Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95344
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor白奇峰zh_TW
dc.contributor.advisorChi-Feng Paien
dc.contributor.author徐沛汝zh_TW
dc.contributor.authorPei-Ju Hsuen
dc.date.accessioned2024-09-05T16:16:31Z-
dc.date.available2024-09-06-
dc.date.copyright2024-09-05-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation[1] Tang, D.D. and C.-F. Pai, MAGNETIC MEMORY TECHNOLOGY: Spin-transfer-torque Mram and Beyond. 2020: John Wiley & Sons.
[2] Chevalier, A. and M. Le Floc’H, Dynamic permeability in soft magnetic composite materials. Journal of Applied Physics, 2001. 90(7): p. 3462-3465.
[3] Zhang, R., et al., Current-induced magnetization switching in a CoTb amorphous single layer. Physical Review B, 2020. 101(21): p. 214418.
[4] González, J.A., J.P. Andrés, and R. López Antón, Applied Trends in Magnetic Rare Earth/Transition Metal Alloys and Multilayers. Sensors, 2021. 21(16): p. 5615.
[5] Zhao, Z., et al., Spin Hall switching of the magnetization in Ta/TbFeCo structures with bulk perpendicular anisotropy. Applied Physics Letters, 2015. 106(13).
[6] Liu, Y., et al., Effect of Mo capping layers thickness on the perpendicular magnetic anisotropy in MgO/CoFeB based top magnetic tunnel junction structure. Chinese Physics B, 2016. 25(11): p. 117805.
[7] An, G.-G., et al., Highly stable perpendicular magnetic anisotropies of CoFeB/MgO frames employing W buffer and capping layers. Acta Materialia, 2015. 87: p. 259-265.
[8] Carcia, P., Perpendicular magnetic anisotropy in Pd/Co and Pt/Co thin‐film layered structures. Journal of applied physics, 1988. 63(10): p. 5066-5073.
[9] An, Y., et al., Structural and magnetic properties of Pt in Co/Pt multilayers. Applied surface science, 2011. 257(17): p. 7427-7431.
[10] Chowdhury, P., et al., Effect of coherent to incoherent structural transition on magnetic anisotropy in Co/Pt multilayers. Journal of Applied Physics, 2012. 112(2).
[11] Kokado, S. and M. Tsunoda, Anisotropic magnetoresistance effect: general expression of AMR ratio and intuitive explanation for sign of AMR ratio. Advanced Materials Research, 2013. 750: p. 978-982.
[12] Yang, S. and J. Zhang, Current progress of magnetoresistance sensors. Chemosensors, 2021. 9(8): p. 211.
[13] Velev, J., et al., Ballistic anisotropic magnetoresistance. Physical review letters, 2005. 94(12): p. 127203.
[14] Fernández-Roldán, J.A., Micromagnetism of cylindrical nanowires with compositional and geometric modulations. 2019.
[15] Wang, H., et al., Scaling of spin Hall angle in 3d, 4d, and 5d metals from Y 3 Fe 5 O 12/metal spin pumping. Physical review letters, 2014. 112(19): p. 197201.
[16] Emori, S., et al., Current-driven dynamics of chiral ferromagnetic domain walls. Nature materials, 2013. 12(7): p. 611-616.
[17] Chen, F., et al., Ferromagnetic resonance induced large microwave magnetodielectric effect in cerium doped Y3Fe5O12 ferrites. Scientific reports, 2016. 6(1): p. 28206.
[18] Coey, J.M., Magnetism and magnetic materials. 2010: Cambridge university press.
[19] Senoy, T. and M. Anantharaman, Fabrication of thin films and nano columnar structures of Fe-Ni amorphous alloys and modification of its surface properties by thermal annealing and swift heavy ion irradiation for tailoring the magnetic properties. 2009, Cochin University of Science & Technology.
[20] Selvaraj, S.L., et al. On-chip thin film inductor for high frequency DC-DC power conversion applications. in 2020 IEEE Applied Power Electronics Conference and Exposition (APEC). 2020. IEEE.
[21] Adly, A., Controlling linearity and permeability of iron core inductors using field orientation techniques. IEEE transactions on magnetics, 2001. 37(4): p. 2891-2893.
[22] Ning, N., et al., A tunable magnetic inductor. IEEE transactions on magnetics, 2006. 42(5): p. 1585-1590.
[23] Swihart, M.A., Inductor cores–material and shape choices. Magnetics®-www. mag-inc. com, 2004.
[24] Nitta, H., et al., Fabrication and characterization CoZrO films deposited by facing targets reactive sputtering for micro magnetic inductors. IEEE Magnetics Letters, 2023.
[25] Wei, H., et al., Techniques to enhance magnetic permeability in microwave absorbing materials. Applied Materials Today, 2020. 19: p. 100596.
[26] Hao, W., et al., Advances and Perspectives in Magnetic-Integrated Inductors for RF ICs. IEEE Transactions on Materials for Electron Devices, 2024.
[27] El-Ghazaly, A., R. White, and S. Wang. Thin-Film Magnetic Inductors for Gigahertz Integrated Applications. in 2018 IEEE International Magnetics Conference (INTERMAG). 2018. IEEE.
[28] Acher, O. and A. Adenot, Bounds on the dynamic properties of magnetic materials. Physical review B, 2000. 62(17): p. 11324.
[29] Yamada, S. and E. Otsuki, Analysis of eddy current loss in Mn–Zn ferrites for power supplies. Journal of applied physics, 1997. 81(8): p. 4791-4793.
[30] Cheng, Z., et al. Hysteresis loss analysis based on W/sub h/-B/sub m/function. in The Fourth International Conference on Computation in Electromagnetics, 2002. CEM 2002 (Ref. No. 2002/063). 2002. IET.
[31] Bermúdez, A., D. Gómez, and P. Salgado, Eddy-current losses in laminated cores and the computation of an equivalent conductivity. IEEE Transactions on magnetics, 2008. 44(12): p. 4730-4738.
[32] Lamprecht, E., M. Hömme, and T. Albrecht. Investigations of eddy current losses in laminated cores due to the impact of various stacking processes. in 2012 2nd International Electric Drives Production Conference (EDPC). 2012. IEEE.
[33] Zhao, G., C. Wu, and M. Yan, Fe-Based Soft Magnetic Composites With High ${B} _ {s} $ and Low Core Loss by Acidic Bluing Coating. IEEE Transactions on Magnetics, 2015. 51(11): p. 1-4.
[34] Luo, F., et al., Ultra-low inter-particle eddy current loss of Fe3Si/Al2O3 soft magnetic composites evolved from FeSiAl/Fe3O4 core-shell particles. Journal of Magnetism and Magnetic Materials, 2019. 484: p. 218-224.
[35] Moutassem, W. and G.J. Anders, Calculation of the eddy current and hysteresis losses in sheathed cables inside a steel pipe. IEEE Transactions on Power Delivery, 2010. 25(4): p. 2054-2063.
[36] Tan, F.D., J.L. Vollin, and S.M. Cuk, A practical approach for magnetic core-loss characterization. IEEE Transactions on Power Electronics, 1995. 10(2): p. 124-130.
[37] Gorecki, K. and K. Detka, Improved method for measuring power losses in the inductor core. IEEE Transactions on Instrumentation and Measurement, 2020. 70: p. 1-10.
[38] El-Ghazaly, A., R.M. White, and S.X. Wang, GHz-Band Integrated Magnetic Inductors. arXiv preprint arXiv:1702.03009, 2017.
[39] Yang, J.-T., et al. A CMOS radio frequency receiver for bluetooth applications. in 2009 1st Asia Symposium on Quality Electronic Design. 2009. IEEE.
[40] Lee, S., et al., Dual-band circularly polarized annular slot antenna with a lumped inductor for GPS application. IEEE Transactions on Antennas and Propagation, 2020. 68(12): p. 8197-8202.
[41] Zhao, X., et al., Voltage control of ferromagnetic resonance and spin waves. Chinese Physics B, 2018. 27(9): p. 097505.
[42] Perrin, G., J. Peuzin, and O. Acher, Control of the resonance frequency of soft ferromagnetic amorphous thin films by strip patterning. Journal of applied physics, 1997. 81(8): p. 5166-5168.
[43] Kim, K.H., M. Yamaguchi, and J. Kim, Ferromagnetic resonance behaviors of integrated CoPdAIO magnetic film on coplanar waveguide. Journal of the Korean Physical Society, 2007. 51(6): p. 2026-2030.
[44] Das, R., et al., Enhanced soft magnetic properties in N-doped amorphous FeCo thin film. IEEE Transactions on Magnetics, 2023.
[45] Li, C., et al., Tunable zero-field ferromagnetic resonance frequency from S to X band in oblique deposited CoFeB thin films. Scientific reports, 2015. 5(1): p. 17023.
[46] Chai, G., N.N. Phuoc, and C.K. Ong, Angular tunable zero-field ferromagnetic resonance frequency in oblique sputtered CoFeBSm thin films. Applied Physics Express, 2014. 7(6): p. 063001.
[47] Phuoc, N.N. and C. Ong, FeCoHfN thin films fabricated by co-sputtering with high resonance frequency. Journal of alloys and compounds, 2011. 509(9): p. 4010-4013.
[48] Li, T., et al., Microstructure and magnetic properties of FeCoHfN thin films deposited by DC reactive sputtering. Journal of Magnetism and Magnetic Materials, 2022. 547: p. 168777.
[49] Klemmer, T., et al., Ultrahigh frequency permeability of sputtered Fe–Co–B thin films. Journal of Applied Physics, 2000. 87(2): p. 830-833.
[50] Das, R., et al., Enhanced soft magnetic properties in N-doped amorphous FeCo thin film. IEEE Transactions on Magnetics, 2023. 59(11): p. 1-5.
[51] Jiang, R.-F., et al., Exchange-coupled IrMn/CoFe mulitlayers for RF-integrated inductors. IEEE transactions on magnetics, 2007. 43(10): p. 3930-3932.
[52] Chai, G., et al., Adjust the resonance frequency of (Co90Nb10/Ta) n multilayers from 1.4 to 6.5 GHz by controlling the thickness of Ta interlayers. Applied Physics Letters, 2010. 96(1).
[53] He, C., et al., Spin-Torque Ferromagnetic Resonance in W/Co− Fe− B/W/Co− Fe− B/Mg O Stacks. Physical Review Applied, 2018. 10(3): p. 034067.
[54] He, C., et al., Spin-torque ferromagnetic resonance measurements utilizing spin Hall magnetoresistance in W/Co40Fe40B20/MgO structures. Applied Physics Letters, 2016. 109(20).
[55] Satake, M., et al., Correlation between dry etching resistance of Ta masks and the oxidation states of the surface oxide layers. Journal of Vacuum Science & Technology B, 2015. 33(5).
[56] Nagaosa, N., et al., Anomalous hall effect. Reviews of modern physics, 2010. 82(2): p. 1539-1592.
[57] Venkateshvaran, D., et al., Anomalous Hall effect in magnetite: Universal scaling relation between Hall and longitudinal conductivity in low-conductivity ferromagnets. Physical Review B—Condensed Matter and Materials Physics, 2008. 78(9): p. 092405.
[58] Wang, J., et al., Anomalous Hall effect and magnetoresistance of (FexSn1− x) 1− y (SiO2) y films. Journal of Physics D: Applied Physics, 2007. 40(8): p. 2425.
[59] Hirsch, J., Spin hall effect. Physical review letters, 1999. 83(9): p. 1834.
[60] Harder, M., et al., Analysis of the line shape of electrically detected ferromagnetic resonance. Physical Review B, 2011. 84(5): p. 054423.
[61] Zhang, W., Charge to Spin Current Efficiency Studied by Spin Torque Ferromagnetic Resonance in Various Metal Heterostructures. 2015: Stanford University.
[62] Wang, Y., R. Ramaswamy, and H. Yang, FMR-related phenomena in spintronic devices. Journal of Physics D: Applied Physics, 2018. 51(27): p. 273002.
[63] Liu, L., et al., Spin-torque ferromagnetic resonance induced by the spin Hall effect. Physical review letters, 2011. 106(3): p. 036601.
[64] Bangar, H., et al., Optimization of growth of large-area SnS thin films and heterostructures for spin pumping and spin-orbit torque. Physical Review Materials, 2023. 7(9): p. 094406.
[65] Shu, X., et al., Role of interfacial orbital hybridization in spin-orbit-torque generation in Pt-based heterostructures. Physical Review Applied, 2020. 14(5): p. 054056.
[66] He, C., et al., Spin-Torque Ferromagnetic Resonance in W/Co-Fe-B/W/Co-Fe-B/Mg O Stacks. Physical Review Applied, 2018. 10(3): p. 034067.
[67] Mizukami, S.M.S., Y.A.Y. Ando, and T.M.T. Miyazaki, The study on ferromagnetic resonance linewidth for NM/80NiFe/NM (NM= Cu, Ta, Pd and Pt) films. Japanese journal of applied physics, 2001. 40(2R): p. 580.
[68] Tokaç, M., et al., Interfacial contribution to thickness dependent in-plane anisotropic magnetoresistance. AIP Advances, 2015. 5(12).
[69] Kobs, A., et al., Anisotropic interface magnetoresistance in Pt/Co/Pt sandwiches. Physical review letters, 2011. 106(21): p. 217207.
[70] Qiu, J., et al., Effect of roughness on perpendicular magnetic anisotropy in (Co90Fe10/Pt) n superlattices. Aip Advances, 2016. 6(5).
[71] Lee, T., et al., Strength of perpendicular magnetic anisotropy at bottom and top interfaces in [Pt/Co/Pt] trilayers. IEEE Magnetics Letters, 2014. 5: p. 1-4.
[72] Won, Y.C. and S.H. Lim, Interfacial properties of [Pt/Co/Pt] trilayers probed through magnetometry. Scientific reports, 2021. 11(1): p. 10779.
[73] Wang, X., et al., Effect of the repeat number and Co layer thickness on the magnetization reversal process in [Pt/Co (x)] N multilayers. Journal of Physics D: Applied Physics, 2020. 53(21): p. 215001.
[74] Liu, Y., et al., Strong perpendicular magnetic anisotropy in [Co/Pt] n ultrathin superlattices. Applied Physics Express, 2016. 10(1): p. 013005.
[75] Wang, K., et al., Optimization of Co/Pt multilayers for applications of current-driven domain wall propagation. Journal of applied physics, 2011. 110(8).
[76] Zhao, Y.-P., et al., Effect of surface roughness on magnetic domain wall thickness, domain size, and coercivity. Journal of Applied Physics, 2001. 89(2): p. 1325-1330.
[77] Qu, D., et al., Self-consistent determination of spin Hall angles in selected 5 d metals by thermal spin injection. Physical Review B, 2014. 89(14): p. 140407.
[78] Gabor, M.S., C. Tiusan, and T. Petrisor, The influence of the capping layer on the perpendicular magnetic anisotropy in permalloy thin films. IEEE Transactions on Magnetics, 2014. 50(11): p. 1-4.
[79] Hashimoto, S., Y. Ochiai, and K. Aso, Perpendicular magnetic anisotropy and magnetostriction of sputtered Co/Pd and Co/Pt multilayered films. Journal of applied physics, 1989. 66(10): p. 4909-4916.
[80] Bandiera, S., et al., Asymmetric interfacial perpendicular magnetic anisotropy in Pt/Co/Pt trilayers. IEEE Magnetics Letters, 2011. 2: p. 3000504-3000504.
[81] Guo, V.W., et al., A survey of anisotropy measurement techniques and study of thickness effect on interfacial and volume anisotropies in Co∕ Pt multilayer media. Journal of Applied Physics, 2006. 99(8).
[82] Kisielewski, M., et al., Magnetic anisotropy and magnetization reversal processes in Pt/Co/Pt films. Journal of magnetism and magnetic materials, 2003. 260(1-2): p. 231-243.
[83] Zhang, Z., P. Wigen, and S. Parkin, Pt layer thickness dependence of magnetic properties in Co/Pt multilayers. Journal of applied physics, 1991. 69(8): p. 5649-5651.
[84] Kim, G.W., et al., Role of the Heavy Metal's Crystal Phase in Oscillations of Perpendicular Magnetic Anisotropy and the Interfacial Dzyaloshinskii-Moriya Interaction in W/Co-Fe-B/MgO Films. Physical Review Applied, 2018. 9(6): p. 064005.
[85] Liu, T., J. Cai, and L. Sun, Large enhanced perpendicular magnetic anisotropy in CoFeB/MgO system with the typical Ta buffer replaced by an Hf layer. Aip Advances, 2012. 2(3).
[86] Ikeda, K., et al., Thin-film inductor for gigahertz band with CoFeSiO-SiO/sub 2/multilayer granular films and its application for power amplifier module. IEEE transactions on magnetics, 2003. 39(5): p. 3057-3061.
[87] Lordan, D., et al., Origin of perpendicular magnetic anisotropy in amorphous thin films. Scientific Reports, 2021. 11(1): p. 3734.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95344-
dc.description.abstract隨著無線通訊的發展,電子產品追求超高頻、高速、輕薄化以及低功耗等性能。電子裝置的操作頻率也因而不斷提高。應用在這些裝置中的集成電感在高頻的需求也因此逐漸增長。相較於非磁性集成電感,磁性集成電感可以提供較高的感值,但由於鐵芯材料的鐵損和鐵磁共振頻率的限制,在高頻應用中仍有許多挑戰。鐵磁共振頻率是決定電感工作頻率的一個重要參數,當頻率達到鐵磁共振頻率時,材料對交變磁場的能量吸收達到最大,同時電感的工作效能也因而大幅下降。因此,研發具有高鐵磁共振頻率的鐵芯材料是重要的。

在這篇論文中,我將在Pt/Co/Pt和W/CoFeB/MgO這兩種具有垂直磁異相性的膜層系統中,藉由設計膜層結構和鐵磁層厚度來調控垂直磁異相性強度,進而去調節材料的鐵磁共振頻率。我的研究分成兩部分,在第一部分,我會先在Pt/Co/Pt和W/CoFeB/MgO單層鐵磁層系統中,對鐵磁共振頻率和矯頑磁場作對鐵磁層厚度的分析,以找出最佳的厚度參數。在第二部分,我們將以最佳鐵磁層厚度參數做成Pt/Co/Pt和W/CoFeB/MgO多層鐵磁層系統,並對重複層數或結構做鐵磁共振頻率及矯頑磁場的調整。研究結果顯示,具有較強垂直磁異相性的樣品,可以使零場鐵磁共振頻率從零調至更高的頻段。總體來看,W/CoFeB/MgO多層鐵磁層系統相較Pt/Co/Pt多層鐵磁層系統有較大的鐵磁共振頻率以及較低的矯頑磁場,隨著重複層數增加仍可以維持在>10GHz的頻段,顯示了其作為高頻集成電感鐵芯材料的潛力。然而,相較於其他研究,W/CoFeB/MgO多層膜系統的矯頑磁場仍是大上許多,且為了能在實際應用中有明顯的感值增加,在更高層數的表現仍需要被研究。因此將其實際應用在高頻磁芯材料上還有許多的改善空間。
zh_TW
dc.description.abstractWith the advancement of wireless communication, electronic products are striving for ultra-high frequency, high speed, lightweight, and low power consumption, leading to the operating frequency of electronic devices continuing to increase. In wireless communication applications, the integrated inductor is an indispensable component in the circuits. Consequently, there is a growing demand for integrated inductors designed for exceptional high-frequency performance. In contrast to non-magnetic integrated inductors, magnetic integrated inductors possess a relatively high inductance value. However, due to the core loss and the limit of the resonance frequency of the magnetic core materials, there are also some challenges in high-frequency applications. The ferromagnetic resonance frequency is a crucial parameter that determines the operating frequency of the inductor. When the frequency reaches the ferromagnetic resonance frequency, the magnetic material absorbs the energy from the alternating magnetic field, leading to a significant decrease in inductance. Hence, it is vital to develop a core material with a high ferromagnetic resonance frequency.
In this paper, I will focus on four systems with perpendicular magnetic anisotropy, which are Pt/Co/Pt system, Pt/Co/Pt multilayer system, W/CoFeB/MgO system, and W/CoFeB/MgO multilayer system. The ferromagnetic resonance frequency and coercivity field will be investigated by modifying the PMA in these systems. The study is divided into two parts. In the first part, I will analyze the ferromagnetic resonance frequency and coercivity depending on the ferromagnetic layer thickness in Pt/Co/Pt and W/CoFeB/MgO systems to determine the optimal ferromagnetic layer thickness. In the second part, the Pt/Co/Pt multilayer system and the W/CoFeB/MgO multilayer system will be investigated with several repeats of the optimal ferromagnetic thickness. The results indicate the zero-field ferromagnetic resonance frequency (f_0) can be tilted away from 0 if a sample exhibits a sizable PMA strength. Overall, the samples in W/CoFeB/MgO multilayer system possess a higher f_0 (>14GHz) and lower coercivity field than those in the Pt/Co/Pt multilayer system. This high level of f_0 demonstrates their potential for high-frequency inductor core materials. However, the coercivity in W/CoFeB/MgO system is still considerable compared to other studies. To substantially enhance inductance in practical applications, further study on W/CoFeB/MgO multilayer systems with higher repetition of the ferromagnetic layer is needed. Therefore, it still needs lots of work to reach its full potential for the high-frequency magnetic core material.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-05T16:16:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-05T16:16:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Contents vi
List of Figures viii
List of Tables xii
Chapter 1 Introduction 1
1.1 Magnetic Anisotropy 1
1.1.1 Shape anisotropy 1
1.1.2 Perpendicular magnetic anisotropy 2
1.2 Anisotropic Magnetoresistance 3
1.3 Magnetization dynamics 5
1.3.1 Landau-Lifshitz-Gilbert Equation 5
1.3.2 Spin-Orbit torque(SOT) 6
1.2.3 Ferromagnetic Resonance 7
1.4 Introduction of the inductor magnetic core 9
1.4.1 Magnetic core design consideration 9
1.4.2 The core loss of the magnetic inductor 11
1.4.2.1 Eddy current loss 11
1.4.2.2 Hysteresis loss 11
1.5 Motivation of this work 13
Chapter 2 Experiment method 15
2.1 Fabrication technique 15
2.1.1 Magnetron Sputtering 15
2.1.2 Ion-beam etching 16
2.1.3 Sample preparation 17
2.2 Measurement method 20
2.2.1 Anomalous Hall Effect (AHE) measurement 20
2.2.2 Spin-Torque Ferromagnetic Resonance (ST-FMR) measurement 23
Chapter 3 Result and Discussion 28
3.1 Pt/Co/Pt system 28
3.2 Pt/Co/Pt multilayer system 35
3.3 W/CoFeB/MgO system 43
3.4 W/CoFeB/MgO multilayers system 48
3.5 VSM measurement 52
Chapter 4 Conclusion 57
References 59
-
dc.language.isoen-
dc.subject鐵磁共振頻率zh_TW
dc.subject高頻電感鐵芯材料zh_TW
dc.subject自旋傳輸鐵磁共振zh_TW
dc.subject鐵磁多層膜zh_TW
dc.subject垂直磁異相性zh_TW
dc.subjectPerpendicular magnetic anisotropyen
dc.subjectMagnetic multilayersen
dc.subjectSpin-torque ferromagnetic resonanceen
dc.subjectFerromagnetic resonanceen
dc.subjectHigh-frequency inductor core materialsen
dc.title藉由垂直磁異相性調控零場鐵磁共振頻率zh_TW
dc.titleTuning the zero-field ferromagnetic resonance frequency by modifying the perpendicular magnetic anisotropyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee宋明遠;胡宸瑜zh_TW
dc.contributor.oralexamcommitteeMing-Yuan Song;Chen-Yu Huen
dc.subject.keyword高頻電感鐵芯材料,鐵磁共振頻率,垂直磁異相性,鐵磁多層膜,自旋傳輸鐵磁共振,zh_TW
dc.subject.keywordHigh-frequency inductor core materials,Ferromagnetic resonance,Perpendicular magnetic anisotropy,Magnetic multilayers,Spin-torque ferromagnetic resonance,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202403229-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf7.66 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved