請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95765
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃俊郎 | zh_TW |
dc.contributor.advisor | Jiun-Lang Huang | en |
dc.contributor.author | 顏伯任 | zh_TW |
dc.contributor.author | Po-Jen Yen | en |
dc.date.accessioned | 2024-09-16T16:19:19Z | - |
dc.date.available | 2024-09-17 | - |
dc.date.copyright | 2024-09-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-31 | - |
dc.identifier.citation | [1] D. H. Jung, H. Kim, J. J. Kim, S. Kim, J. Kim, H.-C. Bae, and K.-S. Choi, “Modeling and analysis of defects in through silicon via channel for non-invasive fault isolation,” in 2015 International 3D Systems Integration Conference (3DIC), pp. TS8.29.1–TS8.29.4, 2015.
[2] S. S. Salvi and A. Jain, “A review of recent research on heat transfer in three- dimensional integrated circuits (3-D ICs),” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 11, no. 5, pp. 802–821, 2021. [3] E. J. Marinissen, J. Verbree, and M. Konijnenburg, “A structured and scalable test access architecture for TSV-based 3D stacked ICs,” in 2010 28th VLSI Test Sympo- sium (VTS), pp. 269–274, 2010. [4] W.-H. Hsu, M. A. Kochte, and K.-J. Lee, “3D-IC test architecture for TSVs with different impact ranges of crosstalk faults,” in 2016 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1–4, 2016. [5] A. Sankararao, V. G, and S. R. Malige, “TSV BIST Repair: Design-for-test chal- lenges and emerging solution for 3D stacked IC’s,” in 2022 IEEE International Test Conference India (ITC India), pp. 1–6, 2022. [6] D. Medhat, M. Dessouky, and D. Khalil, “Electrostatic discharge physical verification of 2.5D/3D integrated circuits,” in 2020 21st International Symposium on Quality Electronic Design (ISQED), pp. 383–388, 2020. [7] C.-Y. Pai, R.-T. Cu, B.-C. Cheng, L.-B. Chen, and K. S.-M. Li, “A unified inter- connects testing scheme for 3D integrated circuits,” in 2011 Asian Test Symposium, pp. 195–200, 2011. [8] J. Rajski and J. Tyszer, “Fault diagnosis of TSV-based interconnects in 3-D stacked designs,” in 2013 IEEE International Test Conference (ITC), pp. 1–9, 2013. [9] W.-H. Yang, J.-F. Li, C.-L. Hsu, C.-T. Sun, and S.-H. Huang, “A built-in self-test scheme for TSVs of Logic-DRAM stacked 3D ICs,” in 2019 International 3D Sys- tems Integration Conference (3DIC), pp. 1–3, 2019. [10] V. Pasca, L. Anghel, and M. Benabdenbi, “Configurable Thru-Silicon-Via intercon- nect built-in self-test and diagnosis,” in 2011 12th Latin American Test Workshop (LATW), pp. 1–6, 2011. [11] Y.-J. Huang, J.-F. Li, and C.-W. Chou, “Post-bond test techniques for TSVs with crosstalk faults in 3D ICs,” in Proceedings of Technical Program of 2012 VLSI De- sign, Automation and Test, pp. 1–4, 2012. [12] C.-Y.Lin,“IEEE1500 based TSV array crosstalk test solution,”in Master's thesis, National Taiwan University, 2023. [13] P.-Y.Chuang, F.Lorenzelli, S.Chakravarty, C.-W.Wu, G.Gielen, and E.J.Marinis- sen, “Effective and efficient testing of large numbers of inter-die interconnects in chiplet-based multi-die packages,” in 2023 IEEE 41st VLSI Test Symposium (VTS), pp. 1–6, 2023. [14] P.-Y. Chuang, F. Lorenzelli, S. Chakravarty, S. Boutobza, C.-W. Wu, G. Gielen, and E. J. Marinissen, “Effective and efficient test and diagnosis pattern generation for many inter-die interconnects in chiplet-based packages,” in 2023 IEEE International 3D Systems Integration Conference (3DIC), pp. 1–6, 2023. [15] P.-Y. Chuang, F. Lorenzelli, and E. J. Marinissen, “Generating test patterns for chiplet interconnects: Achieving optimal effectiveness and efficiency,” in 2023 IEEE International Test Conference in Asia (ITC-Asia), pp. 1–6, 2023. [16] Y.Lee,D.Han,andS.Kang,“TSVbuilt-inself-repairarchitectureforimprovingthe yield and reliability of HBM,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 31, no. 4, pp. 578–590, 2023. [17] A.-C. Hsieh and T. Hwang, “TSV redundancy: Architecture and design issues in 3- D IC,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 4, pp. 711–722, 2012. [18] L. Jiang, Q. Xu, and B. Eklow, “On effective Through-Silicon Via repair for 3-D- stacked ICs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 4, pp. 559–571, 2013. [19] T. Ni, D. Liu, Q. Xu, Z. Huang, H. Liang, and A. Yan, “Architecture of cobweb- based redundant TSV for clustered faults,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 7, pp. 1736–1739, 2020. [20] W.-H. Lo, K. Chi, and T. Hwang, “Architecture of ring-based redundant TSV for clustered faults,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys- tems, vol. 24, no. 12, pp. 3437–3449, 2016. [21] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory and Applications of Satisfiability Testing (E. Giunchiglia and A. Tacchella, eds.), (Berlin, Heidelberg), pp. 502–518, Springer Berlin Heidelberg, 2004. [22] N. D. Phan, I. J. Chang, and J.-W. Lee, “A 2-Kb one-time programmable memory for UHF passive RFID tag IC in a standard 0.18 /spl mu/m CMOS process,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 7, pp. 1810– 1822, 2013. [23] W.T.Chan,K.P.Ng,M.C.Lee,K.C.Kwong,L.Li,R.M.Y.Ng,T.Y.Man,and M. Chan, “CMOS-compatible zero-mask one time programmable (OTP) memory design,” in 2008 9th International Conference on Solid-State and Integrated-Circuit Technology, pp. 861–864, 2008. [24] M. Shi, J. He, L. Zhang, C. Ma, X. Zhou, H. Lou, H. Zhuang, R. Wang, Y. Li, Y. Ma, W. Wu, W. Wang, and M. Chan, “Zero-mask contact fuse for one-time- programmable memory in standard cmos processes,” IEEE Electron Device Letters, vol. 32, no. 7, pp. 955–957, 2011. [25] H. Jun, J. Cho, K. Lee, H.-Y. Son, K. Kim, H. Jin, and K. Kim, “HBM (High Band- width Memory) DRAM technology and architecture,” in 2017 IEEE International Memory Workshop (IMW), pp. 1–4, 2017. [26] S. Menon and V. I. Murugan, “Validating and characterizing a 2.5D high bandwidth memory subsystem,” in 2020 IEEE International Test Conference India, pp. 1–9, 2020. [27] H.Jun,S.Nam,H.Jin,J.-C.Lee,Y.J.Park,andJ.J.Lee,“High-bandwidthmemory (HBM) test challenges and solutions,” IEEE Design Test, vol. 34, no. 1, pp. 16–25, 2017. [28] J.C.Lee,J.Kim,K.W.Kim,Y.J.Ku,D.S.Kim,C.Jeong,T.S.Yun,H.Kim,H.S. Cho, S. Oh, H. S. Lee, K. H. Kwon, D. B. Lee, Y. J. Choi, J. Lee, H. G. Kim, J. H.Chun, J. Oh, and S. H. Lee, “High bandwidth memory(HBM) with TSV technique,” in 2016 International SoC Design Conference (ISOCC), pp. 181–182, 2016. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95765 | - |
dc.description.abstract | 3D-IC技術在現今IC設計中已成為AI晶片發展的關鍵。通過堆疊小晶片並使用互連作為資料傳輸的媒介,可以增加資料傳輸速度、減少傳輸距離和能耗。然而,由於互連的高密度放,晶片在製造過程中容易產生缺陷 (defects),因此互連的測試和可靠性是一個重要議題。
不同種類的缺陷,如短路、開路和串擾故障,都需要有對應的測試模型來進行檢驗。由於在 3D-IC中高密度的互連使得串擾效應增大,串擾故障的風險顯著提升。因此串擾故障模型 (Crosstalk Fault Model) 的討論逐漸成為當前的探討的重點。 本篇提出了一種測試以及修復分析方案,能夠高效地進行串擾測試以及修復。我們提出了一種可重複使用的測試元件,在正常運作模式下可作為修復訊號的儲存空間。這種設計大幅降低測試和修復成本,顯著提升系統的可靠性並降低製造成本。 | zh_TW |
dc.description.abstract | 3D-IC technology has become crucial in modern IC design for the development of AI chips. By stacking small chiplets and using interconnects as data transmission media, data transfer speed can be increased, while transmission distance and power consumption are also reduced. However, due to the high-density placement of interconnects, defects can easily occur during the chip manufacturing process. Therefore, testing and reliability of interconnects are crucial issues.
Different types of defects, such as shorts, opens, and crosstalk faults, all require cor- responding test models for validation. Due to the high-density interconnects in 3D-ICs, crosstalk effects are amplified, significantly increasing the risk of crosstalk faults. There- fore, discussions on the Crosstalk Fault Model have gradually become a focal point of current research. This paper proposes a testing and repair analysis scheme that can efficiently perform crosstalk testing and repair. We propose a reusable testing component that can serve as storage for repair signals during normal operation mode. This design significantly reduces testing and repair costs, enhances system reliability, and lowers manufacturing expenses. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:19:19Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-16T16:19:19Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgements ........................ i
摘要 ........................ ii Abstract ........................ iii Chapter1 Introduction ........................ 1 1.1 Overview of 2.5D/3D-IC ........................ 1 1.2 Importance of Interconnect Testing .................. 2 1.3 Related work .............................. 3 1.4 Motivation ............................... 6 1.5 Contribution .............................. 7 1.6 Organization of the Thesis ....................... 8 Chapter2 Preliminaries ........................ 9 2.1 Maximum Aggressor Fault(MAF)Model ....................... 9 2.2 Kth Aggressor Fault(KAF)Model ................... 10 2.3 Interconnect Testing with IEEE1500 Standard ................... 11 2.3.1 IEEE1500 WBR for Single Pattern Application ................... 11 2.3.2 IEEE1500 Test Architecture ..................... 12 2.3.3 IEEE1500 WBR for Two Pattern Application ................... 13 2.4 IEEE 1500 Based TSV Array Crosstalk Test Solution ................... 14 2.4.1 Modified WBR cell based on IEEE1500 ........................ 14 2.4.2 Flip Signal Generation Mechanism .................. 15 2.4.3 Crosstalk Test Scheme ........................ 16 2.5 Interconnect Labeling Method ..................... 17 2.6 General Repair Mechanism ....................... 18 Chapter3 Proposed Method ....................... 19 3.1 Proposed DfT Architecture and Test Scheme ...................... 19 3.1.1 Proposed DfT Architecture ...................... 19 3.1.2 Proposed SC/DC ........................... 21 3.1.3 Proposed Test Scheme ........................ 24 3.2 Improved WDR Configuration Generation Algorithm ....................... 26 3.3 Proposed Repair Hardware ....................... 33 Chapter4 Experiment Result ....................... 35 4.1 Single WBR Cell Area......................... 35 4.2 WDR Hardware Area.......................... 36 4.3 Repair Hardware Area ......................... 37 4.4 Test Cycle Comparison ......................... 38 4.5 WDR Configuration Generation Time Analysis ......................... 39 4.6 High Bandwidth Memory (HBM) Interconnects Testing ......................... 40 Chapter5 Conclusion ....................... 42 5.1 Conclusion ....................... 42 5.2 Future Work ....................... 42 References ....................... 44 | - |
dc.language.iso | en | - |
dc.title | 改進的晶片間互連串擾測試和修復解決方案 | zh_TW |
dc.title | Improved Crosstalk Test and Repair Solution for Inter-Die Interconnects | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張益興;黃炫倫;呂學坤 | zh_TW |
dc.contributor.oralexamcommittee | Yi-Shing Chang;Xuan-Lun Huang;Shyue-Kung Lu | en |
dc.subject.keyword | 三維積體電路,互連測試,可測試性設計,修復電路,串擾故障, | zh_TW |
dc.subject.keyword | 3D-IC,Interconnect Testing,Design for Testability,Repair Circuit,Crosstalk Fault, | en |
dc.relation.page | 48 | - |
dc.identifier.doi | 10.6342/NTU202401758 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-02 | - |
dc.contributor.author-college | 重點科技研究學院 | - |
dc.contributor.author-dept | 積體電路設計與自動化學位學程 | - |
dc.date.embargo-lift | 2029-07-29 | - |
顯示於系所單位: | 積體電路設計與自動化學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 9.56 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。