請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95778完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘敏雄 | zh_TW |
| dc.contributor.advisor | Min-Hsiung Pan | en |
| dc.contributor.author | 林又綠 | zh_TW |
| dc.contributor.author | Yu-Lu Lin | en |
| dc.date.accessioned | 2024-09-16T16:23:16Z | - |
| dc.date.available | 2024-09-17 | - |
| dc.date.copyright | 2024-09-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-31 | - |
| dc.identifier.citation | Abuqwider, J., Altamimi, M., & Mauriello, G. (2022). Limosilactobacillus reuteri in Health and Disease. Microorganisms, 10(3), 522.
Achari, A. E., & Jain, S. K. (2017). Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. International Journal of Molecular Sciences, 18(6), 1321. Ahmad, B., Friar, E. P., Vohra, M. S., Khan, N., Serpell, C. J., Garrett, M. D., Loo, J. S. E., Fong, I. L., & Wong, E. H. (2023). Hydroxylated polymethoxyflavones reduce the activity of pancreatic lipase, inhibit adipogenesis and enhance lipolysis in 3T3-L1 mouse embryonic fibroblast cells. Chemico-Biological Interactions, 379, 110503. Ahmad, S. N. S., Rashtchizadeh, N., Argani, H., Roshangar, L., Ghorbanihaghjo, A., Sanajou, D., Panah, F., Jigheh, Z. A., Dastmalchi, S., & Kalantary-Charvadeh, A. (2019). Tangeretin protects renal tubular epithelial cells against experimental cisplatin toxicity. Iranian Journal of Basic Medical Sciences, 22(2), 179. Ahmadian, M., Abbott, Marcia J., Tang, T., Hudak, Carolyn S. S., Kim, Y., Bruss, M., Hellerstein, M. K., Lee, H., Samuel, V. T., Shulman, G. I., Wang, Y., Duncan, Robin E., Kang, C., & Sul, Hei S. (2011). Desnutrin/ATGL Is Regulated by AMPK and Is Required for a Brown Adipose Phenotype. Cell Metabolism, 13(6), 739-748. Ahmed, B., Sultana, R., & Greene, M. W. (2021). Adipose tissue and insulin resistance in obese. Biomedicine & Pharmacotherapy, 137, 111315. Akash, M. S. H., Rehman, K., & Liaqat, A. (2018). Tumor Necrosis Factor-Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. Journal of Cellular Biochemistry, 119(1), 105-110. Alamri, Z. (2018). The role of liver in metabolism: an updated review with physiological emphasis. International Journal of Basic & Clinical Pharmacology, 7, 2271–2276. Althaher, A. R. (2022). An Overview of Hormone-Sensitive Lipase (HSL). The Scientific World Journal, 2022, 1964684. Ameer, F., Scandiuzzi, L., Hasnain, S., Kalbacher, H., & Zaidi, N. (2014). De novo lipogenesis in health and disease. Metabolism, 63(7), 895-902. Arafa, E. A., Shurrab, N. T., & Buabeid, M. A. (2021). Therapeutic Implications of a Polymethoxylated Flavone, Tangeretin, in the Management of Cancer via Modulation of Different Molecular Pathways. Advances in Pharmacological and Pharmaceutical Sciences, 2021, 4709818. Azzu, V., & Brand, M. D. (2010). The on-off switches of the mitochondrial uncoupling proteins. Trends in Biochemical Sciences, 35(5), 298-307. Barbatelli, G., Murano, I., Madsen, L., Hao, Q., Jimenez, M., Kristiansen, K., Giacobino, J. P., De Matteis, R., & Cinti, S. (2010). The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. American Journal of Physiology. Endocrinology and Metabolism., 298(6), E1244-1253. Bargut, T. C. L., Souza-Mello, V., Aguila, M. B., & Mandarim-de-Lacerda, C. A. (2017). Browning of white adipose tissue: lessons from experimental models. Hormone Molecular Biology and Clinical Investigation, 31(1), 10.1515. Batchuluun, B., Pinkosky, S. L., & Steinberg, G. R. (2022). Lipogenesis inhibitors: therapeutic opportunities and challenges. Nature Reviews Drug Discovery, 21(4), 283-305. Begum, M., Choubey, M., Tirumalasetty, M. B., Arbee, S., Mohib, M. M., Wahiduzzaman, M., Mamun, M. A., Uddin, M. B., & Mohiuddin, M. S. (2023). Adiponectin: A Promising Target for the Treatment of Diabetes and Its Complications. Life, 13(11), 2213. Berg, A. H., Combs, T. P., Du, X., Brownlee, M., & Scherer, P. E. (2001). The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nature Medicine, 7(8), 947-953. Berry, D. C., Jiang, Y., & Graff, J. M. (2016). Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function. Nature Communications, 7(1), 10184. Black, B. L., Croom, J., Eisen, E. J., Petro, A. E., Edwards, C. L., & Surwit, R. S. (1998). Differential effects of fat and sucrose on body composition in AJ and C57BL/6 mice. Metabolism, 47(11), 1354-1359. Boccellino, M., & D'Angelo, S. (2020). Anti-Obesity Effects of Polyphenol Intake: Current Status and Future Possibilities. International Journal of Molecular Sciences, 21(16). Bolsoni-Lopes, A., & Alonso-Vale, M. I. (2015). Lipolysis and lipases in white adipose tissue - An update. Archives of Endocrinology and Metabolism, 59(4), 335-342. Bourgeois, C., Gorwood, J., Barrail-Tran, A., Lagathu, C., Capeau, J., Desjardins, D., Le Grand, R., Damouche, A., Béréziat, V., & Lambotte, O. (2019). Specific Biological Features of Adipose Tissue, and Their Impact on HIV Persistence. Frontiers in Microbiology, 10, 2837. Bray, G. A., Kim, K. K., Wilding, J. P. H., & WorldObesityFederation. (2017). Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obesity Reviews, 18(7), 715-723. Bremer, A. A., Devaraj, S., Afify, A., & Jialal, I. (2011). Adipose tissue dysregulation in patients with metabolic syndrome. The Journal of Clinical Endocrinology & Metabolism, 96(11), E1782-E1788. Cairó, M., & Villarroya, J. (2020). The role of autophagy in brown and beige adipose tissue plasticity. Journal of Physiology and Biochemistry, 76(2), 213-226. Cerk, I. K., Wechselberger, L., & Oberer, M. (2018). Adipose Triglyceride Lipase Regulation: An Overview. Current Protein & Peptide Science, 19(2), 221-233. Chait, A., & den Hartigh, L. J. (2020). Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Frontiers in Cardiovascular Medicine, 7, 22. Charoensinphon, N., Qiu, P., Dong, P., Zheng, J., Ngauv, P., Cao, Y., Li, S., Ho, C. T., & Xiao, H. (2013). 5-demethyltangeretin inhibits human nonsmall cell lung cancer cell growth by inducing G2/M cell cycle arrest and apoptosis. Molecular Nutrition & Food Research, 57(12), 2103-2111. Chen, F., Wen, Q., Jiang, J., Li, H. L., Tan, Y. F., Li, Y. H., & Zeng, N. K. (2016a). Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs? Journal of Ethnopharmacology, 179, 253-264. Chen, J., Wang, Y., Zhu, T., Yang, S., Cao, J., Li, X., Wang, L. S., & Sun, C. (2020a). Beneficial Regulatory Effects of Polymethoxyflavone-Rich Fraction from Ougan (Citrus reticulata cv. Suavissima) Fruit on Gut Microbiota and Identification of Its Intestinal Metabolites in Mice. Antioxidants (Basel), 9(9), 831. Chen, L. H., Chen, Y. H., Cheng, K. C., Chien, T. Y., Chan, C. H., Tsao, S. P., & Huang, H. Y. (2018). Antiobesity effect of Lactobacillus reuteri 263 associated with energy metabolism remodeling of white adipose tissue in high-energy-diet-fed rats. The Journal of Nutritional Biochemistry, 54, 87-94. Chen, Q., Wang, D., Tan, C., Hu, Y., Sundararajan, B., & Zhou, Z. (2020b). Profiling of Flavonoid and Antioxidant Activity of Fruit Tissues from 27 Chinese Local Citrus Cultivars. Plants (Basel), 9(2), 196. Chen, S., Jiang, H., Wu, X., & Fang, J. (2016b). Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators of Inflammation, 2016, 9340637. Chen, S., Saeed, A. F. U. H., Liu, Q., Jiang, Q., Xu, H., Xiao, G. G., Rao, L., & Duo, Y. (2023). Macrophages in immunoregulation and therapeutics. Signal Transduction and Targeted Therapy, 8(1), 207. Cheng, L., Wang, J., Dai, H., Duan, Y., An, Y., Shi, L., Lv, Y., Li, H., Wang, C., Ma, Q., Li, Y., Li, P., Du, H., & Zhao, B. (2021). Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte, 10(1), 48-65. Cho, C. H., Patel, S., & Rajbhandari, P. (2023). Adipose tissue lipid metabolism: lipolysis. Current Opinion in Genetics & Development, 83, 102114. Cho, I., Yamanishi, S., Cox, L., Methé, B. A., Zavadil, J., Li, K., Gao, Z., Mahana, D., Raju, K., & Teitler, I. (2012). Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature, 488(7413), 621-626. Choe, S., Huh, J. Y., Hwang, I., Kim, J., & Kim, J. (2016). Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders. Frontiers in Endocrinology, 7, 30. Choi, J. H., Kim, S. W., Yu, R., & Yun, J. W. (2017). Monoterpene phenolic compound thymol promotes browning of 3T3-L1 adipocytes. European Journal of Nutrition, 56, 2329-2341. Choi, S. I., You, S. H., Kim, S. J., Won, G. Y., Kang, C. H., & Kim, G. H. (2021). Weissella cibaria MG5285 and Lactobacillus reuteri MG5149 attenuated fat accumulation in adipose and hepatic steatosis in high-fat diet-induced C57BL/6J obese mice. Food & Nutrition Research, 65, 10.29219. Chouchani, E. T., & Kajimura, S. (2019). Metabolic adaptation and maladaptation in adipose tissue. Nature Metabolism, 1(2), 189-200. Chusyd, D. E., Wang, D., Huffman, D. M., & Nagy, T. R. (2016). Relationships between Rodent White Adipose Fat Pads and Human White Adipose Fat Depots. Frontiers in Nutrition, 3, 10. Cohen, P., & Kajimura, S. (2021). The cellular and functional complexity of thermogenic fat. Nature Reviews. Molecular Cell Biology, 22(6), 393-409. Craig, E. A., Yan, Z., & Zhao, Q. J. (2015). The relationship between chemical-induced kidney weight increases and kidney histopathology in rats. Journal of Applied Toxicology, 35(7), 729-736. Crichton, P., Lee, Y., & Kunji, E. (2017). The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism. Biochimie, 134, 35–50. Cristofori, F., Dargenio, V. N., Dargenio, C., Miniello, V. L., Barone, M., & Francavilla, R. (2021). Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Frontiers in Immunology, 12, 578386. Crovesy, L., Ostrowski, M., Ferreira, D. M. T. P., Rosado, E. L., & Soares-Mota, M. (2017). Effect of Lactobacillus on body weight and body fat in overweight subjects: a systematic review of randomized controlled clinical trials. International Journal of Obesity, 41(11), 1607-1614. Cypess, A. M. (2022). Reassessing Human Adipose Tissue. New England Journal of Medicine, 386(8), 768-779. Dietze-Schroeder, D., Sell, H., Uhlig, M., Koenen, M., & Eckel, J. (2005). Autocrine action of adiponectin on human fat cells prevents the release of insulin resistance-inducing factors. Diabetes, 54(7), 2003-2011. Dobner, J., Ress, C., Rufinatscha, K., Salzmann, K., Salvenmoser, W., Folie, S., Wieser, V., Moser, P., Weiss, G., & Goebel, G. (2017). Fat-enriched rather than high-fructose diets promote whitening of adipose tissue in a sex-dependent manner. The Journal of Nutritional Biochemistry, 49, 22-29. Duan, Y., Zeng, L., Zheng, C., Song, B., Li, F., Kong, X., & Xu, K. (2018). Inflammatory Links Between High Fat Diets and Diseases. Frontiers in Immunology, 9, 2649. Edwards, M., & Mohiuddin, S. S. (2024). Biochemistry, Lipolysis. In StatPearls. StatPearls Publishing. Ferraro, E., Giammarioli, A., Chiandotto, S., Spoletini, I., & Rosano, G. (2014). Exercise-Induced Skeletal Muscle Remodeling and Metabolic Adaptation: Redox Signaling and Role of Autophagy. Antioxidants & Redox Signaling, 21(1), 154-176. Flori, L., Piragine, E., Spezzini, J., Citi, V., Calderone, V., & Martelli, A. (2023). Influence of Polyphenols on Adipose Tissue: Sirtuins as Pivotal Players in the Browning Process. International Journal of Molecular Sciences, 24(11), 9276. Frühbeck, G., Méndez-Giménez, L., Fernández-Formoso, J.-A., Fernández, S., & Rodríguez, A. (2014). Regulation of adipocyte lipolysis. Nutrition Research Reviews, 27(1), 63-93. Fu, M., Xu, Y., Chen, Y., Wu, J., Yu, Y., Zou, B., An, K., & Xiao, G. (2017). Evaluation of bioactive flavonoids and antioxidant activity in Pericarpium Citri Reticulatae (Citrus reticulata ‘Chachi’) during storage. Food Chemistry, 230, 649-656. Gaia, F., Kristína, K., Francesca, B., Luigi Fabrizio, R., Vladimíra, T., & Rita, R. (2018). Browning of Adipose Tissue and Sirtuin Involvement. Adipose Tissue, Ch. 4. Gao, Y., Lin, J., Gonzalez, F. J., & Jiang, C. (2023). Interactions between the host dietary habits and the gut microbiota influence weight management. Life Medicine, 2(3). Gao, Z., Gao, W., Zeng, S. L., Li, P., & Liu, E. H. (2018). Chemical structures, bioactivities and molecular mechanisms of citrus polymethoxyflavones. Journal of Functional Foods, 40, 498-509. Geng, J., Ni, Q., Sun, W., Li, L., & Feng, X. (2022). The links between gut microbiota and obesity and obesity related diseases. Biomedicine & Pharmacotherapy, 147, 112678. Genin, M., Clement, F., Fattaccioli, A., Raes, M., & Michiels, C. (2015). M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer, 15(1), 577. Ghadge, A. A., Khaire, A. A., & Kuvalekar, A. A. (2018). Adiponectin: A potential therapeutic target for metabolic syndrome. Cytokine & Growth Factor Reviews, 39, 151-158. Hagberg, C. E., & Spalding, K. L. (2024). White adipocyte dysfunction and obesity-associated pathologies in humans. Nature Reviews Molecular Cell Biology, 25(4), 270-289. Hagenlocher, Y., Gommeringer, S., Held, A., Feilhauer, K., Köninger, J., Bischoff, S. C., & Lorentz, A. (2019). Nobiletin acts anti-inflammatory on murine IL-10(-/-) colitis and human intestinal fibroblasts. European Journal of Nutrition, 58(4), 1391-1401. Hotamisligil, G. S., Shargill, N. S., & Spiegelman, B. M. (1993). Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science, 259(5091), 87-91. Houten, S. M., Violante, S., Ventura, F. V., & Wanders, R. J. A. (2016). The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders. Annual Review of Physiology, 78, 23-44. Huang, X., Kou, X., Wang, L., Ji, R., Ma, C., & Wang, H. (2019). Effective hydroxylation of tangeretin from Citrus Peel (Chenpi) by edible acids and its improvement in antioxidant and anti-lipase activities. LWT, 116, 108469. Huang, X., Zhu, J., Wang, L., Jing, H., Ma, C., Kou, X., & Wang, H. (2020). Inhibitory mechanisms and interaction of tangeretin, 5-demethyltangeretin, nobiletin, and 5-demethylnobiletin from citrus peels on pancreatic lipase: Kinetics, spectroscopies, and molecular dynamics simulation. International Journal of Biological Macromolecules, 164, 1927-1938. Ikeda, K., Maretich, P., & Kajimura, S. (2018). The Common and Distinct Features of Brown and Beige Adipocytes. Trends in Endocrinology and Metabolism: TEM, 29(3), 191-200. Inagaki, T., Sakai, J., & Kajimura, S. (2016). Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nature Reviews. Molecular Cell Biology, 17(8), 480-495. Ishii, K., Tanaka, S., Kagami, K., Henmi, K., Toyoda, H., Kaise, T., & Hirano, T. (2009). Effects of Naturally Occurring Polymethyoxyflavonoids on Cell Growth, P-Glycoprotein Function, Cell Cycle, and Apoptosis of Daunorubicin-Resistant T Lymphoblastoid Leukemia Cells. Cancer Investigation, 28, 220-229. Jastreboff, A. M., Aronne, L. J., Ahmad, N. N., Wharton, S., Connery, L., Alves, B., Kiyosue, A., Zhang, S., Liu, B., Bunck, M. C., & Stefanski, A. (2022). Tirzepatide Once Weekly for the Treatment of Obesity. The New England Journal of Medicine, 387(3), 205-216. Jayarathne, S., Koboziev, I., Park, O. H., Oldewage-Theron, W., Shen, C. L., & Moustaid-Moussa, N. (2017). Anti-inflammatory and anti-obesity properties of food bioactive components: effects on adipose tissue. Preventive Nutrition and Food Science, 22(4), 251. Jiang, X., Peng, X., Deng, G., Sheng, H., Wang, Y., Zhou, H., & Tam, N. (2013). Illumina Sequencing of 16S rRNA Tag Revealed Spatial Variations of Bacterial Communities in a Mangrove Wetland. Microbial Ecology, 66, 96–104. Jones, S. E., & Versalovic, J. (2009). Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiology, 9, 1-9. Jung, U. J., & Choi, M. S. (2014). Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. International Journal of Molecular Sciences, 15(4), 6184-6223. Kanda, H., Tateya, S., Tamori, Y., Kotani, K., Hiasa, K., Kitazawa, R., Kitazawa, S., Miyachi, H., Maeda, S., & Egashira, K. (2006). MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. The Journal of Clinical Investigation, 116(6), 1494-1505. Khan, S. A., Sathyanarayan, A., Mashek, M. T., Ong, K. T., Wollaston-Hayden, E. E., & Mashek, D. G. (2015). ATGL-Catalyzed Lipolysis Regulates SIRT1 to Control PGC-1α/PPAR-α Signaling. Diabetes, 64(2), 418-426. Khoramipour, K., Chamari, K., Hekmatikar, A. A., Ziyaiyan, A., Taherkhani, S., Elguindy, N. M., & Bragazzi, N. L. (2021). Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients, 13(4), 1180. Kirchgessner, T. G., Uysal, K. T., Wiesbrock, S. M., Marino, M. W., & Hotamisligil, G. S. (1997). Tumor necrosis factor-alpha contributes to obesity-related hyperleptinemia by regulating leptin release from adipocytes. The Journal of Clinical Investigation, 100(11), 2777-2782. Kloska, A., Węsierska, M., Malinowska, M., Gabig-Cimińska, M., & Jakóbkiewicz-Banecka, J. (2020). Lipophagy and Lipolysis Status in Lipid Storage and Lipid Metabolism Diseases. International Journal of Molecular Sciences, 21(17), 6113. Kou, G., Li, P., Hu, Y., Chen, H., Nyantakyiwaa Amoah, A., Seydou Traore, S., Cui, Z., & Lyu, Q. (2021). Nobiletin activates thermogenesis of brown and white adipose tissue in high-fat diet-fed C57BL/6 mice by shaping the gut microbiota. The FASEB Journal, 35(2), e21267. Kowalska, K., Olejnik, A., Rychlik, J., & Grajek, W. (2015). Cranberries (Oxycoccus quadripetalus) inhibit lipid metabolism and modulate leptin and adiponectin secretion in 3T3-L1 adipocytes. Food Chemistry, 185, 383-388. Krisanits, B., Randise, J. F., Burton, C. E., Findlay, V. J., & Turner, D. P. (2020). Chapter Three - Pubertal mammary development as a “susceptibility window” for breast cancer disparity. Advances in Cancer Research, 146, 57-82. Lakshmi, A., & Subramanian, S. (2014). Chemotherapeutic effect of tangeretin, a polymethoxylated flavone studied in 7, 12-dimethylbenz (a) anthracene induced mammary carcinoma in experimental rats. Biochimie, 99, 96-109. Lancaster, G. I., Langley, K. G., Berglund, N. A., Kammoun, H. L., Reibe, S., Estevez, E., Weir, J., Mellett, N. A., Pernes, G., & Conway, J. R. (2018). Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metabolism, 27(5), 1096-1110. e1095. Lecomte, V., Kaakoush, N. O., Maloney, C. A., Raipuria, M., Huinao, K. D., Mitchell, H. M., & Morris, M. J. (2015). Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters. PLoS One, 10(5), e0126931. Lee, Y. H., Petkova, A. P., Konkar, A. A., & Granneman, J. G. (2015). Cellular origins of cold-induced brown adipocytes in adult mice. The FASEB Journal, 29(1), 286. Lee, Y. S., Cha, B. Y., Choi, S. S., Choi, B. K., Yonezawa, T., Teruya, T., Nagai, K., & Woo, J. T. (2013). Nobiletin improves obesity and insulin resistance in high-fat diet-induced obese mice. The Journal of Nutritional Biochemistry, 24(1), 156-162. Lee, Y. S., Kim, J. W., Osborne, O., Sasik, R., Schenk, S., Chen, A., Chung, H., Murphy, A., Watkins, S. M., & Quehenberger, O. (2014). Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell, 157(6), 1339-1352. Li, S. M., Pan, M. H., Lai, C. S., Lo, C. Y., Dushenkov, S., & Ho, C. T. (2007). Isolation and syntheses of polymethoxyflavones and hydroxylated polymethoxyflavones as inhibitors of HL-60 cell lines. Bioorganic & Medicinal Chemistry, 15(10), 3381-3389. Li, S. M., Pan, M. H., Lo, C. Y., Tan, D., Wang, Y., Shahidi, F., & Ho, C. T. (2009). Chemistry and health effects of polymethoxyflavones and hydroxylated polymethoxyflavones. Journal of Functional Foods, 1(1), 2-12. Li, T., Guo, W., & Zhou, Z. (2021). Adipose Triglyceride Lipase in Hepatic Physiology and Pathophysiology. Biomolecules, 12(1), 57. Liu, B. N., Liu, X. T., Liang, Z. H., & Wang, J. H. (2021). Gut microbiota in obesity. World Journal of Gastroenterology, 27(25), 3837-3850. Liu, X., Zhang, Z., Song, Y., Xie, H., & Dong, M. (2022). An update on brown adipose tissue and obesity intervention: Function, regulation and therapeutic implications. Frontiers in Endocrinology, 13, 1065263. Long, J. Z., Svensson, K. J., Tsai, L., Zeng, X., Roh, H. C., Kong, X., Rao, R. R., Lou, J., Lokurkar, I., & Baur, W. (2014). A smooth muscle-like origin for beige adipocytes. Cell Metabolism, 19(5), 810-820. Longo, M., Zatterale, F., Naderi, J., Parrillo, L., Formisano, P., Raciti, G. A., Beguinot, F., & Miele, C. (2019). Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. International Journal of Molecular Sciences, 20(9), 2358. Lu, Z., Li, Y., & Song, J. (2020). Characterization and Treatment of Inflammation and Insulin Resistance in Obese Adipose Tissue. Diabetes, Metabolic Syndrome and Obesity : Targets and Therapy, 13, 3449-3460. Luo, L., & Liu, M. (2016). Adipose tissue in control of metabolism. Journal of Endocrinology, 231, R77-R99. Luo, Z., Li, M., Yang, J., Li, J., Zhang, Y., Liu, F., El-Omar, E., Han, L., Bian, J., Gong, L., & Wang, M. (2022). Ferulic acid attenuates high-fat diet-induced hypercholesterolemia by activating classic bile acid synthesis pathway. Frontiers in Nutrition, 9, 976638. Müller, T. D., Blüher, M., Tschöp, M. H., & DiMarchi, R. D. (2022). Anti-obesity drug discovery: advances and challenges. Nature Reviews Drug Discovery, 21(3), 201-223. Maeda, H., Hosokawa, M., Sashima, T., Funayama, K., & Miyashita, K. (2005). Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochemical and Biophysical Research Communications, 332(2), 392-397. Maeda, H., Hosokawa, M., Sashima, T., Murakami-Funayama, K., & Miyashita, K. (2009). Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model. Molecular Medicine Reports, 2(6), 897-902. Masood, B., & Moorthy, M. (2023). Causes of obesity: a review. Clinical Medicine, 23(4), 284-291. Matsumoto, S., Tominari, T., Matsumoto, C., Yoshinouchi, S., Ichimaru, R., Watanabe, K., Hirata, M., Grundler, F. M., Miyaura, C., & Inada, M. (2018). Effects of polymethoxyflavonoids on bone loss induced by estrogen deficiency and by LPS-dependent inflammation in mice. Pharmaceuticals, 11(1), 7. Mc Auley, M. T. (2020). Effects of obesity on cholesterol metabolism and its implications for healthy ageing. Nutrition Research Reviews, 33(1), 121-133. McLaughlin, T., Craig, C., Liu, L. F., Perelman, D., Allister, C., Spielman, D., & Cushman, S. W. (2016). Adipose Cell Size and Regional Fat Deposition as Predictors of Metabolic Response to Overfeeding in Insulin-Resistant and Insulin-Sensitive Humans. Diabetes, 65(5), 1245-1254. Merkel, M., Eckel, R. H., & Goldberg, I. J. (2002). Lipoprotein lipase: genetics, lipid uptake, and regulation. Journal of Lipid Research, 43(12), 1997-2006. Michael, B., Yano, B., Sellers, R. S., Perry, R., Morton, D., Roome, N., Johnson, J. K., & Schafer, K. (2007). Evaluation of organ weights for rodent and non-rodent yoxicity studies: a review of tegulatory guidelines and a survey of current practices. Toxicologic Pathology, 35(5), 742-750. Mihaylova, M. M., & Shaw, R. J. (2011). The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology, 13(9), 1016-1023. Miranda, C. S., Silva-Veiga, F., Martins, F. F., Rachid, T. L., Mandarim-De-Lacerda, C. A., & Souza-Mello, V. (2020). PPAR-α activation counters brown adipose tissue whitening: a comparative study between high-fat–and high-fructose–fed mice. Nutrition, 78, 110791. Miyata, Y., Tanaka, H., Shimada, A., Sato, T., Ito, A., Yamanouchi, T., & Kosano, H. (2011). Regulation of adipocytokine secretion and adipocyte hypertrophy by polymethoxyflavonoids, nobiletin and tangeretin. Life Sciences, 88(13-14), 613-618. Mohallem, R., & Aryal, U. K. (2020). Regulators of TNFα mediated insulin resistance elucidated by quantitative proteomics. Scientific Reports, 10(1), 20878. Mohammadpour, R., Cheney, D. L., Grunberger, J. W., Yazdimamaghani, M., Jedrzkiewicz, J., Isaacson, K. J., Dobrovolskaia, M. A., & Ghandehari, H. (2020). One-year chronic toxicity evaluation of single dose intravenously administered silica nanoparticles in mice and their Ex vivo human hemocompatibility. Journal of Controlled Release : Official Journal of the Controlled Release Society, 324, 471-481. Morrow, N. M., Burke, A. C., Samsoondar, J. P., Seigel, K. E., Wang, A., Telford, D. E., Sutherland, B. G., O'Dwyer, C., Steinberg, G. R., & Fullerton, M. D. (2020). The citrus flavonoid nobiletin confers protection from metabolic dysregulation in high-fat-fed mice independent of AMPK. Journal of Lipid Research, 61(3), 387-402. Nagi, M. A., Ahmed, H., Rezq, M. A. A., Sangroongruangsri, S., Chaikledkaew, U., Almalki, Z., & Thavorncharoensap, M. (2024). Economic costs of obesity: a systematic review. International Journal of Obesity, 48(1), 33-43. Omar, H. A., Mohamed, W. R., Arab, H. H., & Arafa, E.-S. A. (2016). Tangeretin alleviates cisplatin-induced acute hepatic injury in rats: targeting MAPKs and apoptosis. PLoS One, 11(3), e0151649. Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, e47. Park, A. (2019). Pathophysiology and aetiology and medical consequences of obesity. Medicine, 47(3), 169-174. Pei, Y., Otieno, D., Gu, I., Lee, S. O., Parks, J. S., Schimmel, K., & Kang, H. W. (2021). Effect of quercetin on nonshivering thermogenesis of brown adipose tissue in high-fat diet-induced obese mice. The Journal of Nutritional Biochemistry, 88, 108532. Pellegrinelli, V., Carobbio, S., & Vidal-Puig, A. (2016). Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia, 59(6), 1075-1088. Pettersson-Klein, A. T., Izadi, M., Ferreira, D. M. S., Cervenka, I., Correia, J. C., Martinez-Redondo, V., Southern, M., Cameron, M., Kamenecka, T., Agudelo, L. Z., Porsmyr-Palmertz, M., Martens, U., Lundgren, B., Otrocka, M., Jenmalm-Jensen, A., Griffin, P. R., & Ruas, J. L. (2018). Small molecule PGC-1α1 protein stabilizers induce adipocyte Ucp1 expression and uncoupled mitochondrial respiration. Molecular Metabolism, 9, 28-42. Puigserver, P., & Spiegelman, B. M. (2003). Peroxisome Proliferator-Activated Receptor-γ Coactivator 1α (PGC-1α): Transcriptional Coactivator and Metabolic Regulator. Endocrine Reviews, 24(1), 78-90. Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., & Shen, D. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490(7418), 55-60. Qiu, P., Cui, Y., Xiao, H., Han, Z., Ma, H., Tang, Y., Xu, H., & Zhang, L. (2017). 5-Hydroxy polymethoxyflavones inhibit glycosaminoglycan biosynthesis in lung and colon cancer cells. Journal of Functional Foods, 30, 39-47. Rakhra, V., Galappaththy, S. L., Bulchandani, S., & Cabandugama, P. K. (2020). Obesity and the Western Diet: How We Got Here. Missouri Medicine, 117(6), 536-538. Rangel-Azevedo, C., Santana-Oliveira, D. A., Miranda, C. S., Martins, F. F., Mandarim-de-Lacerda, C. A., & Souza-Mello, V. (2022). Progressive brown adipocyte dysfunction: Whitening and impaired nonshivering thermogenesis as long-term obesity complications. The Journal of Nutritional Biochemistry, 105, 109002. Revelo, X. S., Luck, H., Winer, S., & Winer, D. A. (2014). Morphological and Inflammatory Changes in Visceral Adipose Tissue During Obesity. Endocrine Pathology, 25(1), 93-101. Richard, A. J., White, U., Elks, C. M., & Stephens, J. M. (2000). Adipose Tissue: Physiology to Metabolic Dysfunction. Endotext. Rosenwald, M., Perdikari, A., Rülicke, T., & Wolfrum, C. (2013). Bi-directional interconversion of brite and white adipocytes. Nature Cell Biology, 15(6), 659-667. Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., Costea, P. I., Godneva, A., Kalka, I. N., Bar, N., Shilo, S., Lador, D., Vila, A. V., Zmora, N., Pevsner-Fischer, M., Israeli, D., Kosower, N., Malka, G., Wolf, B. C., Avnit-Sagi, T., Lotan-Pompan, M., Weinberger, A., Halpern, Z., Carmi, S., Fu, J., Wijmenga, C., Zhernakova, A., Elinav, E., & Segal, E. (2018). Environment dominates over host genetics in shaping human gut microbiota. Nature, 555(7695), 210-215. Ruan, H., Hacohen, N., Golub, T. R., Van Parijs, L., & Lodish, H. F. (2002). Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes, 51(5), 1319-1336. Rutkowski, J. M., Wang, Z. V., Park, A. S., Zhang, J., Zhang, D., Hu, M. C., Moe, O. W., Susztak, K., & Scherer, P. E. (2013). Adiponectin promotes functional recovery after podocyte ablation. Journal of the American Society of Nephrology : JASN, 24(2), 268-282. Sakers, A., De Siqueira, M. K., Seale, P., & Villanueva, C. J. (2022). Adipose-tissue plasticity in health and disease. Cell, 185(3), 419-446. Sanchez-Gurmaches, J., Hung, C. M., & Guertin, D. A. (2016). Emerging Complexities in Adipocyte Origins and Identity. Trends in Cell Biology, 26(5), 313-326. Saponaro, C., Gaggini, M., Carli, F., & Gastaldelli, A. (2015). The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients, 7(11), 9453-9474. Scheja, L., & Heeren, J. (2019). The endocrine function of adipose tissues in health and cardiometabolic disease. Nature Reviews. Endocrinology, 15(9), 507-524. Schlaepfer, I. R., & Joshi, M. (2020). CPT1A-mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology, 161(2), bqz046. Schweiger, M., Eichmann, T. O., Taschler, U., Zimmermann, R., Zechner, R., & Lass, A. (2014). Measurement of lipolysis. Methods in Enzymology, 538, 171-193. Seoka, M., Ma, G., Zhang, L., Yahata, M., Yamawaki, K., Kan, T., & Kato, M. (2020). Expression and functional analysis of the nobiletin biosynthesis-related gene CitOMT in citrus fruit. Scientific Reports, 10(1), 15288. Shamsi, F., Wang, C. H., & Tseng, Y. H. (2021). The evolving view of thermogenic adipocytes — ontogeny, niche and function. Nature Reviews Endocrinology, 17(12), 726-744. Shao, M., Wang, Q. A., Song, A., Vishvanath, L., Busbuso, N. C., Scherer, P. E., & Gupta, R. K. (2019). Cellular origins of beige fat cells revisited. Diabetes, 68(10), 1874-1885. Shimobayashi, M., Albert, V., Woelnerhanssen, B., Frei, I. C., Weissenberger, D., Meyer-Gerspach, A. C., Clement, N., Moes, S., Colombi, M., & Meier, J. A. (2018). Insulin resistance causes inflammation in adipose tissue. The Journal of Clinical Investigation, 128(4), 1538-1550. Sodhi, M., Rezaeianzadeh, R., Kezouh, A., & Etminan, M. (2023). Risk of gastrointestinal adverse events associated with glucagon-like peptide-1 receptor agonists for weight loss. Jama, 330(18), 1795-1797. Song, Z., Xiaoli, A. M., & Yang, F. (2018). Regulation and Metabolic Significance of De Novo Lipogenesis in Adipose Tissues. Nutrients, 10(10), 1383. Stefan, N. (2020). Causes, consequences, and treatment of metabolically unhealthy fat distribution. The Lancet. Diabetes & Endocrinology, 8(7), 616-627. Stendera, S. E. S., & Johnson, R. K. (2005). Additive partitioning of aquatic invertebrate species diversity across multiple spatial scales. Freshwater Biology, 50(8), 1360-1375. Stojanov, S., Berlec, A., & Štrukelj, B. (2020). The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms, 8(11). Straub, L. G., & Scherer, P. E. (2019). Metabolic Messengers: adiponectin. Nature Metabolism, 1(3), 334-339. Sztalryd, C., Xu, G., Dorward, H., Tansey, J. T., Contreras, J. A., Kimmel, A. R., & Londos, C. (2003). Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. The Journal of Cell Biology, 161(6), 1093-1103. Talley, J. T., & Mohiuddin, S. S. (2024). Biochemistry, Fatty Acid Oxidation. In StatPearls. StatPearls Publishing. Tarantino, G., Scalera, A., & Finelli, C. (2013). Liver-spleen axis: intersection between immunity, infections and metabolism. World Journal of Gastroenterology, 19(23), 3534-3542. Taylor, E. B. (2021). The complex role of adipokines in obesity, inflammation, and autoimmunity. Clinical Science (London, England : 1979), 135(6), 731-752. Tomé‐Carneiro, J., Gonzálvez, M., Larrosa, M., García‐Almagro, F. J., Avilés‐Plaza, F., Parra, S., Yáñez‐Gascón, M. J., Ruiz‐Ros, J. A., García‐Conesa, M. T., & Tomás‐Barberán, F. A. (2012). Consumption of a grape extract supplement containing resveratrol decreases oxidized LDL and A po B in patients undergoing primary prevention of cardiovascular disease: A triple‐blind, 6‐month follow‐up, placebo‐controlled, randomized trial. Molecular Nutrition & Food Research, 56(5), 810-821. Uysal, K. T., Wiesbrock, S. M., & Hotamisligil, G. k. S. (1998). Functional analysis of tumor necrosis factor (TNF) receptors in TNF-α-mediated insulin resistance in genetic obesity. Endocrinology, 139(12), 4832-4838. Valeur, N., Engel, P., Carbajal, N., Connolly, E., & Ladefoged, K. (2004). Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract. Applied and Environmental Microbiology, 70(2), 1176-1181. Verdam, F. J., Fuentes, S., de Jonge, C., Zoetendal, E. G., Erbil, R., Greve, J. W., Buurman, W. A., de Vos, W. M., & Rensen, S. S. (2013). Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity, 21(12), E607-E615. Wang, Li, S. M., Wei, C. C., Huang, J., Pan, M. H., Shahidi, F., & Ho, C. T. (2018a). Anti-inflammatory effects of polymethoxyflavones from citrus peels: a review. Journal of Food Bioactives, 3, 76-86. Wang, B., Kong, Q., Li, X., Zhao, J., Zhang, H., Chen, W., & Wang, G. (2020a). A High-Fat Diet Increases Gut Microbiota Biodiversity and Energy Expenditure Due to Nutrient Difference. Nutrients, 12(10), 3197. Wang, L., Gong, Z., Zhang, X., Zhu, F., Liu, Y., Jin, C., Du, X., Xu, C., Chen, Y., Cai, W., Tian, C., & Wu, J. (2020b). Gut microbial bile acid metabolite skews macrophage polarization and contributes to high-fat diet-induced colonic inflammation. Gut Microbes, 12(1), 1819155. Wang, Q., Liu, S., Zhai, A., Zhang, B., & Tian, G. (2018b). AMPK-Mediated Regulation of Lipid Metabolism by Phosphorylation. Biological & Pharmaceutical Bulletin, 41(7), 985-993. Wang, Q. A., Tao, C., Gupta, R. K., & Scherer, P. E. (2013). Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Medicine, 19(10), 1338-1344. Wang, W., & Seale, P. (2016). Control of brown and beige fat development. Nature Reviews Molecular Cell Biology, 17(11), 691-702. Wang, Y., Mou, Y., Lu, S., Xia, Y., & Cheng, B. (2024). Polymethoxylated flavonoids in citrus fruits: absorption, metabolism, and anticancer mechanisms against breast cancer. PeerJ, 12, e16711. Wang, Y., Zang, W., Ji, S., Cao, J., & Sun, C. (2019). Three Polymethoxyflavones Purified from Ougan (Citrus reticulata Cv. Suavissima) Inhibited LPS-Induced NO Elevation in the Neuroglia BV-2 Cell Line via the JAK2/STAT3 Pathway. Nutrients, 11(4), 791. Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., & Ferrante, A. W. (2003). Obesity is associated with macrophage accumulation in adipose tissue. The Journal of Clinical Investigation, 112(12), 1796-1808. Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30(3), 279-338. Wilding, J. P., Batterham, R. L., Calanna, S., Davies, M., Van Gaal, L. F., Lingvay, I., McGowan, B. M., Rosenstock, J., Tran, M. T., & Wadden, T. A. (2021). Once-weekly semaglutide in adults with overweight or obesity. New England Journal of Medicine, 384(11), 989-1002. Wu, X., Song, M., Gao, Z., Sun, Y., Wang, M., Li, F., Zheng, J., & Xiao, H. (2017). Nobiletin and its colonic metabolites suppress colitis-associated colon carcinogenesis by down-regulating iNOS, inducing antioxidative enzymes and arresting cell cycle progression. The Journal of Nutritional Biochemistry, 42, 17-25. Yao, J., Wu, D., & Qiu, Y. (2022). Adipose tissue macrophage in obesity-associated metabolic diseases. Frontiers in Immunology, 13, 977485. Zeng, H., Ishaq, S. L., Zhao, F., & Wright, A.-D. G. (2016). Colonic inflammation accompanies an increase of β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice. The Journal of Nutritional Biochemistry, 35, 30-36. Zgadzaj, R., Garrido-Oter, R., Jensen, D. B., Koprivova, A., Schulze-Lefert, P., & Radutoiu, S. (2016). Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 113(49), E7996-e8005. Zhang, C., Fang, R., Lu, X., Zhang, Y., Yang, M., Su, Y., Jiang, Y., & Man, C. (2022). Lactobacillus reuteri J1 prevents obesity by altering the gut microbiota and regulating bile acid metabolism in obese mice. Food & Function, 13(12), 6688-6701. Zhang, M., Zhang, X., Zhu, J., Zhao, D. G., Ma, Y. Y., Li, D., Ho, C. T., & Huang, Q. (2021). Bidirectional interaction of nobiletin and gut microbiota in mice fed with a high-fat diet. Food & Function, 12(8), 3516-3526. Zhang, M., Zhu, J., Zhang, X., Zhao, D. g., Ma, Y. y., Li, D., Ho, C. T., & Huang, Q. (2020). Aged citrus peel (chenpi) extract causes dynamic alteration of colonic microbiota in high-fat diet induced obese mice. Food & Function, 11(3), 2667-2678. Zimmermann, R., Lass, A., Haemmerle, G., & Zechner, R. (2009). Fate of fat: the role of adipose triglyceride lipase in lipolysis. Biochimica et Biophysica Acta 1791(6), 494-500. Zingaretti, M. C., Crosta, F., Vitali, A., Guerrieri, M., Frontini, A., Cannon, B., Nedergaard, J., & Cinti, S. (2009). The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. The FASEB Journal, 23(9), 3113-3120. Ziqubu, K., Dludla, P. V., Mthembu, S. X. H., Nkambule, B. B., Mabhida, S. E., Jack, B. U., Nyambuya, T. M., & Mazibuko-Mbeje, S. E. (2023). An insight into brown/beige adipose tissue whitening, a metabolic complication of obesity with the multifactorial origin. Frontiers in Endocrinology, 14, 1114767. Zlotnik, A., & Yoshie, O. (2000). Chemokines: a new classification system and their role in immunity. Immunity, 12(2), 121-127. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95778 | - |
| dc.description.abstract | 由於現代生活型態和飲食習慣的改變,肥胖人口與日俱增,已然成為現今社會健康與經濟議題。最近的研究表明,食品中的植化素可以透過不同途徑預防肥胖,包括促進脂肪組織棕色化、增加能量消耗、減輕發炎反應和氧化壓力。多甲氧基黃酮 (polymethoxyflavones, PMFs) 是柑橘皮中含量最豐富的黃酮類化合物之一,具有調節脂質代謝、降低氧化壓力和抗發炎等多種生物功能;而近年來,有多篇文獻指出羥化多甲氧基黃酮 (hydroxylated polymethoxyflavones, HPMFs) 有較好的生理活性,然而 HPMFs 是否對於脂肪棕色化和調節腸道菌群有所助益仍尚未被充分研究。因此本研究使用主成分為 HPMFs 之樣品粉末 (Citrus PMFs, CPs),並將 C57BL/6 小鼠分為五組,普通飲食組 (ND);高脂飲食組 (50% calories from fat,HFD);高脂飲食混和低劑量 CPs (HPMFs含量 0.36 mg/g 飼料);高脂飲食混和高劑量 CPs 粉末 (HPMFs 含量 1.45 mg/g 飼料) 以及普通飲食混和高劑量 CPs 粉末,飲食誘導 16 週後犧牲,藉此探討HPMFs對高脂飲食誘導小鼠是否具有改善肥胖之功效。本實驗結果顯示,與 HFD 組相比,高脂飲食合併給予高劑量 CPs 在不影響攝食量下顯著降低小鼠體重、肝臟重量和內臟脂肪重量;血清三酸甘油酯和動脈粥樣硬化指數 (LDL/HDL) 水平顯著低於 HFD 組。此外,CPs 顯著降低肝臟三酸甘油酯含量,切片結果也顯示脂肪細胞體積縮小與大小分佈的改變,且 CPs 可以有效減緩脂肪組織內的發炎反應和 M1 巨噬細胞浸潤。進一步研究分子機制,發現CPs 可以將脂聯素恢復至控制組水平並活化下游 AMPK 途徑以增加脂肪分解和脂肪酸 β-氧化。此外,高脂飲食合併給予高劑量 CPs 可以顯著提升 p-p38 MAPK、SIRT-1、PGC1-α 和 UCP-1 的蛋白質表現量,顯示 HPMFs 可以促進脂肪棕色化和能量消耗。此外,微生物群分析結果說明 HPMFs 可以預防腸道菌叢失調,並且根據 LefSe 分析,1% CPs 組別顯著增加乳酸菌與 Limosilactobacillus reuteri 相對豐度。綜上所述, 作為 CPs 中之主要成分,HPMFs 具有減輕發炎和調節脂質代謝之功效,並促進脂肪棕色化和增加益生菌豐度,有潛力作為一種天然抗肥胖劑,並為開發新型抗肥胖策略提供理論基礎。 | zh_TW |
| dc.description.abstract | Due to the changes in physical and dietary activity patterns, in 2022, more than 2.5 billion adults were overweight, with over 890 million of them being obese, according to the WHO. Obesity may lead to various health consequences, including diabetes, cardiovascular diseases, stroke, and cancer. Treatments for obesity are inevitably associated with reducing body weight, including lifestyle interventions, medications, and surgery. However, drugs and surgeries are often accompanied by side effects and high costs. Recent studies have demonstrated that certain natural dietary factors can effectively prevent obesity by serving as a valid strategy. Several bioactive compounds in the diet serve as antioxidants and anti-inflammatory agents, aiding progress in weight loss and/or the mitigation of metabolic disorders. This is achieved by boosting adipose tissue browning, thermogenesis and energy expenditure, as well as alleviating inflammation and oxidative stress. As a result, natural phytochemicals have become a novel choice for obesity. Polymethoxyflavones (PMFs), one of the most abundant flavonoids in citrus peel, have many biological functions, such as modulating lipid metabolism, reducing oxidative stress and anti-inflammation; however, their poor water solubility has become a challenge. Hydroxylated PMFs (HPMFs) are PMFs in which some methoxy groups are replaced by hydroxyl groups. This substitution leads to increased bioavailability and enhanced biological functions. However, the mechanisms of HPMFs in promoting fat browning and modulating gut microbiota haven’t been fully discussed. Therefore, we aimed to explore the potential effects of sample powder containing HPMFs on improving obesity, including activation of white adipose tissue browning, modulating lipid metabolisms, and alleviating inflammation in high-fat diet-induced mice. A 16-week animal experiment was conducted using C57BL/6 mice fed with high-fat diet (HFD) combining citrus PMFs sample powder (CPs) mainly composed of HPMFs to confirm the effects of HPMFs. Compared with HFD group, body weight, liver weight and visceral fat weight were significantly reduced in HFD+1% CPs group without affecting food intake. Serum TG and AI (LDL/HDL) levels were significantly lower in HFD+1% CPs group than HFD group. In addition, 1% HPMFs could reduce liver TG content, decrease adipocyte size and change the size distribution. Inflammatory cytokines and chemokine were significantly decreased in HFD+1% CPs group, and so was the M1 macrophage. Further investigating lipid metabolisms, 1% HPMFs could upregulate adiponectin to control level and activate downstream AMPK pathways, which increase lipolysis and fatty acid β-oxidation. Also, protein levels of p-p38 MAPK, SIRT-1, PGC1-α and UCP-1 were upregulated in HFD+1% CPs group, indicating that HPMFs could promote fat browning and energy expenditure. Furthermore, the results of microbiota analysis showed that CPs could prevent gut dysbiosis by increasing lactobacillus, and 1% CPs could significantly increase probiotic Lactobacillus and Limosilactobacillus reuteri based on LefSe. In conclusion, as the main compound in sample powder CPs, HPMFs not only alleviate inflammation and modulate lipid metabolisms, but also boost fat browning and probiotic abundance to prevent obesity, and could be a potent ingredient applied to the development of functional food for obesity prevention. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:23:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-16T16:23:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
謝誌 II 中文摘要 V Abstract VI Graphic abstract VIII 目次 IX 附圖目次 XII 附表目次 XIII 圖目次 XIV 表目次 XVI 縮寫表 XVII 第一章、文獻回顧 1 第一節、肥胖 1 (一) 疾病盛行率概況 1 (二) 成因與危害 1 (三) 預防與治療 3 第二節、脂肪組織 4 (一) 脂肪組織簡介 4 (二) 脂肪組織的分類 7 第三節、白色脂肪組織 7 (一) 簡介 7 (二) 位置與分類 8 (三) 脂質代謝 8 第四節、棕色脂肪組織 15 (一) 簡介 15 (二) 生熱作用 (thermogenesis) 15 第五節、米色脂肪組織 17 (一) 簡介 17 (二) 性質 17 (三) 成因 17 第六節、羥化多甲氧基黃酮 (hydroxylated polymethoxyflavones) 19 (一) 黃酮類化合物 (flavonoid) 19 (二) 多甲氧基黃酮 (polymethoxylflavones, PMFs) 20 (三) 羥化多甲氧基類黃酮 (hydroxylated PMFs, HPMFs) 24 第二章、實驗目的與架構 25 第一節、實驗目的 25 第二節、實驗架構 25 (一) 動物實驗設計 25 (二) 實驗流程圖 26 第三章、材料與方法 27 第一節、實驗材料 27 (一) 樣品 27 (二) 儀器設備 27 (三) 藥品試劑 28 (四) 試劑套組 29 (五) 抗體 30 第二節、樣品分析 31 第三節、實驗動物 32 (一) 實驗動物品系與基本資料 32 (二) 動物實驗組別設計 32 第四節、抗肥胖相關機制探討 32 (一) 血液生化數值分析 32 (二) 肝臟總三酸甘油酯分析 33 (三) 細胞激素測定 34 (四) 組織切片及染色分析 36 (五) 油紅染色步驟 42 (六) 組織均質與蛋白質萃取 43 (七) 西方墨點法 (western blot) 43 (八) 腸道菌相分析 46 第五節、統計分析 48 第四章、結果與討論 49 第一節、樣品分析結果 49 第二節、含 HPMFs 之 CPs 對於高脂飲食誘導之 C57BL/6J 小鼠體重、攝食與飲水量之影響 51 第三節、含 HPMFs 之 CPs 對於高脂飲食誘導之 C57BL/6J 小鼠血清生化數值之影響 55 第四節、含 HPMFs 之 CPs 對於高脂飲食誘導之 C57BL/6J 小鼠臟器之影響 57 第五節、含 HPMFs 之 CPs 對於高脂飲食誘導之 C57BL/6J 小鼠肝臟內脂質蓄積之影響 59 第六節、含 HPMFs 之 CPs 對於高脂飲食誘導之 C57BL/6J 小鼠脂肪組織之影響 61 (一) 含 HPMFs 之 CPs 對於高脂飲食誘導之 C57BL/6J 小鼠白色脂肪組織影響 61 (二) 含 HPMFs 之 CPs 對於高脂飲食誘導之 C57BL/6J 小鼠米棕脂肪之影響 71 第七節、含 HPMFs 之 CPs對於高脂飲食誘導之 C57BL/6J 小鼠腸道菌相之影響 78 (一) 含 HPMFs 之 CPs 對於腸道菌相 Beta 多樣性之影響 78 (二) 含 HPMFs 之 CPs 對於組間腸道菌相物種差異之影響 80 (三) 含 HPMFs 之 CPs 對於腸道菌相與肥胖參數關聯性之影響 82 第五章、結論 86 參考文獻 89 附錄 110 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 5 位羥化多甲氧基黃酮透過減緩脂肪發炎與促進脂肪棕色化預防高脂飲食誘導小鼠肥胖之功效 | zh_TW |
| dc.title | 5-hydroxypolymethoxyflavone attenuates obesity via inhibiting adipose tissue inflammation and promoting fat browning in high-fat diet-fed C57BL/6 mice | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王朝鐘;何元順;王應然;黃步敏 | zh_TW |
| dc.contributor.oralexamcommittee | Chau-Jong Wang;Yuan-Soon Ho;Ying-Jan Wang;Bu-Miin Huang | en |
| dc.subject.keyword | 肥胖,發炎,棕色化,羥化多甲氧基黃酮,脂聯素,Limosilactobacillus reuteri, | zh_TW |
| dc.subject.keyword | obesity,browning,inflammation,hydroxylated polymethoxyflavones,adiponectin,Limosilactobacillus reuteri, | en |
| dc.relation.page | 110 | - |
| dc.identifier.doi | 10.6342/NTU202400919 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-02 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 6.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
