Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95491
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊哲人zh_TW
dc.contributor.advisorJer-Ren Yangen
dc.contributor.author游雨蓁zh_TW
dc.contributor.authorYu-Jhen Youen
dc.date.accessioned2024-09-11T16:09:11Z-
dc.date.available2024-09-12-
dc.date.copyright2024-09-11-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citation1. Davis, J. R. (1994). Stainless steels /Edited by J.R. Davis. ASM specialty handbook. 1994, Materials Park, Ohio: ASM International.
2. Vicente, A., Santos, I., Botelho Junior, A., Espinosa, D., Tenório, J. (2020). Study of the Distribution of Cr, Mo, Ni and N in δ Ferrite and Austenite in Duplex Stainless Steels, 5, 156-162.
3. A.S.f. Metals, Metals Handbook. 8th Ed. Vol. 7. Atlas of Microstructures Industrial Alloys, ASM.
4. McGuire, M. F. (2008). Stainless steels for design engineers. ASM International.
5. Fakić, B., Ćubela, D. (2013). Review of the Development of Research in the Design of Semi Austenitic Stainless Steel 17-7PH. Journal of Trends in the Development of Machinery and Associated Technology, 17(1), 57-60.
6. Chen, T. H., Yang, J. R. (2001). Effects of solution treatment and continuous cooling on σ-phase precipitation in a 2205duplex stainless steel. Materials Science and Engineering: A, 311(1), 28-41.
7. Bhadeshia, H. K. D. H. (1987). Worked examples in the Geometry of Crystals.
8. Bhadeshia, H.K.D.H. (2021). Theory of Transformations in steels. (1st ed.). CRC Press.
9. Bhadeshia, H.K.D.H., Honeycombe, R. W. K. (2006). Steels: Microstructure and Properties. 3 ed., Butterworth- Heine-mann, Boston.
10. Bhadeshia, H.K.D.H. (2001). Bainite in Steels: Transformations, Microstructure and Properties. 2 ed.: IOM Communications Ltd.
11. Bowles J. S., Mackenzie, J. K. (1954). The crystallography of martensite transformations. Acta Metallurgica, 2, 129-137.
12. Bowles J. S., Mackenzie, J. K. (1954). The crystallography of martensite transformations III. Face-centered cubic to body-centered tetragonal transformations," Acta Metallurgica, 2, 224-234.
13. Bhadeshia, H. K. D. H., Edmonds, D. V. (1979). The bainite transformation in a silicon steel. Metallurgical Transactions A, 10, 895-907.
14. Kelly, P. M., Nutting, J. (1960). The Martensite Transformation in Carbon Steels. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 259, 45–58.
15. Sato, H., Zaefferer, S. (2009). A study on the formation mechanisms of butterfly-type martensite in Fe–30% Ni alloy using EBSD-based orientation microscopy. Acta Materialia, 57(6), 1931-1937.
16. Maki, T.(2012). Morphology and substructure of martensite in steels. Phase transformations in steels, 34-58.
17. Maki et al. (1975). Formation Temperature and Growth Behavior of Thin Plate Martensite in Fe-Ni-C Alloys.
18. Ryder, P. and W. Pitsch, (1966). The crystallographic analysis of grain-boundary precipitation. Acta Metallurgica, 14(11), 1437-1448.
19. Morito et al.(2003). The morphology and crystallography of lath martensite in Fe-C alloys. Acta materialia 51(6), 1789-1799.
20. Tsai, M., Chiou, C., Du, J. Yang, J. M. S. (2002). Phase transformation in AISI 410 stainless steel, 332(1-2), 1-10.
21. Marder M., Marder, A. R. (1969). The morphology of iron-nickel massive martensite," Transactions of the American Society of Metals, 62, 1-10.
22. Inoue, T., Matsuda, S., Okamura, Y., Aoki, K. (1970). The fracture of a low carbon tempered martensite," Materials Transactions JIM, 11, 36-43.
23. Archie, F. (2018). Damage nucleation in DP-steels: experimental characterization of the contributing microstructural parameters.
24. Morito et al. (2006). Effect of block size on the strength of lath martensite in low carbon steels. Materials Science and Engineering: A, 438-440, 237- 240.
25. Kaijalainen, A. J., Suikkanen,P. P., Limnell, T. J., Karjalainen, L. P., Kömi, J. I., Porter, D. A. (2013). Effect of austenite grain structure on the strength and toughness of direct-quenched martensite, J. Alloys Comp. 577, 642-648.
26. Patel, J. R., Cohen, M. (1953). Criterion for the action of applied stress in the martensitic transformation. Acta metallurgica, 1(5), 531-538.
27. Ghosh, G., Olson, G. B. (1994). Kinetics of FCC→ BCC heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation. Acta Metallurgica et Materialia, 42(10), 3361-3370.
28. Kelly, P., Jostsons, A. (1990). The orientation relationship between lath martensite and austenite in low carbon, low alloy steels, 38(6), 1075-1081.
29. Mangonon, P. L., Thomas, G. J. (1970). The martensite phases in 304 stainless steel, 1(6), 1577-1586.
30. Samek, L., Moor, E. D., Penning, J., Cooman, B. C. D. (2006). Influence of Alloying Elements on the Kinetics of Strain-Induced Martensitic Nucleation in Low-Alloy, Multiphase High-Strength Steels, Metall. Mater. Trans. A, 37, 109-124.
31. Villa, M. (2014). Isothermal Martensite Formation. DTU Mechanical Engineering.
32. Ghosh, G., Olson, G. B. (1994). Kinetics of FCC→ BCC heterogeneous martensiticnucleation—I. The critical driving force for athermal nucleation. Acta Metallurgica et Materialia, 42(10), 3361-3370.
33. Morito et al. (2006). Effect of block size on the strength of lath martensite in low carbon steels. Materials Science and Engineering: A, 438-440, 237- 240.
34. Gao, Q Z., Wang, C.,Qu, F.,Wang, Y. L., Qiao, Z. X. (2014). Martensite transformation kinetics in 9Cr–1.7W–0.4Mo–Co ferritic steel. Journal of Alloys and Compounds, 610, 322-330.
35. Tian, J. L., Wang W, Shahzad, M. B., Yan, W., Shan, Y. Y., Jiang, Z. H., Yang, K. (2018). Corrosion resistance of co-containing maraging stainless steel. Acta Metall Sinica (English Letters), 31(8):785-797.
36. Schaaber, O. (1955). Some observations on isothermal austenite transformation near the Ms temperature. JOM, 7, 559-560.
37. Edwards, Robert H. (2017). The isothermal transformation of austenite at temperatures near Ms., thesis.
38. Okamoto, H., Oka, M. (1985). Isothermal martensite transformation in a 1.80 Wt Pct C steel. Metallurgical Transactions A, 16(12), 2257-2262.
39. Okamoto, H., Oka, M. (1986). Lower bainite with midrib in hypereutectoid steels. Metallurgical Transactions A, 17, 1113-1120.
40. Oka, M., Okamoto, H. (1988). Swing back in kinetics near M s in hypereutectoid steels. Metall Trans A, 19, 447-452.
41. Kim, J. M., Kang, M., Goo, N. H. (2020). A Simple Mathematical Model for Establishing Isothermal Transformation Kinetics from Continuous Cooling Data. Metall Mater Trans A, 51, 4422-4426.
42. Samanta, S., Biswas, P., Giri, S., Singh, S. B., & Kundu, S. (2016). Formation of bainite below the MS temperature: Kinetics and crystallography. Acta Materialia, 105, 390-403.
43. Koistinen, D. P., Marburger, R. E. (1959). A General Equation Prescribing the Extent of the Austenite-Martensite Transformation in Pure Iron-Carbon Alloys and Plain Carbon Steels. Acta Materialia,7, 59-60.
44. Guimarães, J. R. C., Rios, P. R. (2018). Fundamental aspects of the martensite transformation curve in Fe-Ni-X and Fe-C alloys. Journal of Materials Research and Technology, 7(4), 499-507.
45. Kakeshita, T., Kuroiwa, K., Shimizu, K., Ikeda, T., Yanagishi, A., Date, M. (1993). A New Model Explainable for Both the Athermal and Isothermal Natures of Martensitic Transformations in Fe–Ni–Mn Alloys. Materials Transactions, JIM, 34 (5), 423-428.
46. Olson, G. B., Cohen, M. (1976). A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation. Metall Trans A, 7.
47. Podder, A. S., Bhadeshia, H. K. D. H. (2010). Thermal stability of austenite retained in bainitic steels. Materials Science and Engineering: A, 527(7-8), 2121-2128.
48. Raghavan, V. (1969). Formation sequence of plates in isothermal martensite transformation. Acta Metallurgica, 17(10),1299-1303.
49. Pati, S. R., Cohen, M. (1971). Kinetics of isothermal martensitic transformations in an iron-nickel-manganese alloy. Acta Metallurgica, 19(12),1327-1332.
50. Shih, C. H., Averbach, B. L., Cohen, M. (1955). Some Characteristics of the Isothermal Martensitic Transformation. JOM,7(1), 183-187.
51. Lin, M., Olson, G. B. Cohen, M. (1992). Distributed-activation kinetics of heterogeneous martensitic nucleation. Metall Mater Trans A, 51, 4422-4426.
52. Swallow, E., Bhadeshia, H. K. D. H. (1996). High resolution observations of displacements caused by bainite transformation. Material Science and Technology, , 12, 121-125.
53. Voort, G. F.V. (1991). Atlas of Time-Temperature Diagrams for Irons and Steels. s.l. ASM International.
54. Morawiec, A. (2011). On abnormal growth of Goss grains in grain-oriented silicon steel. Scripta Materialia, 64(5), 466-469.
55. Sennour, M., Esnouf, C. (2003). Contribution of advanced microscopy techniques to nano-precipitates characterization: case of AlN precipitation in low-carbon steel. Acta Materialia, 51(4), 943-957.
56. Xiao, B., Feng, J., Zhou, C. T., Jiang, Y. H., Zhou, R. (2011). Mechanical properties and chemical bonding characteristics of Cr7C3 type multicomponent carbides. Journal of Applied Physics, 109(2).
57. Singhal, L. K. (1971) Effect of the nature of imperfections on the precipitation of M23C6 carbide in austenitic steels. Metall Trans, 2, 1267–1271.
58. Lee, T. H., Ha, H. Y., Kim, S. J. (2011). Metall. Mater. Trans. A, 42A, 3543-3548.
59. Xu, Z., Ding, Z., Liang, B. (2018). The Observation of the Structure of M23C6/γ Coherent Interface in the 100Mn13 High Carbon High Manganese Steel. Metallurgical and Materials Transactions A, 49, 836-841.
60. Ding, Z., Liang, B., Zhao, R., Chen, C. (2015). Precipitation of carbides in early aging stages and their crystallographic orientations in Hadfield steel Mn13. Metal Science and Heat Treatment, 57, 18-21.
61. Taillard, R., Pineau, A. (1982). Room temperature tensile properties of Fe-19wt.% Cr alloys precipitation hardened by the intermetallic compound NiAl. Materials Science and Engineering, 56(3), 219-231.
62. Xi, W., Yin, S., Lai, H. (2003). Microstructure and mechanical properties of stainless steel produced by centrifugal-SHS process. Journal of materials processing technology, 137(1-3), 1-4.
63. Dahmen, U. (1982). Orientation relationships in precipitation systems. Acta Metallurgica, 30(1), 63-73.
64. Ashby, M. F. (1966). Results and consequences of a recalculation of the frank-read and the orowan stress. Acta Metallurgica, 14(5), 679-681.
65. Satyanarayana, D. V. V., Malakondaiah, G., & Sarma, D. S. (2002). Steady state creep behaviour of NiAl hardened austenitic steel. Materials Science and Engineering: A, 323(1-2), 119-128.
66. Yukawa, N., M. Mizutani, SAKA, H. (1969). Transmission Electron Microscopic Observation of Age-Hardened Structures of 17-7 PH Stainless Steel. Transactions of the Iron and Steel Institute of Japan, 9(3), 254-258.
67. Ping et al., (2005), Microstructural evolution in 13Cr–8Ni–2.5Mo–2Al martensitic precipitation-hardened stainless steel. Materials Science and Engineering: A, 394(1-2), 285-295.
68. Archie, F. (2018). Damage nucleation in DP-steels: experimental characterization of the contributing microstructural parameters (Doctoral dissertation, Dissertation, RWTH Aachen University, 2018.
69. Leap, M. J., Brown, E. L. (2002). Crystallography of duplex AlN–Nb (C, N) precipitates in 0.2% C steel. Scripta materialia, 47(12), 793-797.
70. Sourmail, T. (2001). Precipitation in creep resistant austenitic stainless steels. Materials science and technology, 17(1), 1-14.
71. Chen, Y. W., Tsai, Y. T., Tung, P. Y., Tsai, S. P., Chen, C. Y., Wang, S. H., Yang, J. R. (2018). Phase quantification in low carbon Nb-Mo bearing steel by electron backscatter diffraction technique coupled with kernel average misorientation. Materials Characterization, 139, 49-58.
72. Atreya, V., Bos, C., Santofimia, M. J. (2021). Understanding ferrite deformation caused by austenite to martensite transformation in dual phase steels. Scripta Materialia, 202, 114032.
73. Gladman, T. (1966). On the theory of the effect of precipitate particles on grain growth in metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 294(1438), 298-309.
74. Cheng, L. M., Hawbolt, E. B., Meadowcroft, T. R. (2000). Dissolution and coarsening of aluminum nitride precipitates in low carbon steel—distribution, size and morphology. Canadian metallurgical quarterly, 39(1), 73-86.
75. Wilson, F. G., Gladman, T. (1988). Aluminium nitride in steel. International Materials Reviews, 33(1), 221-286.
76. Massardier, V., Guétaz, V., Merlin, J., Soler, M. (2003). Kinetic and microstructural study of aluminium nitride precipitation in a low carbon aluminium-killed steel. Materials Science and Engineering: A, 355(1-2), 299-310.
77. Dutta, B., Palmiere, E. J., Sellars, C. M. (2001). Modelling the kinetics of strain induced precipitation in Nb microalloyed steels. Acta materialia, 49(5), 785-794.
78. Chen, Y. L., Wang, Y., Zhao, A. M. (2012). Precipitation of AlN and MnS in low carbon aluminium-killed steel. Journal of Iron and Steel Research International, 19(4), 51-56.
79. Nießen, F. (2018). Phase Transformations in Supermartensitic Stainless Steels.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95491-
dc.description.abstract本實驗採用華新麗華公司提供的 17-7PH 不鏽鋼作為研究材料,進行相辨認以及析出強化之研究。17-7PH 不鏽鋼是一種析出硬化型不鏽鋼,具有優異耐疲勞、良好耐腐蝕性與良好成形性等優點。17-7PH 除了添加不鏽鋼常見的鉻和鎳元素之外,也添加鋁與氮元素,目的是使 AlN 達成晶粒細化和 NiAl 能實踐析出強化效果。
實驗的第一部分會先將華新麗華所提供的 HR 原材進行 EBSD、KAM、IQ 分析,以區別此材料複雜的相組織;第二部分進行 RH950 標準熱處理,淬火後的 17-7PH 鋼可以透過進一步深冷處理增加麻田散鐵的相變驅動力,根據標準規範,深冷處理藉由將材料冷至 –75℃ 持溫 8 小時實現。由前人研究報導可知 17-7PH 鋼種深冷處理過程涉及恆溫麻田散鐵相變,故於本論文一大工作目的是展現 17-7 PH 鋼中恆溫麻田散鐵形成的實驗證據;第三部分則是分別進行 510°C 持溫不同時間(0 至 4.5 小時)的時效處理,期望 NiAl 成核於麻田散鐵基地,實踐析出強化,過程中以 OM、TEM、 STEM 儀器進行觀察,發現 NiAl 僅需要經由短時間時效處理就會廣泛地均質成核於麻田散鐵基地內,且在後續時效階段會逐漸在缺陷處粗化。本研究的最後則進行拉伸試驗與破斷面觀察,得知此材料的破裂機制屬於延性與脆性破裂共存之混合模式。
zh_TW
dc.description.abstractThis study used the 17Cr-7Ni PH stainless steel provided by Walsin Lihwa Company for phase identification analysis and precipitate hardening research. Alloy 17-7PH is precipitation-hardening stainless steel with excellent fatigue properties, corrosion resistance, and formability. Its composition contains Al and N elements for grain refinement and precipitate hardening by AlN and NiAl, respectively.
In the first part, the HR samples were analyzed by the EBSD, KAM, and IQ techniques to distinguish the mixed phase of this material. In the second part, the RH950 standard heat treatment was conducted. Complete martensite transformation into martensite in as-quenched 17-7 PH steel can be achieved by increasing the driving force for martensite formation with further undercooling at sub-zero Celsius temperature. According to standard heat treatment specifications, it is performed by cooling the material to –75℃, followed by isothermal holding at this temperature for 8 hours. This work shows the direct experimental evidence of isothermal martensite in 17-7 PH steel. In the third part, 510°C aging treatment for various times (0~4.5h) was conducted to achieve the effect of precipitate hardening, as well as observed and analyzed statistically by OM, TEM, and STEM, so we can conclude NiAl precipitates nucleated widely in the martensitic matrix by homogeneous nucleation, and these precipitates coarsened at defects after longer aging time. Finally, the tensile test was conducted to evaluate the mechanical properties of this material, and fractographs were taken by SEM. The SEM result shows the fracture surface may be the mixed mode fracture.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:09:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-11T16:09:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員會審訂書 #
謝辭 i
摘要 iii
Abstract iv
目次 v
圖次 viii
表次 xxiii
第一章 前言 1
第二章 文獻回顧 2
2.1 不鏽鋼及半沃斯田鐵系不鏽鋼 2
2.1.1 不鏽鋼分類與命名方式 2
2.1.2 半沃斯田鐵系不鏽鋼 4
2.1.3 半沃斯田鐵系不鏽鋼常見熱處理流程 8
2.2 麻田散鐵特徵 11
2.2.1 麻田散鐵相變 11
2.2.2 麻田散鐵晶體結構 12
2.2.3 麻田散鐵相變態理論 13
2.2.4 麻田散鐵之分類 19
2.2.5 板條狀麻田散鐵方位關係 22
2.2.6 板條狀麻田散鐵的形貌與階層結構 30
2.2.7 影響麻田散鐵起始溫度之因素 32
2.3 麻田散鐵相變動力學 38
2.3.1 麻田散鐵相變態形式 38
2.3.2 古典麻田散鐵相變化 38
2.3.3 恆溫(Isothermal)麻田散鐵相變 40
2.3.4 麻田散鐵相變動力學 46
2.3.5 自催化成核與麻田散鐵恆溫相變態 Pati-Cohen 模型 52
2.4 沃斯田鐵機械穩定性 58
2.5 17-7 PH不鏽鋼於熱處理後常見的析出物 59
2.5.1 氮化鋁析出行為 59
2.5.2 碳化鉻析出行為 62
2.5.3 鎳鋁析出行為 67
第三章 研究方法 70
3.1 實驗材料 70
3.2 熱處理步驟 72
3.3 實驗儀器與試片製備 74
3.4 分析軟體 81
第四章 結果與討論 83
4.1 Thermo − Calc 83
4.2 均質化與熱軋完材料(HR 原材)微結構觀察 89
4.2.1 光學金相 89
4.2.2 EBSD 相辨認與 KAM 分析 89
4.2.3 HR 原材 TEM 形貌簡介 98
4.2.4 HR 原材中 AlN 之 TEM 觀察 103
4.2.5 HR 原材中常見方位關係 106
4.3 深冷處理階段 EBSD 相比例與 KAM 分析 108
4.4 XRD 分析 120
4.5 熱示差掃描分析儀 DSC 分析 123
4.6 沃斯田鐵 125
4.6.1 沃斯田鐵的雙晶誘發塑性 125
4.6.2 沃斯田鐵的機械穩定性 135
4.6.3 沃斯田鐵相變誘發塑性 143
4.6.4 時效處理與殘留沃斯田鐵粗化 147
4.7 麻田散鐵相變化 161
4.7.1 雙晶組織 161
4.7.2 穿透雙晶 174
4.8 碳化鉻之 TEM 觀察 184
4.9 時效處理對於 17-7 PH 不鏽鋼之機械性質與微結構觀察 196
4.9.1 硬度測試 196
4.9.2 NiAl 析出行為與 TEM 觀察條件 199
4.9.3 NiAl 於 TEM 之觀察 215
4.9.4 STEM 模式下對於差排和 NiAl 之觀察 231
4.10 拉伸測試與其破斷面觀察 235
4.10.1 拉伸測試 235
4.10.2 拉伸試棒破斷面觀察 238
第五章 結論 240
第六章 未來工作 242
參考文獻 243
-
dc.language.isozh_TW-
dc.title17-7 析出硬化型半沃斯田鐵系不鏽鋼相變態特性及顯微組織研究zh_TW
dc.titleThe characteristics of phase transformation and microstructure in 17-7 precipitate-hardened semi-austenitic stainless steelen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鍾采甫;王樂民;蘇德徵;陳志遠zh_TW
dc.contributor.oralexamcommitteeTsai-Fu Chung;Le-Min Wang;Te-Cheng Su;Chih-Yuan Chenen
dc.subject.keyword17-7P不鏽鋼鋼,深冷處理,恆溫麻田散鐵,鎳鋁,析出強化,zh_TW
dc.subject.keyword17Cr-7Ni PH stainless steel,Subzero treatment,Isothermal martensite,NiAl precipitates,Precipitate hardening,en
dc.relation.page250-
dc.identifier.doi10.6342/NTU202403346-
dc.rights.note未授權-
dc.date.accepted2024-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
32.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved