Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95740
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊哲人zh_TW
dc.contributor.advisorJer-Ren Yangen
dc.contributor.author曾詩雅zh_TW
dc.contributor.authorShih-Ya Tsengen
dc.date.accessioned2024-09-16T16:11:49Z-
dc.date.available2024-09-17-
dc.date.copyright2024-09-16-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citation[1] Cantor, B., I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004. 375: pp. 213-218.
[2] Yeh, J.W., S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): pp. 299-303.
[3] Lim, X., Mixed-up metals make for stronger, tougher, stretchier alloys. Nature, 2016. 533(7603): pp. 306-307.
[4] Wu, Z., H. Bei, F. Otto, G.M. Pharr, and E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics, 2014. 46: pp. 131-140.
[5] Kivy, M.B. and M.A. Zaeem, Generalized stacking fault energies, ductilities, and twinnabilities of CoCrFeNi-based face-centered cubic high entropy alloys. Scripta Materialia, 2017. 139: pp. 83-86.
[6] Praveen, S., J.W. Bae, P. Asghari-Rad, J.M. Park, and H.S. Kim, Annealing-induced hardening in high-pressure torsion processed CoCrNi medium entropy alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2018. 734: pp. 338-340.
[7] Deng, H.W., Z.M. Xie, B.L. Zhao, Y.K. Wang, M.M. Wang, J.F. Yang, T. Zhang, Y. Xiong, X.P. Wang, Q.F. Fang, and C.S. Liu, Tailoring mechanical properties of a CoCrNi medium-entropy alloy by controlling nanotwin-HCP lamellae and annealing twins. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2019. 744: pp. 241-246.
[8] Gu, J. and M. Song, Annealing-induced abnormal hardening in a cold rolled CrMnFeCoNi high entropy alloy. Scripta Materialia, 2019. 162: pp. 345-349.
[9] Li, Z., S. Zhao, R.O. Ritchie, and M.A. Meyers, Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Progress in Materials Science, 2019. 102: pp. 296-345.
[10] Murty, B.S., J.-W. Yeh, S. Ranganathan, and P.P. Bhattacharjee, High-entropy alloys. 2019: pp. 1-6. Elsevier.
[11] George, E.P., D. Raabe, and R.O. Ritchie, High-entropy alloys. Nature Reviews Materials, 2019. 4(8): pp. 515-534.
[12] Tsai, M.-H. and J.-W. Yeh, High-Entropy Alloys: A Critical Review. Materials Research Letters, 2014. 2(3): pp. 107-123.
[13] Cantor, B., Multicomponent high-entropy Cantor alloys. Progress in Materials Science, 2021. 120: p. 100754.
[14] Cantor, B., Multicomponent and High Entropy Alloys. Entropy, 2014. 16(9): pp. 4749-4768.
[15] Zhang, W., P.K. Liaw, and Y. Zhang, Science and technology in high-entropy alloys. Science China Materials, 2018. 61(1): pp. 2-22.
[16] Yeh, J.-W., Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM, 2013. 65(12): pp. 1759-1771.
[17] Li, W., D. Xie, D. Li, Y. Zhang, Y. Gao, and P.K. Liaw, Mechanical behavior of high-entropy alloys. Progress in Materials Science, 2021. 118: p. 100777.
[18] Gludovatz, B., A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014. 345(6201): pp. 1153-1158.
[19] Yeh, J.-W., Overview of High-Entropy Alloys, in High-Entropy Alloys: Fundamentals and Applications, M.C. Gao, et al., Editors. 2016, Springer International Publishing: Cham. pp. 1-19.
[20] Yeh, J.-W., Recent progress in high-entropy alloys. European Journal of Control - EUR J CONTROL, 2006. 31: pp. 633-648.
[21] Yeh, J.-W., Physical Metallurgy of High-Entropy Alloys. JOM, 2015. 67(10): pp. 2254-2261.
[22] Zhang, F., C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, and U.R. Kattner, An understanding of high entropy alloys from phase diagram calculations. Calphad, 2014. 45: pp. 1-10.
[23] Miracle, D.B. and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: pp. 448-511.
[24] Ranganathan, S., Alloyed pleasures: Multimetallic cocktails. Current science, 2003. 85(5): pp. 1404-1406.
[25] Tsai, K.Y., M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 2013. 61(13): pp. 4887-4897.
[26] Eißmann, N., B. Klöden, T. Weißgärber, and B. Kieback, High-entropy alloy CoCrFeMnNi produced by powder metallurgy. Powder Metallurgy, 2017. 60(3): pp. 184-197.
[27] Gali, A. and E.P. George, Tensile properties of high- and medium-entropy alloys. Intermetallics, 2013. 39: pp. 74-78.
[28] Wu, Z., H. Bei, G.M. Pharr, and E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Materialia, 2014. 81: pp. 428-441.
[29] Laplanche, G., A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, and E.P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Materialia, 2017. 128: pp. 292-303.
[30] Huang, S., W. Li, S. Lu, F.Y. Tian, J. Shen, E. Holmström, and L. Vitos, Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scripta Materialia, 2015. 108: pp. 44-47.
[31] Zhang, Z., Y. Wu, L. Bhatta, C. Li, B. Gan, C. Kong, Y. Wang, and H. Yu, Mechanical properties and microstructure evolution of a CrCoNi medium entropy alloy subjected to asymmetric cryorolling and subsequent annealing. Materials Today Communications, 2021. 26: p. 101776.
[32] Miao, J., C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, and M.J. Mills, The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy. Acta Materialia, 2017. 132: pp. 35-48.
[33] Ding, L., A. Hilhorst, H. Idrissi, and P.J. Jacques, Potential TRIP/TWIP coupled effects in equiatomic CrCoNi medium-entropy alloy. Acta Materialia, 2022. 234: p. 118049.
[34] He, M.Y., Y.F. Shen, N. Jia, and P.K. Liaw, C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy. Applied Materials Today, 2021. 25: p. 101162.
[35] Zhang, H., K. Chen, Z. Wang, H. Zhou, K. Gao, Y. Du, and Y. Su, Microstructure and mechanical properties of novel Si-added CrFeNi medium-entropy alloy prepared via vacuum arc-melting. Journal of Alloys and Compounds, 2022. 904: p. 164136.
[36] Chang, H., T.W. Zhang, S.G. Ma, D. Zhao, R.L. Xiong, T. Wang, Z.Q. Li, and Z.H. Wang, Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off. Materials & Design, 2021. 197: p. 12.
[37] Mishra, R.S., N. Kumar, and M. Komarasamy, Lattice strain framework for plastic deformation in complex concentrated alloys including high entropy alloys. Materials Science and Technology, 2015. 31(10): pp. 1259-1263.
[38] Komarasamy, M., S. Shukla, N. Ley, K. Liu, K. Cho, B. McWilliams, R. Brennan, M.L. Young, and R.S. Mishra, A novel method to enhance CSL fraction, tensile properties and work hardening in complex concentrated alloys ― Lattice distortion effect. Materials Science and Engineering: A, 2018. 736: pp. 383-391.
[39] Yi, H., M. Bi, K. Yang, and B. Zhang, Significant Improvement the Mechanical Properties of CoCrNi Alloy by Tailoring a Dual FCC-Phase Structure. Materials (Basel), 2020. 13(21): p. 4909.
[40] Kai, W., F.P. Cheng, C.Y. Liao, C.C. Li, R.T. Huang, and J.J. Kai, The oxidation behavior of the quinary FeCoNiCrSix high-entropy alloys. Materials Chemistry and Physics, 2018. 210: pp. 362-369.
[41] Li, D., Y. Feng, S. Song, Q. Liu, Q. Bai, F. Ren, and F. Shangguan, Influences of silicon on the work hardening behavior and hot deformation behavior of Fe–25 wt%Mn–(Si, Al) TWIP steel. Journal of Alloys and Compounds, 2015. 618: pp. 768-775.
[42] Lee, S.-M., S.-J. Lee, S. Lee, J.-H. Nam, and Y.-K. Lee, Tensile properties and deformation mode of Si-added Fe-18Mn-0.6C steels. Acta Materialia, 2018. 144: pp. 738-747.
[43] Jeong, K., J.-E. Jin, Y.-S. Jung, S. Kang, and Y.-K. Lee, The effects of Si on the mechanical twinning and strain hardening of Fe–18Mn–0.6C twinning-induced plasticity steel. Acta Materialia, 2013. 61(9): pp. 3399-3410.
[44] Liu, S.F., W.T. Lin, Y.L. Zhao, D. Chen, G. Yeli, F. He, S.J. Zhao, and J.J. Kai, Effect of silicon addition on the microstructures, mechanical properties and helium irradiation resistance of NiCoCr-based medium-entropy alloys. Journal of Alloys and Compounds, 2020. 844: p. 12.
[45] Li, Z.J., L. Chen, H.H. Su, P.Q. Dai, and Q.H. Tang, The effect of Si addition on the heterogeneous grain structure and mechanical properties of CrCoNi medium entropy alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2022. 852: p. 16.
[46] Xu, D., M. Wang, T. Li, X. Wei, and Y. Lu, A critical review of the mechanical properties of CoCrNi-based medium-entropy alloys. Microstructures, 2022. 2(1): p. 2022001.
[47] Allain, S., J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Materials Science and Engineering: A, 2004. 387-389: pp. 158-162.
[48] Borovikov, V., M.I. Mendelev, A.H. King, and R. LeSar, Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals. Modelling and Simulation in Materials Science and Engineering, 2015. 23(5): p. 16.
[49] Khan, T.Z., T. Kirk, G. Vazquez, P. Singh, A.V. Smirnov, D.D. Johnson, K. Youssef, and R. Arróyave, Towards stacking fault energy engineering in FCC high entropy alloys. Acta Materialia, 2022. 224: p. 17.
[50] Humphreys, F.J. and M. Hatherly, Recrystallization and related annealing phenomena. 2012: pp. 11-II Elsevier.
[51] Zhao, Y.H., Y.T. Zhu, X.Z. Liao, Z. Horita, and T.G. Langdon, Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy. Applied Physics Letters, 2006. 89(12): p. 121906.
[52] Sabban, R., K. Dash, S. Suwas, and B.S. Murty, Strength–Ductility Synergy in High Entropy Alloys by Tuning the Thermo-Mechanical Process Parameters: A Comprehensive Review. Journal of the Indian Institute of Science, 2022. 102(1): pp. 91-116.
[53] Sato, K., M. Ichinose, Y. Hirotsu, and Y. Inoue, Effects of Deformation Induced Phase Transformation and Twinning on the Mechanical Properties of Austenitic Fe–Mn–Al Alloys. ISIJ International, 1989. 29(10): pp. 868-877.
[54] Fang, Y., Y. Chen, B. Chen, S. Li, B. Gludovatz, E.S. Park, G. Sheng, R.O. Ritchie, and Q. Yu, An in situ ambient and cryogenic transmission electron microscopy study of the effects of temperature on dislocation behavior in CrCoNi-based high-entropy alloys with low stacking-fault energy. Applied Physics Letters, 2021. 119(26): p. 261903.
[55] Chandan, A.K., S. Tripathy, B. Sen, M. Ghosh, and S. Ghosh Chowdhury, Temperature dependent deformation behavior and stacking fault energy of Fe40Mn40Co10Cr10 alloy. Scripta Materialia, 2021. 199: p. 113891.
[56] Tirunilai, A.S., R. Osmundsen, I. Baker, H. Chen, K.P. Weiss, M. Heilmaier, and A. Kauffmann, Simultaneous Twinning and Microbands-Induced Plasticity of a Compositionally Complex Alloy with Interstitial Carbon at Cryogenic Temperatures. High Entropy Alloys & Materials, 2023. 1(1): pp. 60-71.
[57] Gallagher, P.C.J., The influence of alloying, temperature, and related effects on the stacking fault energy. Metallurgical Transactions, 1970. 1(9): pp. 2429-2461.
[58] Hansen, N., R.F. Mehl, and A. Medalist, New discoveries in deformed metals. Metallurgical and Materials Transactions A, 2001. 32(12): pp. 2917-2935.
[59] Kuhlmann-Wilsdorf, D. and N. Hansen, Geometrically necessary, incidental and subgrain boundaries. Scripta Metallurgica et Materialia, 1991. 25(7): pp. 1557-1562.
[60] Hughes, D.A., N. Hansen, and D.J. Bammann, Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scripta Materialia, 2003. 48(2): pp. 147-153.
[61] Taylor, G.I., Plastic strain in metals. Plastic Strain in Metals, 1938: pp. 307-324.
[62] Swisher, D.L., Deformation banding and grain refinement in FCC materials. 2003: pp. 3-4, Monterey, California. Naval Postgraduate School.
[63] Orowan, E., A type of plastic deformation new in metals. Nature, 1942. 149(3788): pp. 643-644.
[64] Raabe, D., 23 - Recovery and Recrystallization: Phenomena, Physics, Models, Simulation, in Physical Metallurgy (Fifth Edition), D.E. Laughlin and K. Hono, Editors. 2014, Elsevier: Oxford. pp. 2291-2397.
[65] Zaddach, A.J., C. Niu, C.C. Koch, and D.L. Irving, Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy. JOM, 2013. 65(12): pp. 1780-1789.
[66] Otto, F., A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 2013. 61(15): pp. 5743-5755.
[67] Laplanche, G., A. Kostka, O.M. Horst, G. Eggeler, and E.P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Materialia, 2016. 118: pp. 152-163.
[68] Venables, J.A., Deformation twinning in face-centred cubic metals. Philosophical Magazine, 1961. 6(63): pp. 379-396.
[69] Cohen, J.B. and J. Weertman, A dislocation model for twinning in f.c.c. metals. Acta Metallurgica, 1963. 11(8): pp. 996-998.
[70] Mori, T. and H. Fujita, Dislocation reactions during deformation twinning in Cu-11at.% Al single crystals. Acta Metallurgica, 1980. 28(6): pp. 771-776.
[71] Mahajan, S. and G. Chin, Formation of deformation twins in fcc crystals. Acta metallurgica, 1973. 21(10): pp. 1353-1363.
[72] Ookawa, A., On the Mechanism of Deformation Twin in fcc Crystal. Journal of the Physical Society of Japan, 1957. 12(7): p. 825.
[73] Zhu, Y.T., X.Z. Liao, and X.L. Wu, Deformation twinning in nanocrystalline materials. Progress in Materials Science, 2012. 57(1): pp. 1-62.
[74] Mahajan, S., M. Green, and D. Brasen, A model for the FCC→HCP transformation, its applications, and experimental evidence. Metallurgical Transactions A, 1977. 8(2): pp. 283-293.
[75] Lu, N., B. Li, J. Wang, and C.-H. Zhang, Enhancing strength and ductility of CrCoNi medium-entropy alloy through the 9R phase and doping. Materials Chemistry and Physics, 2024. 312: p. 128667.
[76] Gao, X., J. Liu, W. Fu, Y. Huang, Z. Ning, Z. Zhang, J. Sun, and W. Chen, Strong and ductile CoCrFeNi high-entropy alloy microfibers at ambient and cryogenic temperatures. Materials & Design, 2023. 233: p. 112250.
[77] Li, J., L. Li, C. Jiang, Q. Fang, F. Liu, Y. Liu, and P.K. Liaw, Probing deformation mechanisms of gradient nanostructured CrCoNi medium entropy alloy. Journal of Materials Science & Technology, 2020. 57: pp. 85-91.
[78] Xue, S., Z. Fan, O.B. Lawal, R. Thevamaran, Q. Li, Y. Liu, K.Y. Yu, J. Wang, E.L. Thomas, H. Wang, and X. Zhang, High-velocity projectile impact induced 9R phase in ultrafine-grained aluminium. Nature Communications, 2017. 8(1): p. 1653.
[79] Feng, L., B. Zhou, J. Peng, and J. Wang, Crystal structure evolution of the Cu-rich nano precipitates from bcc to 9R in reactor pressure vessel model steel. Acta Metallurgica Sinica (English Letters), 2013. 26(6): pp. 707-712.
[80] Wang, L., S. Xiang, Y. Tan, W. Shi, Y. Cai, and X. Ji, The role of 9R structures on deformation-induced martensitic phase transformations in dual-phase high-entropy alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2022. 853: p. 8.
[81] Wang, J., A. Misra, and J.P. Hirth, Shear response of 𝛴3{112} twin boundaries in face-centered-cubic metals. Physical Review B, 2011. 83(6): p. 064106.
[82] Shi, P., Y. Zhong, Y. Li, W. Ren, T. Zheng, Z. Shen, B. Yang, J. Peng, P. Hu, Y. Zhang, P.K. Liaw, and Y. Zhu, Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys. Materials Today, 2020. 41: pp. 62-71.
[83] Park, J.M., J. Moon, J.W. Bae, M.J. Jang, J. Park, S. Lee, and H.S. Kim, Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy. Materials Science and Engineering: A, 2018. 719: pp. 155-163.
[84] Wu, Y.Z., K.G. Luo, Y. Zhang, C.R. Kong, and H.L. Yu, Microstructures and mechanical properties of a CoCrFeNiMn high-entropy alloy obtained by 223 K cryorolling and subsequent annealing. Journal of Alloys and Compounds, 2022. 921: p. 13.
[85] Tayyebi, M. and M. DerakhshaniMolayousefi, A review on the effect of various rolling regimes (cryo, cold, warm, hot) and post-annealing on high-entropy alloys: microstructure evolution, deformation mechanisms, and mechanical properties. Archives of Civil and Mechanical Engineering, 2023. 24(1): p. 16.
[86] Konkova, T., S. Mironov, A. Korznikov, and S.L. Semiatin, Microstructural response of pure copper to cryogenic rolling. Acta Materialia, 2010. 58(16): pp. 5262-5273.
[87] Shanmugasundaram, T., B.S. Murty, and V. Subramanya Sarma, Development of ultrafine grained high strength Al–Cu alloy by cryorolling. Scripta Materialia, 2006. 54(12): pp. 2013-2017.
[88] Sathiaraj, G.D., P.P. Bhattacharjee, C.-W. Tsai, and J.-W. Yeh, Effect of heavy cryo-rolling on the evolution of microstructure and texture during annealing of equiatomic CoCrFeMnNi high entropy alloy. Intermetallics, 2016. 69: pp. 1-9.
[89] Cao, Y., S. Ni, X. Liao, M. Song, and Y. Zhu, Structural evolutions of metallic materials processed by severe plastic deformation. Materials Science and Engineering: R: Reports, 2018. 133: pp. 1-59.
[90] Edalati, K., A. Bachmaier, V.A. Beloshenko, Y. Beygelzimer, V.D. Blank, W.J. Botta, K. Bryła, J. Čížek, S. Divinski, N.A. Enikeev, Y. Estrin, G. Faraji, R.B. Figueiredo, M. Fuji, T. Furuta, T. Grosdidier, J. Gubicza, A. Hohenwarter, Z. Horita, J. Huot, Y. Ikoma, M. Janeček, M. Kawasaki, P. Král, S. Kuramoto, T.G. Langdon, D.R. Leiva, V.I. Levitas, A. Mazilkin, M. Mito, H. Miyamoto, T. Nishizaki, R. Pippan, V.V. Popov, E.N. Popova, G. Purcek, O. Renk, Á. Révész, X. Sauvage, V. Sklenicka, W. Skrotzki, B.B. Straumal, S. Suwas, L.S. Toth, N. Tsuji, R.Z. Valiev, G. Wilde, M.J. Zehetbauer, and X. Zhu, Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Materials Research Letters, 2022. 10(4): pp. 163-256.
[91] Langdon, T.G., Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Materialia, 2013. 61(19): pp. 7035-7059.
[92] Gubicza, J., Annealing‐Induced Hardening in Ultrafine‐Grained and Nanocrystalline Materials. Advanced Engineering Materials, 2019. 22(1): p. 1900507.
[93] Hasiguti, R.R., A proposed theory of anneal-hardening of cold-worked alpha brass. J. Jap. Inst. Metals, 1955. 19: pp. 103-106.
[94] Miura, S. and T. Tajima, Effect of grain boundaries on anneal hardening in Cu-Al alloy. Metal Science, 1978. 12(4): pp. 183-91.
[95] Cahn, R.W. and R.G. Davies, X-ray evidence for segregation of solute to stacking faults in a copper-aluminium alloy. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 1960. 5(59): pp. 1119-1126.
[96] Popplewell, J.M. and J. Crane, Order-strengthening in Cu−Al alloys. Metallurgical Transactions, 1971. 2(12): pp. 3411-3420.
[97] Nie, J.F., Y.M. Zhu, J.Z. Liu, and X.Y. Fang, Periodic Segregation of Solute Atoms in Fully Coherent Twin Boundaries. Science, 2013. 340(6135): pp. 957-960.
[98] Valiev, R.Z., F. Chmelik, F. Bordeaux, G. Kapelski, and B. Baudelet, THE HALL-PETCH RELATION IN SUBMICRO-GRAINED AL-1.5-PERCENT MG ALLOY. Scripta Metallurgica Et Materialia, 1992. 27(7): pp. 855-860.
[99] Languillaume, J., F. Chmelik, G. Kapelski, F. Bordeaux, A.A. Nazarov, G. Canova, C. Esling, R.Z. Valiev, and B. Baudelet, MICROSTRUCTURES AND HARDNESS OF ULTRAFINE-GRAINED NI3AL. Acta Metallurgica Et Materialia, 1993. 41(10): pp. 2953-2962.
[100] Gubicza, J., P.H.R. Pereira, G. Kapoor, Y. Huang, S.S. Vadlamani, and T.G. Langdon, Annealing-Induced Hardening in Ultrafine-Grained Ni–Mo Alloys. Advanced Engineering Materials, 2018. 20(9): p. 1800184.
[101] Huang, X., N. Hansen, and N. Tsuji, Hardening by Annealing and Softening by Deformation in Nanostructured Metals. Science, 2006. 312(5771): pp. 249-251.
[102] Ma, E., T.D. Shen, and X.L. Wu, Less is more. Nature Materials, 2006. 5(7): pp. 515-516.
[103] Hasnaoui, A., H. Van Swygenhoven, and P.M. Derlet, On non-equilibrium grain boundaries and their effect on thermal and mechanical behaviour: a molecular dynamics computer simulation. Acta Materialia, 2002. 50(15): pp. 3927-3939.
[104] Ge, P., K. Gan, D. Yan, P. Wu, W. Wu, and Z. Li, Elucidating the Origination of Annealing-Induced Hardening in an Equiatomic Medium-Entropy Alloy. Advanced Engineering Materials, 2023. 25(4): p. 2201153.
[105] Xue, Q. and G.T. Gray, Development of adiabatic shear bands in annealed 316L stainless steel: Part II. TEM studies of the evolution of microstructure during deformation localization. Metallurgical and Materials Transactions A, 2006. 37(8): pp. 2447-2458.
[106] Chen, Y., Z. Zhou, P. Munroe, and Z. Xie, Hierarchical nanostructure of CrCoNi film underlying its remarkable mechanical strength. Applied Physics Letters, 2018. 113(8): p. 081905.
[107] Schuh, B., B. Völker, J. Todt, K.S. Kormout, N. Schell, and A. Hohenwarter, Influence of Annealing on Microstructure and Mechanical Properties of a Nanocrystalline CrCoNi Medium-Entropy Alloy. Materials (Basel), 2018. 11(5): p. 662.
[108] Schneider, M., E.P. George, T.J. Manescau, T. Záležák, J. Hunfeld, A. Dlouhý, G. Eggeler, and G. Laplanche, Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy. International Journal of Plasticity, 2020. 124: pp. 155-169.
[109] Ming, K., X. Bi, and J. Wang, Strength and ductility of CrFeCoNiMo alloy with hierarchical microstructures. International Journal of Plasticity, 2019. 113: pp. 255-268.
[110] Xue, Q., X.Z. Liao, Y.T. Zhu, and G.T. Gray, Formation mechanisms of nanostructures in stainless steel during high-strain-rate severe plastic deformation. Materials Science and Engineering: A, 2005. 410-411: pp. 252-256.
[111] Derazkola, H.A., E. García Gil, A. Murillo-Marrodán, and D. Méresse, Review on Dynamic Recrystallization of Martensitic Stainless Steels during Hot Deformation: Part I—Experimental Study. Metals, 2021. 11(4): p. 572.
[112] Meyers, M.A. and L.E. Murr, A model for the formation of annealing twins in F.C.C. metals and alloys. Acta Metallurgica, 1978. 26(6): pp. 951-962.
[113] Dash, S. and N. Brown, An investigation of the origin and growth of annealing twins. Acta Metallurgica, 1963. 11(9): pp. 1067-1075.
[114] Mahajan, S., C.S. Pande, M.A. Imam, and B.B. Rath, Formation of annealing twins in f.c.c. crystals. Acta Materialia, 1997. 45(6): pp. 2633-2638.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95740-
dc.description.abstract一些金屬材料,於中、低退火溫度時會發生異常硬化現象(Annealing-induced abnormal hardening),對材料機械性質具一定影響。然而,此現象之成因目前並無統一說法,因此具高研究價值。
本研究透過改變不同軋延參數,分析及研究CrCoNiSi0.15中熵合金之退火異常硬化現象。將CrCoNiSi0.15中熵合金於低溫(-196 ℃)及室溫下,分別進行50%及70%軋延,並於300 ℃~900 ℃做退火1小時之熱處理,觀察退火溫度對組織的影響。硬度及電子背向散射繞射(EBSD)結果顯示,低溫軋延70%因高密度缺陷導入,具最高硬度,並促使再結晶較早發生與完成,有助於晶粒細化。除外,其於300 ℃~600 ℃之回復階段,發生最顯著的硬化現象,硬度最高峰567.6 ± 19.7 HV落於600 ℃,高於軋延試片的15%。因而,進一步以低溫軋延70%,於600 ℃做5分鐘~1小時之短時間至長時間退火熱處理,結果顯示各持溫時間硬度皆上升。
以穿透式電子顯微鏡(TEM)觀察軋延及退火組織。於軋延組織中,僅低溫軋延70%同時啟動雙晶誘導塑性(TWIP)及相變誘導塑性(TRIP)機制,顯示低溫有助於提升材料強度。而於低溫軋延70%,600 ℃各時間退火過程中,因細晶組織之可動差排源下降及能量釋放,差排經雪崩堆積及分裂機制,形成各形貌的次結構及細晶粒,導致硬度上升。而次結構內部因缺陷重組,被疊差、雙晶、9R結構及HCP相分割為奈米級層狀結構,亦為硬度上升的原因。進一步比較冷軋延及低溫軋延70%,發生硬化之組織,冷軋延次結構內的層狀結構,含大量9R結構,低溫軋延則含大量HCP相,顯示軋延溫度對退火機制具影響力,進而造成不同硬化程度。此外,推測分裂出之細晶粒內部的缺陷,可發展為奈米退火雙晶,並由連續機制形成再結晶晶粒。同時,硬度會隨再結晶開始而下降,9R結構亦可與退火雙晶共存於新晶粒內。
zh_TW
dc.description.abstractSome metallic materials exhibit “Annealing-induced abnormal hardening” at low or medium annealing temperatures, which affects the mechanical properties. However, the exact mechanisms for this phenomenon remain inconclusive, making it a topic of high research value.
This study investigated the annealing-induced abnormal hardening effect with different rolling parameters. CrCoNiSi0.15 medium-entropy alloys were cryo rolled (-196 ℃) and cold rolled to achieve 50% or 70% reduction and annealed for 1 hour at temperatures varying from 300 ℃ to 900 ℃. Then, the effects of annealing temperature on microstructure were observed. Hardness and Electron Backscattered Diffraction (EBSD) analysis showed that 70% cryo-rolled sample displayed the highest hardness due to high-density defects, which promoted earlier recrystallization, resulting in grain refinement. Furthermore, the most significant hardening effect occurred during recovery stage from 300 °C to 600 °C, with the highest hardness of 567.6 ± 19.7 HV observed at 600 ℃, which was 15% higher than 70% cryo-rolled sample. Thus, further annealed 70% cryo-rolled sample at 600 ℃ for durations ranging from 5 minutes to 1 hour. The results revealed that hardness increased for all holding times.
Transmission Electron Microscope (TEM) was used to observe rolled and annealed structures. In rolled microstructure, only cryo rolling 70% activated both Twinning-induced Plasticity (TWIP) and Transformation-induced Plasticity (TRIP) effects, demonstrating that low temperature is beneficial for strengthening materials. During annealing at 600 °C for various durations, annealing-induced hardening is related to the reduction of mobile dislocation source and grain boundary relaxation in ultrafine-grained structure. Substructures and fine grains formed through dislocation avalanche and splitting mechanisms, thus enhancing hardness. Additionally, defects rearrangement within substructures also facilitated the formation of hierarchical nanostructure consisting of stacking faults, twins, 9R structure, and HCP phase, contributing to hardening. Comparison of 70% cold-rolled and cryo-rolled samples revealed that hierarchical nanostructure in cold-rolled sample contained a large amount of 9R structure, while those in cryo-rolled sample contained a large amount of HCP phase, highlighting the influence of rolling temperatures on annealing mechanisms and degrees of hardening. Furthermore, defects remained in fine grains may evolve into nano-annealing twins, and fine grains could further develop into recrystallized grains through continuous recrystallization mechanism. Meanwhile, hardness decreased as recrystallization began, and 9R structures could coexist with annealing twins in the new grains.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-16T16:11:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-16T16:11:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xvii
LIST OF EQUATIONS xviii
Chapter 1 前言 1
Chapter 2 文獻回顧 2
2.1 高熵合金 2
2.1.1 高熵合金簡介與定義 2
2.1.2 高熵合金四大效應 5
2.2 中熵合金 7
2.2.1 CrCoNi中熵合金 7
2.2.2 CrCoNiSix中熵合金 9
2.3 變形組織 14
2.3.1 FCC相金屬材料之變形機制 14
2.3.2 差排滑移主導塑性 15
2.3.3 雙晶及相變誘導塑性 17
2.3.4 影響變形雙晶之因素 21
2.4 退火誘導異常硬化現象 23
2.4.1 簡介 23
2.4.2 長程有序結構形成 24
2.4.3 可動差排密度下降與晶界釋放 26
2.4.4 奈米雙晶及HCP相層狀結構形成 28
Chapter 3 實驗設計及步驟 32
3.1 實驗流程 32
3.1.1 實驗材料 32
3.1.2 軋延及熱處理 33
3.2 實驗儀器與設備 35
3.2.1 軋延機 35
3.2.2 維氏硬度機(Vickers hardness test) 35
3.2.3 熱膨脹儀(Dilatomer) 36
3.2.4 電子背向散射繞射(Electron Back Scattered Diffraction, EBSD) 36
3.2.5 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 36
Chapter 4 結果與討論 38
4.1 不同溫度及軋延量對後續退火之影響 38
4.1.1 硬度 38
4.1.2 軋延組織之SEM顯微結構分析 40
4.1.3 退火組織之SEM顯微結構分析 43
4.2 軋延後之微結構發展 49
4.2.1 前言 49
4.2.2 TEM顯微結構分析 50
4.2.3 總結 58
4.3 低溫軋延後短時間至長時間之退火分析 59
4.3.1 硬度 59
4.3.2 600 ℃退火5分鐘之顯微結構分析 61
4.3.3 600 ℃退火15分鐘之顯微結構分析 66
4.3.4 600 ℃退火30分鐘之顯微結構分析 71
4.3.5 600 ℃退火1小時之顯微結構分析 75
4.3.6 650 ℃退火1小時之顯微結構分析 78
4.3.7 總結 79
4.4 低溫軋延與冷軋延於不同溫度退火1小時之分析 80
4.4.1 前言 80
4.4.2 低溫軋延70%於550 ℃退火之顯微結構分析 80
4.4.3 冷軋延70%於550 ℃退火之顯微結構分析 85
4.4.4 低溫軋延70%於600 ℃退火之顯微結構分析 92
4.4.5 冷軋延70%於600 ℃退火之顯微結構分析 96
4.4.6 低溫軋延70%於650 ℃退火之顯微結構分析 104
4.4.7 冷軋延70%於650 ℃退火之顯微結構分析 105
4.4.8 總結 107
4.5 低溫軋延完全再結晶之組織 109
4.5.1 TEM顯微結構分析 109
Chapter 5 結論 112
Chapter 6 未來工作 114
REFERENCE 115
-
dc.language.isozh_TW-
dc.subject低溫軋延zh_TW
dc.subject變形雙晶zh_TW
dc.subject9R結構zh_TW
dc.subjectHCP相zh_TW
dc.subject退火誘導異常硬化zh_TW
dc.subject奈米退火雙晶zh_TW
dc.subject中熵合金zh_TW
dc.subjectnano-annealing twinsen
dc.subjectmedium-entropy alloyen
dc.subjectcryo rollingen
dc.subjectdeformation twinsen
dc.subject9R structureen
dc.subjectHCP phaseen
dc.subjectannealing-induced abnormal hardeningen
dc.titleCrCoNiSi0.15中熵合金於低溫軋延及冷軋延後之退火誘導異常硬化現象與顯微結構研究zh_TW
dc.titleAnnealing-induced Abnormal Hardening and Microstructure of Cryo-rolled and Cold-rolled CrCoNiSi0.15 Medium-entropy Alloyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃慶淵;王樂民;王星豪;王涵聖zh_TW
dc.contributor.oralexamcommitteeCing-Yuan Huang;Le-Min Wang;Shing-Hoa Wang;Han-Shen Wangen
dc.subject.keyword中熵合金,低溫軋延,變形雙晶,9R結構,HCP相,退火誘導異常硬化,奈米退火雙晶,zh_TW
dc.subject.keywordmedium-entropy alloy,cryo rolling,deformation twins,9R structure,HCP phase,annealing-induced abnormal hardening,nano-annealing twins,en
dc.relation.page123-
dc.identifier.doi10.6342/NTU202402492-
dc.rights.note未授權-
dc.date.accepted2024-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
25.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved