Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95497
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松zh_TW
dc.contributor.advisorChao-Sung Linen
dc.contributor.author吳奕諴zh_TW
dc.contributor.authorI-Hsien Wuen
dc.date.accessioned2024-09-11T16:11:19Z-
dc.date.available2024-09-12-
dc.date.copyright2024-09-11-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citation[1] J. G. Kaufman, Introduction to aluminum alloys and tempers. ASM international, 2000.
[2] E. A. Starke Jr and J. T. Staley, "Application of modern aluminum alloys to aircraft," Progress in aerospace sciences, vol. 32, no. 2-3, pp. 131-172, 1996.
[3] F. Ozturk, E. Esener, S. Toros, and C. R. Picu, "Effects of aging parameters on formability of 6061-O alloy," Materials & Design, vol. 31, no. 10, pp. 4847-4852, 2010.
[4] 劉彥均, "AZ31B 鎂合金與 6061 鋁合金摩擦攪拌焊接材料之六氟鋯酸化成處理," 2022.
[5] Z. Zhang et al., "Corrosion Behaviors of AA5083 and AA6061 in Artificial Seawater: Effects of Cl-, HSO3-and Temperature," International Journal of Electrochemical Science, vol. 15, no. 2, pp. 1218-1229, 2020.
[6] T. He, W. Shi, S. Xiang, C. Huang, and R. G. Ballinger, "Influence of aging on corrosion behaviour of the 6061 cast aluminium alloy," Materials, vol. 14, no. 8, p. 1821, 2021.
[7] K. J. Kundig and J. G. Cowie, "Copper and copper alloys," Mechanical engineers’ handbook. Wiley Interscience, pp. 117-220, 2006.
[8] W. M. Haynes, CRC handbook of chemistry and physics. CRC press, 2016.
[9] W. Tian, H. Su, and C. Wu, "Effect of ultrasonic vibration on thermal and material flow behavior, microstructure and mechanical properties of friction stir welded Al/Cu joints," The International Journal of Advanced Manufacturing Technology, vol. 107, pp. 59-71, 2020.
[10] R. Wright, "Chapter 13 – Relevant Aspects of Copper and Copper Alloy Metallurgy," 2016.
[11] R. S. Mishra and Z. Ma, "Friction stir welding and processing," Materials science and engineering: R: reports, vol. 50, no. 1-2, pp. 1-78, 2005.
[12] Y. Sun, W. Gong, J. Feng, G. Lu, R. Zhu, and Y. Li, "A review of the friction stir welding of dissimilar materials between aluminum alloys and copper," Metals, vol. 12, no. 4, p. 675, 2022.
[13] S. Patnaik, S. Chattopadhyaya, and S. Shankar, "Friction stir welding and its applications: An overview," in AIP Conference Proceedings, 2022, vol. 2681, no. 1: AIP Publishing.
[14] A. S. Babu and C. Devanathan, "An overview of friction stir welding," Int. J. Res. Mech. Eng. Technol, vol. 3, no. 2, pp. 259-265, 2013.
[15] X. He, F. Gu, and A. Ball, "A review of numerical analysis of friction stir welding," Progress in Materials Science, vol. 65, pp. 1-66, 2014.
[16] N. Dialami, M. Cervera, and M. Chiumenti, "Defect formation and material flow in friction stir welding," European Journal of Mechanics-A/Solids, vol. 80, p. 103912, 2020.
[17] K. Krishnan, "On the formation of onion rings in friction stir welds," Materials science and engineering: A, vol. 327, no. 2, pp. 246-251, 2002.
[18] L. H. Shah, N. H. Othman, and A. Gerlich, "Review of research progress on aluminium–magnesium dissimilar friction stir welding," Science and Technology of Welding and Joining, vol. 23, no. 3, pp. 256-270, 2018.
[19] Y. Mao, Y. Ni, X. Xiao, D. Qin, and L. Fu, "Microstructural characterization and mechanical properties of micro friction stir welded dissimilar Al/Cu ultra-thin sheets," Journal of Manufacturing Processes, vol. 60, pp. 356-365, 2020.
[20] Q. Z. Zhang, W. B. Gong, and L. Wei, "Microstructure and mechanical properties of dissimilar Al–Cu joints by friction stir welding," Transactions of Nonferrous metals society of China, vol. 25, no. 6, pp. 1779-1786, 2015.
[21] W. Hou, L. H. A. Shah, G. Huang, Y. Shen, and A. Gerlich, "The role of tool offset on the microstructure and mechanical properties of Al/Cu friction stir welded joints," Journal of Alloys and Compounds, vol. 825, p. 154045, 2020.
[22] P. Liu, Q. Shi, W. Wang, X. Wang, and Z. Zhang, "Microstructure and XRD analysis of FSW joints for copper T2/aluminium 5A06 dissimilar materials," Materials letters, vol. 62, no. 25, pp. 4106-4108, 2008.
[23] H. Liu, J. Shen, L. Zhou, Y. Zhao, C. Liu, and L. Kuang, "Microstructural characterisation and mechanical properties of friction stir welded joints of aluminium alloy to copper," Science and Technology of Welding and Joining, vol. 16, no. 1, pp. 92-98, 2011.
[24] E. Ryl’kov, F. Y. Isupov, A. Naumov, O. Panchenko, and A. Shamshurin, "Microstructure and mechanical properties of dissimilar Al–Cu joints formed by friction stir welding," Metal Science and Heat Treatment, vol. 60, pp. 734-738, 2019.
[25] Q. Ma, C. Song, J. Zhou, L. Zhang, and H. Ji, "Dynamic Weld evolution during ultrasonic welding of Cu–Al joints," Materials Science and Engineering: A, vol. 823, p. 141724, 2021.
[26] S. Kuryntsev, "A review: laser welding of dissimilar materials (Al/Fe, Al/Ti, Al/Cu)—methods and techniques, microstructure and properties," Materials, vol. 15, no. 1, p. 122, 2021.
[27] M. H. Athar and B. Tolaminejad, "Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding," Materials & design, vol. 86, pp. 516-525, 2015.
[28] I. Galvao, J. Oliveira, A. Loureiro, and D. Rodrigues, "Formation and distribution of brittle structures in friction stir welding of aluminium and copper: influence of process parameters," Science and Technology of Welding and Joining, vol. 16, no. 8, pp. 681-689, 2011.
[29] J. Ouyang, E. Yarrapareddy, and R. Kovacevic, "Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper," Journal of materials processing technology, vol. 172, no. 1, pp. 110-122, 2006.
[30] H. Liu et al., "Weld appearance and microstructural characteristics of friction stir butt barrier welded joints of aluminium alloy to copper," Science and Technology of Welding and Joining, vol. 17, no. 2, pp. 104-110, 2012.
[31] P. Xue, B. Xiao, D. Ni, and Z. Ma, "Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds," Materials science and engineering: A, vol. 527, no. 21-22, pp. 5723-5727, 2010.
[32] P. Carlone, A. Astarita, G. S. Palazzo, V. Paradiso, and A. Squillace, "Microstructural aspects in Al–Cu dissimilar joining by FSW," The International Journal of Advanced Manufacturing Technology, vol. 79, pp. 1109-1116, 2015.
[33] P. K. Sahu, S. Pal, S. K. Pal, and R. Jain, "Influence of plate position, tool offset and tool rotational speed on mechanical properties and microstructures of dissimilar Al/Cu friction stir welding joints," Journal of Materials Processing Technology, vol. 235, pp. 55-67, 2016.
[34] O. Zobac, A. Kroupa, A. Zemanova, and K. W. Richter, "Experimental description of the Al-Cu binary phase diagram," Metallurgical and Materials Transactions A, vol. 50, pp. 3805-3815, 2019.
[35] M. Abbasi, A. K. Taheri, and M. Salehi, "Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process," Journal of Alloys and Compounds, vol. 319, no. 1-2, pp. 233-241, 2001.
[36] M. F. X. Muthu and V. Jayabalan, "Tool travel speed effects on the microstructure of friction stir welded aluminum–copper joints," Journal of Materials Processing Technology, vol. 217, pp. 105-113, 2015.
[37] F. DONG, W. CHEN, G. SU, and X. ZHAO, "Effect of base metal relative positions on properties of Al/Cu FSW joint," Transactions of the China Welding Institution, no. 10, pp. 85-88, 2011.
[38] P. Xue, D. Ni, D. Wang, B. Xiao, and Z. Ma, "Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints," Materials science and engineering: A, vol. 528, no. 13-14, pp. 4683-4689, 2011.
[39] K. P. Mehta and V. J. Badheka, "A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants," Materials and Manufacturing Processes, vol. 31, no. 3, pp. 233-254, 2016.
[40] S. N. Pandya and J. Menghani, "Optimum heat source position offset in welding of dissimilar Al-Cu metals using a theoretical approach," Materials Today: Proceedings, vol. 5, no. 13, pp. 26974-26980, 2018.
[41] E. McCafferty, Introduction to corrosion science. Springer Science & Business Media, 2010.
[42] P. Vanysek, "Electrochemical series," CRC handbook of chemistry and physics, vol. 8, pp. 8-33, 2000.
[43] T. Cheng, H. Huang, and G. Huang, "Galvanic corrosion behavior between ADC12 aluminum alloy and copper in 3.5 wt% NaCl solution," Journal of Electroanalytical Chemistry, vol. 927, p. 116984, 2022.
[44] E. T. Akinlabi, A. Andrews, and S. A. Akinlabi, "Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminium and copper," Transactions of Nonferrous Metals Society of China, vol. 24, no. 5, pp. 1323-1330, 2014.
[45] F. A. Montes-González et al., "Experimental analysis and mathematical model of fsw parameter effects on the corrosion rate of Al 6061-T6-Cu c11000 joints," Crystals, vol. 11, no. 3, p. 294, 2021.
[46] M. Pourbaix, "Atlas of Electrochemical Equilibria in Aqueous Solutions NACE," Houston, Tx, p. 331, 1974.
[47] S. Kulinich and A. Akhtar, "On conversion coating treatments to replace chromating for Al alloys: Recent developments and possible future directions," Russian Journal of Non-Ferrous Metals, vol. 53, pp. 176-203, 2012.
[48] M. Dabalà, E. Ramous, and M. Magrini, "Corrosion resistance of cerium‐based chemical conversion coatings on AA5083 aluminium alloy," Materials and Corrosion, vol. 55, no. 5, pp. 381-386, 2004.
[49] B. Valdez, S. Kiyota, M. Stoytcheva, R. Zlatev, and J. Bastidas, "Cerium-based conversion coatings to improve the corrosion resistance of aluminium alloy 6061-T6," Corrosion Science, vol. 87, pp. 141-149, 2014.
[50] T. Harvey, "Cerium-based conversion coatings on aluminium alloys: a process review," Corrosion Engineering, Science and Technology, vol. 48, no. 4, pp. 248-269, 2013.
[51] S. Kiyota, B. Valdez, M. Stoytcheva, R. Zlatev, and J. M. Bastidas, "Anticorrosion behavior of conversion coatings obtained from unbuffered cerium salts solutions on AA6061-T6," Journal of Rare Earths, vol. 29, no. 10, pp. 961-968, 2011.
[52] B. R. W. Hinton, D. R. Arnott, and N. E. Ryan, "CERIUM CONVERSION COATINGS FOR THE CORROSION PROTECTION OF ALUMINIUM," Materials Forum, Article vol. 9, no. 3, pp. 162-173, 1986.
[53] B. R. W. Hinton, "Corrosion inhibition with rare earth metal salts," Journal of Alloys and Compounds, vol. 180, no. 1, pp. 15-25, 1992/03/25/ 1992.
[54] R. G. Buchheit, S. B. Mamidipally, P. Schmutz, and H. Guan, "Active Corrosion Protection in Ce-Modified Hydrotalcite Conversion Coatings," Corrosion, vol. 58, no. 1, pp. 3-14, 2002.
[55] H. Ding and J. Liu, "Chemical conversion coatings for corrosion protection of copper and other alloys in contaminated water," ed: Google Patents, 2014.
[56] M. Eslami, M. Fedel, G. Speranza, F. Deflorian, and C. Zanella, "Deposition and characterization of cerium-based conversion coating on HPDC low Si content aluminum alloy," Journal of The Electrochemical Society, vol. 164, no. 9, p. C581, 2017.
[57] M. Eslami, M. Fedel, G. Speranza, F. Deflorian, N.-E. Andersson, and C. Zanella, "Study of selective deposition mechanism of cerium-based conversion coating on Rheo-HPDC aluminium-silicon alloys," Electrochimica Acta, vol. 255, pp. 449-462, 2017.
[58] L. Paussa, F. Andreatta, D. De Felicis, E. Bemporad, and L. Fedrizzi, "Investigation of AA2024-T3 surfaces modified by cerium compounds: a localized approach," Corrosion science, vol. 78, pp. 215-222, 2014.
[59] 齊東梅, 成若義, 杜小青, 陳宇, 張昭, and 張鑑清, "Cu 及其合金的大氣腐蝕研究現狀," 中國腐蝕與防護學報, vol. 34, no. 5, pp. 389-398, 2014.
[60] E. Abbe, "Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung," Archiv für mikroskopische Anatomie, vol. 9, no. 1, pp. 413-468, 1873.
[61] 陳厚光 and 張立, "掃描式電子顯微鏡中之背向電子繞射分析技術," 科儀新知, no. 152, pp. 22-30, 2006.
[62] F. Cao, J. Li, W. Hou, Y. Shen, and R. Ni, "Microstructural evolution and mechanical properties of the friction stir welded AlCu dissimilar joint enhanced by post-weld heat treatment," Materials Characterization, vol. 174, p. 110998, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95497-
dc.description.abstract本研究使用的材料為6061-T6鋁合金和C1100銅合金異質摩擦攪拌焊接試片,研究分為兩大部分,第一部分主要分析焊接後焊道區的表面與橫截面,透過化學蝕刻顯示焊道橫截面的材料流動,SEM觀察焊道區的微結構,並使用XRD與EBSD進行相鑑定。銅在焊接時被攪拌針攪拌脫落,產生銅顆粒流動到焊道區內部,焊道區橫截面主要分為鋁、銅界面與銅散佈於鋁基地的礦塊區,焊道區表面另有少數鋁在銅側的形貌,為材料垂直流動及鋁透過界面擴散的結果,在上述結構中發現介金屬相Al2Cu、AlCu與Al4Cu9在鋁、銅之間形成,呈典型擴散偶。
第二部分分別使用氯化鈰和硝酸鈰對6061-T6鋁合金與C1100銅合金基材與兩合金耦合試片進行化成,並使用OCP監控化成反應進行。氯化鈰化成在鋁合金上形成高覆蓋率的膜層,在銅合金上因氯離子的錯合形成不連續的膜層,耦合後因伽凡尼效應影響,鋁合金之化成膜覆蓋率降低,銅合金則生成鍵結弱的膜層。硝酸鈰將鋁合金鈍化,幾乎不產生膜層,而在銅合金上因硝酸根還原形成不連續的膜層,耦合後因鋁合金受到鈍化,對兩者產生的伽凡尼效應弱,結果耦合前後兩金屬產生的膜層於形貌上類似。最後透過動電位極化曲線結果指出,僅有氯化鈰在6061鋁合金上形成的膜層有提升抗蝕性的效果,與表面化成膜的覆蓋性有關,本研究所製成之其他膜層因為膜層不連續或附著性差而抗蝕效果不佳。
zh_TW
dc.description.abstractThis study investigates the friction stir welding (FSW) of 6061-T6 aluminum alloy and C1100 copper alloy dissimilar joints. The research is divided into two main parts. The first part focuses on analyzing the surface and cross-section of the stir zone after welding. Chemical etching is used to reveal material flow in the cross-section, and SEM is employed to observe the microstructure of the stir zone. Phase identification is performed using XRD and EBSD. During welding, copper particles are stirred and scratched by the rotating pin, resulting in copper particle flow into the stir zone. The cross-section of the stir zone primarily consists of aluminum-copper interfaces and nugget zone which consists of copper particles dispersed in the aluminum matrix. Additionally, a small amount of aluminum is observed on the copper side of the plan view sample, resulting from vertical material flow and aluminum diffusion through the aluminum-copper interface. Intermetallic phases Al2Cu, AlCu, and Al4Cu9 are found to form between aluminum and copper, indicating typical diffusion couples.
The second part involves cerium conversion coating using cerium (III) chloride and cerium (III) nitrate on the 6061-T6 aluminum alloy, C1100 copper alloy substrates, and coupled samples of both alloys. OCP is used to monitor the conversion reactions. Cerium chloride conversion can form a high-coverage film layer on the aluminum alloy and forms a discontinuous layer on the copper alloy due to the complexation of chloride ions, after coupling, the galvanic effect reduces the coverage of the conversion coating layer on the aluminum alloy, and a weakly bonded layer forms on the copper alloy. Cerium nitrate passivates the aluminum alloy, resulting in almost no layer formation, while a discontinuous layer forms on the copper alloy due to nitrate ion reduction, the galvanic effect is weak because the aluminum alloy is passivated, resulting in similar layer morphology on both metals after coupling. Finally, potentiodynamic polarization curves indicate that only the layer formed by cerium chloride on the 6061 aluminum alloy enhances corrosion resistance, which is related to the coverage of the conversion coating layer, other layers produced in this study do not exhibit corrosion resistance due to their discontinuous or poorly adherent nature.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:11:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-11T16:11:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目次 vi
圖次 x
表次 xiv
第一章 前言 1
第二章 文獻回顧 3
2.1 鋁合金 3
2.1.1 概述 3
2.1.2 鋁合金的命名 3
2.1.3 6061-T6鋁合金 5
2.1.4 6061鋁合金二次相的腐蝕 7
2.2 銅合金 8
2.2.1 概述 8
2.2.2 銅合金的命名 8
2.2.3 C1100銅合金 9
2.3 摩擦攪拌焊接(Friction Stir Welding, FSW) 10
2.3.1 概述 10
2.3.2 摩擦攪拌焊接微結構 13
2.3.3 鋁銅摩擦攪拌焊接 15
2.4 腐蝕 20
2.4.1 概述 20
2.4.2 伽凡尼腐蝕 21
2.4.3 電位-pH圖(Pourbaix Diagram) 26
2.5 化成處理 31
2.5.1 概述 31
2.5.2 鋁合金鈰化成(Cerium conversion coating, CeCC) 33
第三章 實驗步驟與方法 37
3.1 實驗流程 37
3.2 試片製備 38
3.2.1 實驗材料與藥品 38
3.2.2 試片研磨與拋光 41
3.2.3 化學蝕刻 42
3.2.4 化成處理 42
3.3 微結構分析與方法 43
3.3.1 光學顯微鏡(OM) 43
3.3.2 掃描式電子顯微鏡(SEM) 44
3.3.3 能量色散X射線譜(EDS) 45
3.3.4 背向散射電子繞射(EBSD) 45
3.3.5 X光繞射儀(XRD) 46
3.4 電化學測試 46
3.4.1 開路電位(OCP) 47
3.4.2 動電位極化曲線(PDP) 47
第四章 結果與討論 48
4.1 純基材表面分析 48
4.1.1 6061-T6鋁合金 48
4.1.2 C1100銅合金 50
4.2 焊道區分析 52
4.2.1 焊道區拋光後巨觀形貌 52
4.2.2 焊道區微結構分析 55
4.2.3 焊道區之相鑑定 62
4.3 鋁、銅基材鈰化成分析 67
4.3.1 氯化鈰(CeCl3)單獨化成6061與C1100基材 68
4.3.2 氯化鈰(CeCl3)化成6061與C1100耦合材料 72
4.3.3 硝酸鈰(Ce(NO3)3)單獨化成6061與C1100基材 76
4.3.4 硝酸鈰(Ce(NO3)3)化成6061與C1100耦合材料 80
4.3.5 鈰鹽化成動電位極化曲線結果 83
第五章 結論 89
第六章 未來展望 91
參考文獻 92
-
dc.language.isozh_TW-
dc.title6061-T6鋁合金與C1100銅合金摩擦攪拌異質焊接焊道微結構與鈰鹽化成處理研究zh_TW
dc.titleMicrostructure and Cerium Conversion Coating of Friction Stir Dissimilar Welding 6061-T6 Aluminum and C1100 Copperen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李岳聯;朱鵬維;葛明德;鄭憶中zh_TW
dc.contributor.oralexamcommitteeYueh-Lien Lee;Peng-Wei Chu;Ming-Der Ger;I-Chung Chengen
dc.subject.keyword6061-T6鋁合金,C1100銅合金,摩擦攪拌焊接,微結構,鈰化成,介金屬,伽凡尼,zh_TW
dc.subject.keyword6061,C1100,friction stir welding,microstructure,cerium conversion coating,intermetallic compound,galvanic,en
dc.relation.page101-
dc.identifier.doi10.6342/NTU202402997-
dc.rights.note未授權-
dc.date.accepted2024-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
6.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved