請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95689完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅翊禎 | zh_TW |
| dc.contributor.advisor | Yi-Chen Lo | en |
| dc.contributor.author | 沈恩池 | zh_TW |
| dc.contributor.author | Emelia Sim Eng Zhi | en |
| dc.date.accessioned | 2024-09-15T16:48:58Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | 顧子欣, 分離自截切小黃瓜之菌株Enterobacter sp. FS08 特性分析. 國立臺灣大學生物資源暨農學院食品科技研究所碩士論文. 台北, 台灣, 2022.
衛福部, 食品微生物檢驗之方法—生菌數之檢驗. 台北, 台灣, 2013. Anju, V. T., Siddhardha, B., & Dyavaiah, M. (2020). Enterobacter Infections and Antimicrobial Drug Resistance. Model Organisms for Microbial Pathogenesis, Biofilm Formation and Antimicrobial Drug Discovery, 175–194. Bridier, A., Briandet, R., Thomas, V., & Dubois-Brissonnet, F. (2011). Resistance of bacterial biofilms to disinfectants: a review. Biofouling, 27(9), 1017–1032. Burmølle, M., Webb, J. S., Rao, D., Hansen, L. H., Sørensen, S. J., & Kjelleberg, S. (2006). Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Applied and environmental microbiology, 72(6), 3916–3923. Chang, C.-P., Sung, I-Hsin., & Huang, C.-J. (2018). Pantoea dispersa causing bulb decay of onion in Taiwan. Australasian Plant Pathology, 47(6), 609–613. Cherifi, T., Jacques, M., Quessy, S., & Fravalo, P. (2017). Impact of Nutrient Restriction on the Structure of Listeria monocytogenes Biofilm Grown in a Microfluidic System. Frontiers in microbiology, 8, 864. Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science (New York, N.Y.), 284(5418), 1318–1322. de Souza, J., Vieira, A. Z., Dos Santos, H. G., & Faoro, H. (2024). Potential involvement of beta-lactamase homologous proteins in resistance to beta-lactam antibiotics in gram-negative bacteria of the ESKAPEE group. BMC genomics, 25(1), 508. Donlan R. M. (2002). Biofilms: microbial life on surfaces. Emerging infectious diseases, 8(9), 881–890. Feng, K., Zhang, Z., Cai, W., Liu, W., Xu, M., Yin, H., Wang, A., He, Z., & Deng, Y. (2017). Biodiversity and species competition regulate the resilience of microbial biofilm community. Molecular ecology, 26(21), 6170–6182. Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature reviews. Microbiology, 8(9), 623–633. Giaouris, E., Heir, E., Hébraud, M., Chorianopoulos, N., Langsrud, S., Møretrø, T., Habimana, O., Desvaux, M., Renier, S., & Nychas, G. J. (2014). Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. Meat science, 97(3), 298–309. Goller, C. C., & Romeo, T. (2008). Environmental influences on biofilm development. Current Topics in Microbiology and Immunology, 322, 37–66. González, S., Fernández, L., Gutiérrez, D., Campelo, A. B., Rodríguez, A., & García, P. (2018). Analysis of Different Parameters Affecting Diffusion, Propagation and Survival of Staphylophages in Bacterial Biofilms. Frontiers in Microbiology, 9, 2348. Hall-Stoodley, L., & Stoodley, P. (2009). Evolving concepts in biofilm infections. Cellular microbiology, 11(7), 1034–1043. Haque, Md. M., Mosharaf, M. K., Haque, Md. A., Tanvir, Md. Z. H., & Alam, Md. K. (2021). Biofilm Formation, Production of Matrix Compounds and Biosorption of Copper, Nickel and Lead by Different Bacterial Strains. Frontiers in Microbiology, 12. Hibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial competition: surviving and thriving in the microbial jungle. Nature reviews. Microbiology, 8(1), 15–25. Kaszoni-Rückerl, I., Mustedanagic, A., Muri-Klinger, S., Brugger, K., Wagner, K.-H., Wagner, M., & Stessl, B. (2020). Predominance of Distinct Listeria innocua and Listeria Monocytogenes in Recurrent Contamination Events at Dairy Processing Facilities. Microorganisms, 8(2), E234. Kido, K.; Adachi, R.; Hasegawa, M.; Yano, K.; Hikichi, Y.; Takeuchi, S.; Atsuchi, T.; Takikawa, Y. (2008). Internal fruit rot of netted melon caused by Pantoea ananatis (=Erwinia ananas) in Japan. J. Gen. Plant Pathol. 74. 302-312. Kilonzo-Nthenge, A., Liu, S., Hashem, F., Millner, P., & Githua, S. (2018). Prevalence of Enterobacteriaceae on fresh produce and food safety practices in small-acreage farms in Tennessee, USA. Journal of Consumer Protection and Food Safety, 13(3), 279–287. Kim, U., Kim, J. H., & Oh, S. W. (2022). Review of multi-species biofilm formation from foodborne pathogens: multi-species biofilms and removal methodology. Critical reviews in food science and nutrition, 62(21), 5783–5793. Kim, U., Lee, S. Y., & Oh, S. W. (2023). A review of mechanism analysis methods in multi-species biofilm of foodborne pathogens. Food science and biotechnology, 32(12), 1665–1677. Klein, P. G., & Juneja, V. K. (1997). Sensitive detection of viable Listeria monocytogenes by reverse transcription-PCR. Applied and environmental microbiology, 63(11), 4441–4448. Liang, X., Wagner, R. E., Li, B., Zhang, N., & Radosevich, M. (2020). Quorum Sensing Signals Alter in vitro Soil Virus Abundance and Bacterial Community Composition. Frontiers in microbiology, 11, 1287. Liu, W., Røder, H. L., Madsen, J. S., Bjarnsholt, T., Sørensen, S. J., & Burmølle, M. (2016). Interspecific Bacterial Interactions are Reflected in Multispecies Biofilm Spatial Organization. Frontiers in microbiology, 7, 1366. Stepanovic, S., Vukovic, D., Dakic, I., Savic, B., & Svabic-Vlahovic, M. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of microbiological methods, 40(2), 175–179. Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and molecular biology reviews: MMBR, 66(3), 506–577. Matz, C., & Kjelleberg, S. (2005). Off the hook--how bacteria survive protozoan grazing. Trends in microbiology, 13(7), 302–307. Mirzaei, B., Ebrahimi, A., Keshavarzi, S., Hydarzadeh, S., Badmasti, F., Dadar, M., & Moradi, N. (2023). Antibiotic Susceptibility, Biofilm-Forming Ability, and Prevalence of Extended-Spectrum Beta-Lactamase (ESBL)- and Biofilm-Associated Genes Among Klebsiella pneumoniae Isolates from Hospitalized Patients in Northwest of Iran. Current microbiology, 80(5), 175. Mohammadi, M., Burbank, L., & Roper, M. C. (2012). Biological role of pigment production for the bacterial phytopathogen Pantoea stewartii subsp. stewartii. Applied and environmental microbiology, 78(19), 6859–6865. Mohan, V., Wibisono, R., de Hoop, L., Summers, G., & Fletcher, G. C. (2019). Identifying Suitable Listeria innocua Strains as Surrogates for Listeria monocytogenes for Horticultural Products. Frontiers in Microbiology, 10. Nadell, C. D., Drescher, K., & Foster, K. R. (2016). Spatial structure, cooperation and competition in biofilms. Nature reviews. Microbiology, 14(9), 589–600. Nasr-Eldin, M., Eman Gamal, M Hazza, & Abo-Elmaaty, S. A. (2023). Isolation, characterization, and application of lytic bacteriophages for controlling Enterobacter cloacae complex (ECC) in pasteurized milk and yogurt. Folia Microbiologica. Neil, K. P., Biggerstaff, G., MacDonald, J. K., Trees, E., Medus, C., Musser, K. A., Stroika, S. G., Zink, D., & Sotir, M. J. (2012). A novel vehicle for transmission of Escherichia coli O157:H7 to humans: multistate outbreak of E. coli O157:H7 infections associated with consumption of ready-to-bake commercial prepackaged cookie dough--United States, 2009. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 54(4), 511–518. Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: evolution, ecology, and application. Annual review of microbiology, 56, 117–137. Sauer, K., Stoodley, P., Goeres, D. M., Hall-Stoodley, L., Burmølle, M., Stewart, P. S., & Bjarnsholt, T. (2022). The biofilm life cycle: expanding the conceptual model of biofilm formation. Nature reviews. Microbiology, 20(10), 608–620. Schmidt, R., Cordovez, V., de Boer, W., Raaijmakers, J., & Garbeva, P. (2015). Volatile affairs in microbial interactions. The ISME Journal, 9(11), 2329–2335. Sedat Çam, & İsmail Badıllı. (2023). The effect of NaCl, pH, and phosphate on biofilm formation and exopolysaccharide production by high biofilm producers of Bacillus strains. Folia Microbiologica, 69(3), 613–624. Spyrelli, E. D., Nychas, G. E., & Panagou, E. Z. (2022). Assessment of the Microbial Spoilage and Quality of Marinated Chicken Souvlaki through Spectroscopic and Biomimetic Sensors and Data Fusion. Microorganisms, 10(11), 2251. Stepanovic, S., Vukovic, D., Dakic, I., Savic, B., & Svabic-Vlahovic, M. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of microbiological methods, 40(2), 175–179. Walker, D. I., McQuillan, J., Taiwo, M., Parks, R., Stenton, C. A., Morgan, H., Mowlem, M. C., & Lees, D. N. (2017). A highly specific Escherichia coli qPCR and its comparison with existing methods for environmental waters. Water research, 126, 101–110. Walterson, A. M., & Stavrinides, J. (2015). Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS microbiology reviews, 39(6), 968–984. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology, 173(2), 697–703. World Health Organization. (2019). Estimating the burden of foodborne diseases. World Health Organization. Zhou, L., Zhang, Y., Ge, Y., Zhu, X., & Pan, J. (2020). Regulatory Mechanisms and Promising Applications of Quorum Sensing-Inhibiting Agents in Control of Bacterial Biofilm Formation. Frontiers in microbiology, 11, 589640. Zhu, M.-L., Wang, Y.-H., Dai, Y., Wu, X.-Q., & Ye, J.-R. (2020). Effects of Different Culture Conditions on the Biofilm Formation of Bacillus pumilus HR10. Current Microbiology, 77(8), 1405–1411. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95689 | - |
| dc.description.abstract | 新鮮截切小黃瓜與多次食品安全事件有關,而截切蔬果很容易遭受E. coli或L. innocua等食品病原菌所污染。生物膜的形成是細菌的在環境中最主要的生存形式,其中細菌會附著在生物或非生物表面並分泌胞外聚合物物質以形成保護基質。根據我們實驗室先前的研究表明,從新鮮截切小黃瓜中所分離的E. mori FS08和Pantoea sp. 能夠形成生物膜。另外也有研究表明,生物膜的形成可以促進微生物菌群在環境中的生存和適應性反應。因此,探討E. coli或L. innocua與E. mori FS08或Pantoea sp. 的共培養生物膜的形成是有必要的。從研究結果顯示,當E. coli與Pantoea sp. 和E. mori FS08共培養時,生物膜形成是減少的。相反的,L. innocua與Pantoea sp. 和E. mori FS08共培養時,與Pantoea sp. 單獨培養相比沒有顯著性差異。雖然生物膜的形成與單獨培養不同,但有些細菌的生物膜內之菌數濃度沒有顯著變化。E. mori FS08抑制了E. coli的生長,並減少了L. innocua在生物膜中的生長。然而,這些共培養菌株之間的相互作用尚不清楚。瞭解生物膜內菌株的相互作用可以通過共聚焦顯微鏡(Confocal laser scanning microscopy, CLSM)來解釋。共聚焦顯微鏡的結果顯示不同的生物膜結構,包括蜂窩狀結構和緊密排列的菌落。這些發現將提供有關於生物膜形成所潛在的風險,並強調了探討食品病原菌與細菌在共培養生物膜中的相互作用之重要性。 | zh_TW |
| dc.description.abstract | Fresh-cut cucumbers have been linked to multiple outbreaks of foodborne illnesses, potentially contaminated by pathogenic bacteria, such as Escherichia coli or Listeria. The formation of biofilms is a critical survival strategy for bacteria, in which they attach to a biotic or abiotic surface and secrete extracellular polymeric substances to form a protective matrix. Our previous research has demonstrated the ability of plant-pathogenic strains, Enterobacter mori FS08 and Pantoea sp. isolated from fresh-cut cucumbers, to form biofilms. Studies have indicated that biofilm cultivation can facilitate the coexistence and adaptive responses of bacterial communities. Therefore, it is imperative to explore biofilm formation through the co-culture of foodborne pathogens, including E. coli or Listeria innocua with E. mori FS08 or Pantoea sp. The results reveal that biofilm formation decreases when E. coli is co-cultured with Pantoea sp. and E. mori FS08. Conversely, the co-culture of L. innocua with Pantoea sp. and E. mori FS08 exhibits no change compared to the Pantoea sp. mono-culture group. Although biofilm formations differ from mono-culture, some bacteria demonstrate no significant variations in biofilm cell concentration, except E. mori FS08. Noteworthily, E. mori FS08 inhibits the growth of E. coli and diminishes the growth of L. innocua within the biofilm. However, the interaction between the co-culture bacteria remains unclear. Further analysis of the biofilm interaction may be explained by using confocal laser scanning microscopy (CLSM). The CLSM results show different biofilm structures, honey-comb-like structures, and dense clusters. These findings will provide insights into the potential risks associated with biofilm formation and highlight the importance of understanding the interactions between foodborne pathogens and bacteria in the co-culture biofilm. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:48:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:48:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 iv 圖次 vi 表次 viii 附錄目次 ix 第一章、前言 1 第二章、文獻回顧 2 第一節、食品安全現況 2 第二節、實驗菌株介紹 3 第三節、生物膜(biofilm)的基本介紹 4 一、生物膜的定義與形成 4 二、影響生物膜形成的因素 5 第四節、共培養之生物膜形成的重要性 6 一、微生物共培養的介紹 6 二、微生物共培養的相互作用 6 第五節、生物膜對食品安全的影響 8 第三章、研究目的與架構 9 第四章、材料與方法 10 第一節、材料 10 一、實驗樣品 10 二、實驗菌株 10 三、藥品 11 四、培養基、稀釋液及其它溶液 12 五、儀器與設備 14 六、套裝軟體 14 第二節、實驗方法 15 一、分離自截切小黃瓜之菌株 15 二、菌株分離與保存 15 三、菌株鑑定 15 四、菌株生長曲線 16 五、製備帶有GFP之菌株 17 六、生物膜測定 17 七、利用共聚焦顯微鏡觀察生物膜 19 第五章、結果與討論 20 第一節、菌株鑑定以及篩選 20 一、分離自截切小黃瓜的菌株之16S rDNA鑑定 20 二、篩選生物膜形成之菌株 20 第二節、菌株特性分析 23 一、菌株在不同溫度下的生長情況 23 二、菌落形態 26 第三節、單獨培養之生物膜形成 29 一、不同的接菌濃度對生物膜形成之影響 29 第四節、共培養之生物膜形成 31 一、E. coli BCRC 17320與Pantoea sp. 共培養之生物膜形成 31 二、E. coli BCRC 17320與E. mori FS08共培養之生物膜形成 34 三、L. innocua BCRC 14843與Pantoea sp. 共培養之生物膜形成 37 四、L. innocua BCRC 14843與E. mori FS08共培養之生物膜形成 40 第五節、單獨以及共培養之菌株於CLSM觀察生物膜形成 43 一、單獨培養之菌株於CLSM觀察生物膜形成 43 二、E. coli BCRC 17320-GFP與Pantoea sp. 共培養之生物膜形成 45 三、E. coli BCRC 17320-GFP與E. mori FS08共培養之生物膜形成 48 四、L. innocua BCRC 14843與E. mori FS08-GFP共培養之生物膜形成 52 第六章、結論與展望 56 第七章、參考文獻 57 第八章、附錄 62 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 共培養 | zh_TW |
| dc.subject | 泛菌属 | zh_TW |
| dc.subject | 腸桿菌屬 | zh_TW |
| dc.subject | 李斯特菌 | zh_TW |
| dc.subject | 大腸桿菌 | zh_TW |
| dc.subject | 生物膜 | zh_TW |
| dc.subject | Listeria | en |
| dc.subject | Escherichia coli | en |
| dc.subject | co-culture | en |
| dc.subject | biofilm | en |
| dc.subject | Pantoea | en |
| dc.subject | Enterobacter | en |
| dc.title | 探討食品病原菌和分離自截切小黃瓜之菌株共培養後生物膜的形成 | zh_TW |
| dc.title | Exploring biofilm dynamics in co-culture of foodborne pathogens and bacteria isolated from fresh-cut cucumbers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李月嘉;王如邦;謝淑貞 | zh_TW |
| dc.contributor.oralexamcommittee | Yue Jia Lee;Reu Ben Wang;Shu-Chen Hsieh | en |
| dc.subject.keyword | 生物膜,共培養,大腸桿菌,李斯特菌,腸桿菌屬,泛菌属, | zh_TW |
| dc.subject.keyword | biofilm,co-culture,Escherichia coli,Listeria,Enterobacter,Pantoea, | en |
| dc.relation.page | 66 | - |
| dc.identifier.doi | 10.6342/NTU202403785 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 7.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
