請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95588完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙基揚 | zh_TW |
| dc.contributor.advisor | Chi-Yang Chao | en |
| dc.contributor.author | 王姮力 | zh_TW |
| dc.contributor.author | Heng-Li Wang | en |
| dc.date.accessioned | 2024-09-12T16:12:09Z | - |
| dc.date.available | 2024-09-13 | - |
| dc.date.copyright | 2024-09-12 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | (1) Na, Y.; Sun, X.; Fan, A.; Cai, S.; Zheng, C. Methods for enhancing the capacity of electrode materials in low-temperature lithium-ion batteries. Chinese Chemical Letters 2021, 32 (3), 973-982.
(2) Fan, C.-l.; He, H.; Zhang, K.-h.; Han, S.-c. Structural developments of artificial graphite scraps in further graphitization and its relationships with discharge capacity. Electrochimica acta 2012, 75, 311-315. (3) Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Progress in Natural Science: Materials International 2018, 28 (6), 653-666. (4) Xu, J.; Wang, X.; Yuan, N.; Ding, J.; Qin, S.; Razal, J. M.; Wang, X.; Ge, S.; Gogotsi, Y. Extending the low temperature operational limit of Li-ion battery to− 80 C. Energy Storage Materials 2019, 23, 383-389. (5) Yang, H.-H. Crosslinked Gel Polymer Electrolytes based on (Sulfonated Chitosan)-graft-Poly(ethylene oxide) for Lithium Metal Batteries. National Taiwan University, 2022. (6) Liu, G.-F. Sulfonated Chitosan-Titanate Crosslinking Film for Surface Modification of Si@G and SiOx Anodes of Lithium-Ion Batteries. National Taiwan University, 2023. (7) Patel, M.; Mishra, K.; Banerjee, R.; Chaudhari, J.; Kanchan, D.; Kumar, D. Fundamentals, recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems. Journal of Energy chemistry 2023, 81, 221-259. (8) Viswanathan, B. Energy Sources; Elsevier, 2016. (9) Nzereogu, P. U.; Omah, A. D.; Ezema, F. I.; Iwuoha, E. I.; Nwanya, A. C. Anode materials for lithium-ion batteries: A review. Applied Surface Science Advances 2022, 9. DOI: 10.1016/j.apsadv.2022.100233. (10) Khan, F. M. N. U.; Rasul, M. G.; Sayem, A. S. M.; Mandal, N. Maximizing energy density of lithium-ion batteries for electric vehicles: A critical review. Energy Reports 2023, 9, 11-21. DOI: 10.1016/j.egyr.2023.08.069. (11) Chombo, P. V.; Laoonual, Y. A review of safety strategies of a Li-ion battery. Journal of Power Sources 2020, 478. DOI: 10.1016/j.jpowsour.2020.228649. (12) Cheng, H.; Shapter, J. G.; Li, Y.; Gao, G. Recent progress of advanced anode materials of lithium-ion batteries. Journal of Energy Chemistry 2021, 57, 451-468. (13) Nishi, Y. Lithium ion secondary batteries; past 10 years and the future. Journal of Power Sources 2001, 100 (1-2), 101-106. (14) Patil, A.; Patil, V.; Shin, D. W.; Choi, J.-W.; Paik, D.-S.; Yoon, S.-J. Issue and challenges facing rechargeable thin film lithium batteries. Materials research bulletin 2008, 43 (8-9), 1913-1942. (15) Recent Advances in Textile Based Energy Storage Devices. World Journal of Textile Engineering and Technology 2016, 2, 6-15. (16) Patil, R. S.; Khandelwal, A.; Kim, K. Y.; Hariharan, K. S.; Kolake, S. M. Model Based Design of Composite Carbonaceous Anode for Li-Ion Battery for Fast Charging Applications. Journal of The Electrochemical Society 2019, 166 (6), A1185. (17) Wachtler, M.; Öttinger, O.; Schweiss, R. Carbon and Graphite for Electrochemical Power Sources. Industrial Carbon and Graphite Materials, Volume I: Raw Materials, Production and Applications 2021, 1, 379-455. (18) Kim, J.; Park, K.; Woo, H.; Gil, B.; Park, Y.-S.; Kim, I. S.; Park, B. Selective removal of nanopores by triphenylphosphine treatment on the natural graphite anode. Electrochimica Acta 2019, 326, 134993. (19) Kurzweil, P. Lithium battery energy storage: State of the art including lithium–air and lithium–sulfur systems. Electrochemical energy storage for renewable sources and grid balancing 2015, 269-307. (20) Kurzweil, P.; Brandt, K. Overview of rechargeable lithium battery systems. In Electrochemical Power Sources: Fundamentals, Systems, and Applications, Elsevier, 2019; pp 47-82. (21) Xing, B.; Zhang, C.; Cao, Y.; Huang, G.; Liu, Q.; Zhang, C.; Chen, Z.; Yi, G.; Chen, L.; Yu, J. Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries. Fuel processing technology 2018, 172, 162-171. (22) Yoshio, M.; Wang, H.; Fukuda, K. Spherical carbon‐coated natural graphite as a lithium‐ion battery‐anode material. Angewandte chemie international edition 2003, 42 (35), 4203-4206. (23) Park, T.-H.; Yeo, J.-S.; Seo, M.-H.; Miyawaki, J.; Mochida, I.; Yoon, S.-H. Enhancing the rate performance of graphite anodes through addition of natural graphite/carbon nanofibers in lithium-ion batteries. Electrochimica Acta 2013, 93, 236-240. (24) Shen, K.; Cao, X.; Huang, Z.-H.; Shen, W.; Kang, F. Microstructure and thermal expansion behavior of natural microcrystalline graphite. Carbon 2021, 177, 90-96. (25) Zhao, L.; Ding, B.; Qin, X. Y.; Wang, Z.; Lv, W.; He, Y. B.; Yang, Q. H.; Kang, F. Revisiting the Roles of Natural Graphite in Ongoing Lithium-Ion Batteries. Adv Mater 2022, 34 (18), e2106704. DOI: 10.1002/adma.202106704 From NLM PubMed-not-MEDLINE. (26) Zou, L.; Kang, F.; Li, X.; Zheng, Y.-P.; Shen, W.; Zhang, J. Investigations on the modified natural graphite as anode materials in lithium ion battery. Journal of Physics and Chemistry of Solids 2008, 69 (5-6), 1265-1271. (27) Zhao, Y.; Fu, Y.; Meng, Y.; Wang, Z.; Liu, J.; Gong, X. Challenges and strategies of lithium-ion mass transfer in natural graphite anode. Chemical Engineering Journal 2023, 148047. (28) IDTechEx. IDTechEx Explores the Evolving Landscape of Graphite Anodes in Li-Ion Batteries. 2023. https://batteriesnews.com/idtechex-explores-evolving-landscape-graphite-anodes-li-ion-batteries/ (accessed. (29) Liao, X.; Ding, Z.; Yin, Z. Excellent performance of a modified graphite anode for lithium-ion battery application. Ionics 2020, 26 (11), 5367-5373. DOI: 10.1007/s11581-020-03577-7. (30) Li, L.; Zhang, D.; Deng, J.; Gou, Y.; Fang, J.; Cui, H.; Zhao, Y.; Cao, M. Carbon-based materials for fast charging lithium-ion batteries. Carbon 2021, 183, 721-734. (31) Tomaszewska, A.; Chu, Z.; Feng, X.; O'kane, S.; Liu, X.; Chen, J.; Ji, C.; Endler, E.; Li, R.; Liu, L. Lithium-ion battery fast charging: A review. ETransportation 2019, 1, 100011. (32) Wang, X.; Kerr, R.; Chen, F.; Goujon, N.; Pringle, J. M.; Mecerreyes, D.; Forsyth, M.; Howlett, P. C. Toward high‐energy‐density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Advanced Materials 2020, 32 (18), 1905219. (33) Zhang, H.; Yang, Y.; Ren, D.; Wang, L.; He, X. Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials 2021, 36, 147-170. (34) Weng, S.; Wu, S.; Liu, Z.; Yang, G.; Liu, X.; Zhang, X.; Zhang, C.; Liu, Q.; Huang, Y.; Li, Y.; et al. Localized‐domains staging structure and evolution in lithiated graphite. Carbon Energy 2022, 5 (1). DOI: 10.1002/cey2.224. (35) Andersen, H. L.; Djuandhi, L.; Mittal, U.; Sharma, N. Strategies for the analysis of graphite electrode function. Advanced Energy Materials 2021, 11 (48), 2102693. (36) Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources 2000, 89 (2), 206-218. (37) Wang, J.; Yan, W.; Fu, J. J.; Wang, L.; Liu, B. Dynamic and Reversible Blending Interface on Polyoxovanadate Electrode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2024. (38) Yazami, R. Surface chemistry and lithium storage capability of the graphite–lithium electrode. Electrochimica acta 1999, 45 (1-2), 87-97. (39) An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood III, D. L. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52-76. (40) Lee, H.; Song, J.; Kim, Y.-J.; Park, J.-K.; Kim, H.-T. Structural modulation of lithium metal-electrolyte interface with three-dimensional metallic interlayer for high-performance lithium metal batteries. Scientific reports 2016, 6 (1), 30830. (41) Liu, W.; Liu, P.; Mitlin, D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Advanced Energy Materials 2020, 10 (43), 2002297. (42) Aryanfar, A.; Brooks, D. J.; Colussi, A. J.; Hoffmann, M. R. Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries. Physical Chemistry Chemical Physics 2014, 16 (45), 24965-24970. (43) Bhattacharyya, R.; Key, B.; Chen, H.; Best, A. S.; Hollenkamp, A. F.; Grey, C. P. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nature materials 2010, 9 (6), 504-510. (44) Menkin, S.; Golodnitsky, D.; Peled, E. Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium–ion cells for EV applications. Electrochemistry Communications 2009, 11 (9), 1789-1791. (45) Zhang, S. S. A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources 2006, 162 (2), 1379-1394. (46) Spotte-Smith, E. W. C.; Kam, R. L.; Barter, D.; Xie, X.; Hou, T.; Dwaraknath, S.; Blau, S. M.; Persson, K. A. Toward a mechanistic model of solid–electrolyte interphase formation and evolution in lithium-ion batteries. ACS Energy Letters 2022, 7 (4), 1446-1453. (47) Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews 2004, 104 (10), 4303-4418. (48) Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Advanced science 2016, 3 (3), 1500213. (49) Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of The Electrochemical Society 1979, 126 (12), 2047. (50) Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chemistry of materials 2010, 22 (3), 587-603. (51) Lu, D.; Zhang, S.; Li, J.; Huang, L.; Zhang, X.; Xie, B.; Zhuang, X.; Cui, Z.; Fan, X.; Xu, G. Transformed Solvation Structure of Noncoordinating Flame‐Retardant Assisted Propylene Carbonate Enabling High Voltage Li‐Ion Batteries with High Safety and Long Cyclability. Advanced Energy Materials 2023, 13 (28), 2300684. (52) Liu, W.; Xia, Y.; Wang, W.; Wang, Y.; Jin, J.; Chen, Y.; Paek, E.; Mitlin, D. Pristine or highly defective? Understanding the role of graphene structure for stable lithium metal plating. Advanced Energy Materials 2019, 9 (3), 1802918. (53) Zhu, S.; Hu, C.; Xu, Y.; Jin, Y.; Shui, J. Performance improvement of lithium-ion battery by pulse current. Journal of Energy Chemistry 2020, 46, 208-214. (54) Xu, K.; Zhang, S.; Poese, B. A.; Jow, T. R. Lithium bis (oxalato) borate stabilizes graphite anode in propylene carbonate. Electrochemical and Solid-State Letters 2002, 5 (11), A259. (55) Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.; Heider, U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochimica acta 2002, 47 (9), 1423-1439. (56) Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochimica acta 1999, 45 (1-2), 67-86. (57) Zhang, S.; Xu, K.; Jow, T. A new approach toward improved low temperature performance of Li-ion battery. Electrochemistry communications 2002, 4 (11), 928-932. (58) Huang, C. K.; Sakamoto, J.; Wolfenstine, J.; Surampudi, S. The limits of low‐temperature performance of Li‐ion cells. Journal of the electrochemical society 2000, 147 (8), 2893. (59) Hubble, D.; Brown, D. E.; Zhao, Y.; Fang, C.; Lau, J.; McCloskey, B. D.; Liu, G. Liquid electrolyte development for low-temperature lithium-ion batteries. Energy & Environmental Science 2022, 15 (2), 550-578. (60) Li, Q.; Liu, G.; Cheng, H.; Sun, Q.; Zhang, J.; Ming, J. Low‐temperature electrolyte design for lithium‐ion batteries: prospect and challenges. Chemistry–A European Journal 2021, 27 (64), 15842-15865. (61) Yang, Y.; Li, Y.; Zhang, J.; Liu, X.; Yu, H.; Wu, L.; Duan, C.; Xi, Z.; Fang, R.; Zhao, Q. Co-Intercalation-Free Graphite Anode Enabled by an Additive Regulated Interphase in an Ether-Based Electrolyte for Low-Temperature Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2024. (62) Xing, L.; Zheng, X.; Schroeder, M.; Alvarado, J.; von Wald Cresce, A.; Xu, K.; Li, Q.; Li, W. Deciphering the ethylene carbonate–propylene carbonate mystery in Li-ion batteries. Accounts of chemical research 2018, 51 (2), 282-289. (63) Wu, Y.; Zhang, J.; Liu, J.; Sheng, L.; Zhang, B.; Wang, L.; Shi, S.; Wang, L.; Xu, H.; He, X. Boosting reversible charging of Li-ion batteries at low temperatures by a synergy of propylene carbonate-based electrolyte and defective graphite. Nano Research 2024, 17 (3), 1491-1499. (64) Qian, Q.; Yang, Y.; Shao, H. Solid electrolyte interphase formation by propylene carbonate reduction for lithium anode. Physical Chemistry Chemical Physics 2017, 19 (42), 28772-28780. (65) Agubra, V. A.; Fergus, J. W. The formation and stability of the solid electrolyte interface on the graphite anode. Journal of Power Sources 2014, 268, 153-162. (66) Abe, T.; Mizutani, Y.; Kawabata, N.; Inaba, M.; Ogumi, Z. Effect of co-intercalated organic solvents in graphite on electrochemical Li intercalation. Synthetic metals 2001, 125 (2), 249-253. (67) Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014, 114 (23), 11503-11618. DOI: 10.1021/cr500003w From NLM PubMed-not-MEDLINE. (68) Li, X.; Guo, L.; Li, J.; Wang, E.; Liu, T.; Wang, G.; Sun, K.; Liu, C.; Peng, Z. Reversible cycling of graphite electrodes in propylene carbonate electrolytes enabled by ethyl isothiocyanate. ACS Applied Materials & Interfaces 2021, 13 (22), 26023-26033. (69) Sun, Q.; Cao, Z.; Ma, Z.; Zhang, J.; Wahyudi, W.; Cai, T.; Cheng, H.; Li, Q.; Kim, H.; Xie, E. Discerning roles of interfacial model and solid electrolyte interphase layer for stabilizing antimony anode in lithium-ion batteries. ACS Materials Letters 2022, 4 (11), 2233-2243. (70) Liu, X.; Shen, X.; Li, H.; Li, P.; Luo, L.; Fan, H.; Feng, X.; Chen, W.; Ai, X.; Yang, H. Ethylene carbonate‐free propylene carbonate‐based electrolytes with excellent electrochemical compatibility for Li‐ion batteries through engineering electrolyte solvation structure. Advanced Energy Materials 2021, 11 (19), 2003905. (71) Gao, J.; Fu, L.; Zhang, H.; Zhang, T.; Wu, Y.; Wu, H. Suppression of PC decomposition at the surface of graphitic carbon by Cu coating. Electrochemistry communications 2006, 8 (11), 1726-1730. (72) Zuo, X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y.-J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113-143. (73) Wu, J.; Cao, Y.; Zhao, H.; Mao, J.; Guo, Z. The critical role of carbon in marrying silicon and graphite anodes for high‐energy lithium‐ion batteries. Carbon Energy 2019, 1 (1), 57-76. (74) Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode material–fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy & Fuels 2020, 4 (11), 5387-5416. (75) Li, F. S.; Wu, Y. S.; Chou, J.; Winter, M.; Wu, N. L. A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes. Adv Mater 2015, 27 (1), 130-137. DOI: 10.1002/adma.201403880 From NLM PubMed-not-MEDLINE. (76) Kim, S.; Cho, M.; Lee, Y. Multifunctional chitosan–RGO network binder for enhancing the cycle stability of Li–S batteries. Advanced Functional Materials 2020, 30 (10), 1907680. (77) Xiang, Y.; Yang, M.; Guo, Z.; Cui, Z. Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell. Journal of Membrane Science 2009, 337 (1-2), 318-323. (78) Wang, A.; Tu, Y.; Wang, S.; Zhang, H.; Yu, F.; Chen, Y.; Li, D. A PEGylated chitosan as gel polymer electrolyte for lithium ion batteries. Polymers 2022, 14 (21), 4552. (79) Guk, H.; Kim, D.; Choi, S.-H.; Chung, D. H.; Han, S. S. Thermostable artificial solid-electrolyte interface layer covalently linked to graphite for lithium ion battery: molecular dynamics simulations. Journal of the Electrochemical Society 2016, 163 (6), A917. (80) Lu, C.-Y. Surface Modification of Active Particles of Si@G Anode of Lithium-Ion Batteries with Crosslinked Sulfonated Chitosan to Improve Cycling Stability and C-rate Performance. National Taiwan University, 2020. (81) Laine, R.; Kim, S.; Rush, J.; Tamaki, R.; Wong, E.; Mollan, M.; Sun, H.-J.; Lodaya, M. Ring-opening polymerization of epoxy end-terminated polyethylene oxide (PEO) as a route to cross-linked materials with exceptional swelling behavior. Macromolecules 2004, 37 (12), 4525-4532. (82) Sun, L.; Liu, Y.; Shao, R.; Wu, J.; Jiang, R.; Jin, Z. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Materials 2022, 46, 482-502. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95588 | - |
| dc.description.abstract | 石墨是當今鋰離子電池中最常使用的負極材料,但目前商用電池中的液態電解質主要成分為Ethylene Carbonate (EC)和Ethyl Methyl Carbonate(EMC),這些溶劑的熔點高於室溫,其在低溫下電導率表現不佳,而具有低於零度熔點的Propylene carbonate(PC)被認為是液態電解質良好的替代品之一,可以實現更好的低溫性能,然而PC在循環過程,會嵌入進天然石墨(NG)顆粒中,導致NG的剝落和活性顆粒的崩塌,最終造成電極的結構崩壞。
為了解決這一問題,我們開發了一種人工固態電解質界面(A-SEI)層,使用定制的磺酸化幾丁聚醣接枝聚乙二醇(OSCS-g-PEO),通過簡單的過程塗覆在NG顆粒上,A-SEI層具有良好的鋰離子導電性、高機械強度和一定的柔韌性,經實驗證明,在使用含PC的電解質時,A-SEI層能有效改善循環穩定性,電池在含有PC的電解質存在下,Li//LE//未修飾的NG電池顯示出顯著高於NG理論容量的初始容量,這表明由於PC的嵌入,過量的鋰離子嵌入。然而Li//LE//A-SEI修飾的NG電池則接近NG的理論容量,表明PC的嵌入被成功抑制,進行以0.5C/0.5C進行循環時,前者在160個循環後顯示出顯著的容量下降,而後者在200個循環後仍保持穩定運作。之後進一步分析微觀結構,包括SEM、XPS和XRD,表明A-SEI能有效抑制SEI的增厚並保持NG顆粒的完整性,因此能延長使用富含PC電解質電池的壽命,此外過度鋰化實驗證明,A-SEI層還可以抑制鋰枝晶的形成,提高電池安全性。 我們也評估了使用含有PC電解質的Li//LE//A-SEI修飾的NG電池在0°C下的性能,經過200個循環後,仍擁有70%的容量維持率和超過99.8%的庫倫效率;而在相同設定下,使用不含有PC電解質的參考電池僅顯示出20%的容量維持率和低於97%的庫倫效率,並在200個循環後出現嚴重的極化現象,這結果證實了由OSCS-g-PEO之 A-SEI修飾的NG負極與富含PC的電解質相結合在低溫運作中的實用性。 | zh_TW |
| dc.description.abstract | Graphite is the mostly used anode materials for lithium ion batteries nowadays; however, the commercial batteries made of generally suffer un-satisfactory performance at low temperature because of the low ion conductivity of liquid electrolytes adopting ethylene carbonate (EC) and ethyl methyl carbonate (EMC) with above room temperature melting points as the major ingredients. Propylene carbonate (PC) with a sub-zero melting point is considered as an strong alternative for the liquid electrolytes to achieve better lower temperature performance. However, PC would infiltrate into the natural graphite (NG) particles during cycling, causing exfoliation of NG and collapse of the active particles, eventually structural breakdown of the electrode
To address this issue, we develop an artificial solid electrolyte interphase (A-SEI) layer using custom made sulfonated chitosan-graft-polyethylene oxide (OSCS-g-PEO), which could be coated on NG particles via a simple solution coating process. The A-SEI possesses good lithium ion conductivity, high mechanical strengths with certain flexibility, which are demonstrated to effective improve the cycling stability when PC-containing electrolytes are used. With the presence of PC-containing electrolytes, the Li//LE//pristine NG cell exhibits an initial capacity significantly higher than the theoretical capacity of NG, indicating the intercalation of excess lithium ion due to PC infiltration. In contrast, the Li//LE//A-SEI-modified NG cell approaches the theoretical capacity of NG, suggesting the penetration of PC is successfully suppressed. When cycling at 0.5C/0.5C, the former shows noticeable capacity rollover after 160 cycles, while the latter one maintained stable operation beyond 200 cycles. Further microstructure analysis, including SEM and XPS, indicates the A-SEI could effectively hamper undesired SEI thickening and retain the integrity of the NG particles, therefore to extend the lifespan of batteries using PC-rich electrolytes. Moreover, the A-SEI should also suppress lithium dendrite formation demonstrated by the over-lithiation experiments to improve the battery safety. We also evaluate the performance of a Li//LE//A-SEI-modified NG cell at 0°C using PC-containing electrolytes. A 70% capacity retention and over than 99.8% Columbic efficiency is achieved after 200 cycles; while the reference one using PC-free electrolytes shows only 20% capacity retention and less than 97% CE under the same setup with severe polarization after 200 cycles. This observation assure the practicality of the combination of OSCS-g-PEO A-SEI modified NG anode and PC-rich electrolytes for low-temperature operation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-12T16:12:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-12T16:12:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ................................................................................................................................................. I
摘要 ................................................................................................................................................ II ABSTRACT ................................................................................................................................. IV 目次 .............................................................................................................................................. VI 圖次 .............................................................................................................................................. IX 表次 ............................................................................................................................................ XIV 第一章 緒論 ................................................................................................................................ 1 1.1 研究動機 .............................................................................................................................. 1 1.2 研究目的與架構 .................................................................................................................. 2 第二章 文獻回顧 ......................................................................................................................... 5 2.1 鋰離子二次電池 .................................................................................................................. 5 鋰離子電池工作原理 ................................................................................................... 6 石墨負極....................................................................................................................... 7 鋰嵌入石墨機制 ........................................................................................................... 9 2.2 固態電解質介面層(SEI) .................................................................................................... 11 2.3 碳酸酯類電解液 ................................................................................................................ 13 丙烯碳酸酯(Propylene Carbonate)............................................................................. 15 2.4 人工固態電解質介面層(A-SEI) ........................................................................................ 21 幾丁聚醣在鋰電池應用 ............................................................................................. 23 第三章 實驗步驟與原理 ............................................................................................................ 25 3.1 實驗使用之藥品與材料 .................................................................................................... 25 3.2 實驗使用之儀器 ................................................................................................................ 28 3.3 材料製備 ............................................................................................................................ 30 Sulfonated Chitosan (OSCS)之合成 ............................................................................ 30 環氧基修飾聚乙二醇甲醚 (emPEO)之合成 ............................................................ 31 OSCS-g-PEO 之合成 .................................................................................................. 32 製備交聯膜材 ............................................................................................................. 32 天然石墨表面改質(A-SEI) ........................................................................................ 33 負極塗佈與漿料製備 ................................................................................................. 34 組裝CR2032 電池 ..................................................................................................... 35 3.4 材料分析 ............................................................................................................................ 36 化學結構之鑑定 ......................................................................................................... 36 熱重分析..................................................................................................................... 36 膜材機械強度分析 ..................................................................................................... 37 薄膜溶解度測試 ......................................................................................................... 37 薄膜傳導度量測 ......................................................................................................... 37 半電池充放電循環穩定性測試 ................................................................................. 38 分析極片表面及側面的形貌 ..................................................................................... 38 負極材料之元素與鍵結分析 ..................................................................................... 39 半電池倍率性能測試 ................................................................................................. 39 半電池鋰沉積測試(Lithium Plating Test)................................................................ 40 電化學阻抗頻譜(EIS)分析 ...................................................................................... 40 低溫性能測試 ........................................................................................................... 40 長循環測試 ............................................................................................................... 41 全電池循環穩定性測試 ........................................................................................... 41 第四章 結果與討論 ................................................................................................................... 42 4.1 磺酸化幾丁聚醣(OSCS)之合成 ........................................................................................ 42 4.2 聚乙二醇甲醚之環氧基修飾(emPEO)之合成 .................................................................. 43 4.3 磺酸化幾丁聚醣接枝聚乙二醇(OSCS-g-PEO)之合成 .................................................... 44 4.4 OSCS 與OSCS-g-PEO 獨立膜的性質 .............................................................................. 46 獨立膜於去離子水中的溶解度 ................................................................................. 47 獨立膜於電解液的溶解度 ......................................................................................... 48 獨立膜的熱性質分析 ................................................................................................. 48 獨立膜的機械性質分析 ............................................................................................. 50 獨立膜傳導度測試 ..................................................................................................... 51 4.5 天然石墨(NG)負極的電化學性能 .................................................................................... 52 E-series 循環電性表現 ................................................................................................ 52 P-series 循環電性表現 ................................................................................................ 54 PP-series 循環電性表現 .............................................................................................. 58 天然石墨負極之形貌與組成分析 ............................................................................. 61 過充測試..................................................................................................................... 74 低溫電性表現 ............................................................................................................. 76 長循環測試 ................................................................................................................. 78 全電池測試(discharge) ............................................................................................... 81 第五章 結論 .............................................................................................................................. 84 第六章 未來展望 .......................................................................................................................... 85 參考文獻 ...................................................................................................................................... 86 附錄 ............................................................................................................................................... 93 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 碳酸丙烯酯 | zh_TW |
| dc.subject | 天然石墨 | zh_TW |
| dc.subject | 人工固態電解質界面層 | zh_TW |
| dc.subject | 聚乙二醇 | zh_TW |
| dc.subject | 接枝共聚物 | zh_TW |
| dc.subject | 磺酸化幾丁聚醣 | zh_TW |
| dc.subject | 鋰離子電池 | zh_TW |
| dc.subject | propylene carbonate | en |
| dc.subject | Lithium-ion battery | en |
| dc.subject | artificial solid electrolyte interphase | en |
| dc.subject | natural graphite | en |
| dc.subject | sulfonated chitosan | en |
| dc.subject | polyethylene oxide | en |
| dc.subject | graft copolymer | en |
| dc.title | 通過磺酸化幾丁聚醣的人工固態電解質介面層以提高天然石墨陽極對丙烯碳酸酯的耐受性 | zh_TW |
| dc.title | Improving Propylene Carbonate Tolerance for Natural Graphite Anode via artificial SEI of Functionalized Sulfonated Chitosan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 呂幸江;董崇民;蘇威年 | zh_TW |
| dc.contributor.oralexamcommittee | Shing-Jiang Lue;Trong-Ming Don;Wei-Nien Su | en |
| dc.subject.keyword | 鋰離子電池,碳酸丙烯酯,天然石墨,人工固態電解質界面層,聚乙二醇,接枝共聚物,磺酸化幾丁聚醣, | zh_TW |
| dc.subject.keyword | Lithium-ion battery,artificial solid electrolyte interphase,natural graphite,sulfonated chitosan,polyethylene oxide,graft copolymer,propylene carbonate, | en |
| dc.relation.page | 100 | - |
| dc.identifier.doi | 10.6342/NTU202403577 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | 2027-08-09 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 10.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
