of cations, the concentration of supporting electrolytes and the use of mixed cations as well as the operation conditions such as the flow rate of the electrolytes are systematically varied to optimize the battery.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-18T16:18:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-18T16:18:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 II
ABSTRACT III
目次 I
圖次 IV
表次 VIII
第一章 緒論 1
1.1.前言 1
1.2.研究目的與架構 5
第二章 文獻回顧與探討 8
2.1.液流電池的操作原理與性能指標 8
2.2.全釩離子液流電池 11
2.3.非釩系水相液流電池 15
2.3.1.全鐵液流電池 15
2.3.2.鈦鐵液流電池 18
2.3.3.鈦鐵錯合離子液流電池 21
第三章 實驗步驟與原理 28
3.1.實驗藥品 28
3.2.實驗儀器 31
3.3.材料製備 32
3.3.1.兒茶酚-鈦錯合離子水溶液之製備 32
3.3.2.鐵-氰錯合離子水溶液之製備 33
3.3.材料分析 34
3.3.1.兒茶酚-鈦錯合離子的化學結構定性分析 34
3.3.2. 兒茶酚-鈦錯合離子的尺度分析 34
3.3.3.石墨氈電極表面形貌分析 34
3.4.電化學與電池性能分析 35
3.4.1.電化學交流阻抗分析 35
3.4.2.循環掃描伏安法 36
3.3.5.充放電循環測試 36
第四章 結果與討論 38
4.1.兒茶酚-鈦錯合離子的製備與鑑定 38
4.1.1.酸鹼值對兒茶酚-鈦電解質的影響 39
4.1.2.反應溫度對兒茶酚-鈦電解質的影響 41
4.1.3.溶劑環境對兒茶酚-鈦電解質的影響 43
4.1.4.不同鹼性環境對兒茶酚-鈦電解質的影響 45
4.2.電解質的電化學性能量測 47
4.3.單電池充放電循環測試 52
4.3.1.兒茶酚-鈦錯合離子製備方式對電池表現的影響 53
4.3.2.電解質組成對電池表現的影響 56
4.3.3. 操作條件對電池效能的影響 59
4.3.4.石墨氈電極表面形貌分析 59
4.3.5.石墨氈電極表面形貌分析 61
第五章 結論 64
第六章 未來展望 65
參考文獻 66
-
dc.language.isozh_TW-
dc.title在溫和鹼性環境操作的環境友善鈦鐵氧化還原液流電池zh_TW
dc.titleEnvironmental Friendly Titanium-Iron Redox Flow Batteries Operating at Mild Alkaline Conditionsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳乃立;王丞浩zh_TW
dc.contributor.oralexamcommitteeNae-Lih Wu;Chen-Hao WANGen
dc.subject.keyword鈦鐵液流電池,氧化還原液流電池,弱鹼性液流電池,鈦兒茶酚複合物,zh_TW
dc.subject.keywordtitanium-iron flow battery,redox flow battery,weak alkaline flow battery,titanium catechol complexes,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202403783-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2027-09-01-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
3.45 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved