請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9502完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉安義 | |
| dc.contributor.author | Pei-Hsuan Wu | en |
| dc.contributor.author | 吳佩璇 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:25:41Z | - |
| dc.date.available | 2016-08-16 | |
| dc.date.available | 2021-05-20T20:25:41Z | - |
| dc.date.copyright | 2011-08-16 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-11 | |
| dc.identifier.citation | 于達元。濃度對介質研磨纖維素流變性質的影響。國立台灣大學食品科技研究所
碩士論文:台北市,2008。 杜昀睿。顆粒大小對纖維素功能性之影響。國立台灣大學食品科技研究所碩士論 文:台北市,2009。 林煒傑。介質研磨對富含膳食纖維食材功能性之影響。國立台灣大學食品科技研 究所碩士論文:台北市,2008。 陳時欣。蔗糖酯對奈米/次微米纖維素懸浮液穩定性之研究。國立台灣大學食品 科技研究所碩士論文:台北市,2006。 黃仁毅。纖維素於介質研磨下之破碎模式。國立台灣大學食品科技研究所碩士論文:台 北市,2007。 葉安義。奈米科技與食品(一)。科學發展。行政院國家科學委員會:台北市,2004; 384,44-49。 葉安義。奈米科技與食品(二)。科學發展。行政院國家科學委員會:台北市,2007; 418,42-47。 趙明煜。奈米纖維製備方法之研究。國立台灣大學食品科技研究所碩士論文:台 北市,2004。 劉盈吟。奈米/次微米化纖維素之特性及安全性。國立台灣大學食品科技研究所 碩士論文:台北市,2007。 駱威達。卵磷脂與麥芽糊精對奈米/次微米纖維素懸浮液穩定性及其凍乾粉末復 水性之研究。國立台灣大學食品科技研究所碩士論文:台北市,2009。 蕭寧馨。營養教育資訊網。董氏基金會-食品營養組:台北市,2004。 http://www.jtf.org.tw/educate/fitness/Fitness_005_06.asp, accessed on June 16, 2010. Almin, K. E.; Eriksson, K-E. Influence of Carboxymethyl Cellulose Properties on the Determination of Cellulose Activity in Absolute Terms. Arch. Biochem. Biophys. 1968, 124, 129-134. Bergman, C. J.; Gualberto, D. G., Weber, C. W. Mineral binding capacity of dephytinized insoluble fiber from extruded wheat, oat and rice brans. Plant Food Hum. Nutr. 1997, 51, 295-310. Brown, R. M.; Saxena, I. M.;Kudlicka, K. Cellulose biosynthesis in higher plants. Trends Plant Sci. 1996, 1, 149-156. Churella, H. R.;Vivian, V. M. Effect of phytic acid level in soy protein based infant formulas on mineral availability in the rat. J. Agr. Food Chem. 1989, 37, 1352-1357. Claye, S. S.; Idouraine, A.;Weber, C. W. In-vitro mineral binding capacity of five fiber sources and their insoluble components for magnesium and calcium. Food Chem. 1998, 61, 333-338. Das, H.; Singh, S. K. Useful byproducts from cellulosic wastes of agriculture and food industry-A critical appraisal. Crit. Rev. Food Sci. Nutri. 2004, 44, 77-89. Debon, S. J.; Testar, R. F. In vitro binding of calcium, iron and zinc by non-starch polysaccharides. Food Chem. 2001, 73, 401-410. Delmer, D. P. Cellulose biosynthesis: Exciting times for a difficult field of study. Annu. Rev. Plant Phys. 1999, 50, 245-276. Dikeman, C. L.; Fahey, G. C. Viscosity as related to dietary fiber: a review. Crit. Rev. Food Sci. Nutr. 2006, 46, 649-663. Eastwood, M. A. The physiological effects of dietary fibre: An update. Ann. Rev. Nutr. 1992, 12, 19-35. Eremeeva, E. T.; Bykova, O. T. SEC of mono-carboxymethyl cellulose (CMC) in a wide range of pH: Mark-Houwink constants. Carbohyd. Polym. 1998, 36, 319-326. Festucci-Buselli, R. A.; Otoni, W. C.; Joshi, C. P. Structure, organization, and functions of cellulose synthase complexes in higher plants. Braz. J. Plant Physiol. 2007, 19(1), 1-13. Fleury, N.; Lahaye, M. Chemical and physiochemical characterisation of fibres from laminaria digitata (Kombu breton): a physiological approach. J. Sci. Food Agri. 1991, 55, 389-400. Freudenberg, U.; Zschoche, S.; Simon, F.; Janke, A.; Schmidt, K.; Behrens, S. H.; Auweter, H.; Werner, C. Covalent Immobilizationf of Cellulose Layers onto Maleic Anhydride Copolymer Thin Films. Biomacromolecules 2005, 6, 1628-1634. Hirrien, M.; Desbrieres, J.;Rinaudo, M. Physical properties of methylcelluloses in relation with the conditions for cellulose modification. Carbohyd. Polym. 1996, 31, 243-252. Horner, S.; Puls, J.; Saake, B.; Klohr, E-A.; Thielking, H. Enzyme-aided characterisation of carboxymethylcellulose. Carbohydr. Polym. 1999, 40, 1-7. Howsmon, J. A.; Sisson, W. A. High polymers, structure and properties of cellulose fibers: B. Submicroscopic structure. In Cellulose and Cellulose Derivatives, Part I; Ott. E,. Spurlin, H. M., Eds.; Interscience: NY, 1963; V, 231-346. Idouraine, A.; Khan, M. J.; Kohlhepp, E. A.;Weber, C. W. In vitro mineral binding capacity of three fiber sources for Ca, Mg, Cu and Zn by two different methods. Int. J. Food Sci. Nutr. 1996, 47, 285-293. Johnston, H. K.; Sourirajan, S. Viscosity-temperature relationships for cellulose acetate-acetate solutions. J. Appl. Polym. Sci. 1973, 17, 3717-3726. Kato, Y.; Habu, N.; Yamaguchi, J.; Kobayashi, Y.; Shibata, I.; Isogai, A.;Samejima, M. Biodegradation of beta-1,4-linked polyglucuronic acid (cellouronic acid). Cellulose. 2002, 9, 75-81. Kennedy, J. F.; Rivera, Z. S.; Lloyd, L. L.; Warner, F. P.;Dasilva, M. P. C. Determination of the Molecular-Weight Distribution of Hydroxyethylcellulose by Gel-Filtration Chromatography. Carbohyd. Polym. 1995, 26, 31-34. Klemm, D.; Heublein, B.; Fink, H. P.;Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Edit. 2005, 44, 3358-3393. Knill, C. J.;Kennedy, J. F. Degradation of cellulose under alkaline conditions. Carbohyd. Polym. 2003, 51, 281-300. Kraemer, E. O.; Lansing, W. D. The molecular weights of cellulose and cellulose derivatives. J. Phys. Chem. 1984, 39, 153-168. Ling, W. H. Diet and colonic microflora interaction in colorectal cancer. Nutr. Res. 1995, 15, 439-454. Lunn, J.; Buttriss, J. L. British Nutrition Foundation. Carbohydrates and dietary fibre. Nutr. Bull. 2007, 32, 21-64. Malkki, Y.; Autio, K.; Hanninen,O.; Myllymaki, O.; Pelkonen, K.; Suortti, T.; Torronen, R. Oat bran concentrates: physical property of β-glucan and hypercholesterolemic effects in rats. Cereal Chem. 1992, 69, 647-653. Marx-Figni, M.; Victor-Figni, R. Studies on the mechanical degradation of cellulose. Macromol. Mater. Eng. 1995, 224, 179-189. McConnell, A. A.; Eastwood, M. A.; Mitchell, W. D. Physical characteristics of vegetable foodstuffs that could influence bowel function. J. Sci. Food Agric. 1974, 24, 1457-1464. Melander, M.; Vuorinen, T. Determination of the degree of polymerisation of carboxymethyl cellulose by size exclusion chromatography. Carbohydr. Polym. 2001, 46, 227-233. Merisko-Liversidge, E.; Liversidge, G. G.; Cooper, E. R. Nanosizing: aformulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci. 2003, 18, 113-120. Moraru, C. I.; Panchapakesan, C. P.; Huang, Q.; Takhistove, P.; Liu, S.; Kokoni, J. L.; Nanotechnology: A new frontier in food science. Food Technol. 2003, 57, 24-29. Moreno-Villoslada, I.; Rivas, B. L. Retention of metal ions in ultrafiltration of mixtures of ivalent metal ions and water-soluble polymers at constant ionic strength based on Freundlich and Langmuir isotherms. J. Membrane Sci. 2003, 215, 195-202. Mosur, P. M.; Chernoberezhskii, Y. M.; Lorentsson, A. V. Electrosurface Properties of Microcrystalline Cellulose Dispersions in Aqueous Solutions of Aluminum Chloride, Nitrate, and Sulfate. Colloid J. 2007, 70, 504-507. Panaullah, G.; Alam, M. T.; Hossain, M. B.; Loeppert, R. H.; Lauren, J. G.; Meisner, C. A.; Ahmed, Z. U.; Duxbury, J. M. Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil 2009, 317, 31-39. Pang, S.;Rudin, A. Use of Continuous Viscometer and Light-Scattering Detectors in Characterization of Polyolefins - Comparisons of Data from Individual and Combined Detectors. J. Appl. Polym. Sci. 1992, 46, 763-773. Renard, C. M. G. C.; Crepeau, M. J.; Thibault, J. F. Influence of ionic strength, pH and dielectric constant on hydration properties of native and modified fibres from sugar-beet and wheat bran. Industrial Crops and Products, 1994, 3, 75-84. Rinaudo, M.; Danhelka, J.; Milas, M. A new approach to characterising carboxymethyl celluloses by size exclusion chromatography. Carbohyd. Polym. 1993, 21, 1-5. Roberfroid, M. Dietary fiber, insulin, and oligofructose: A review comparing their physiological effects. Crit. Rev. Food Sci. Nutr. 1993, 33, 103-148. Robertson, J. A.; Eastwood, M. A. An examination of factors which may affect the water holding capacity of dietary fiber. Br. J. Nutr. 1981, 45, 83-88. Rose, D. J.; Meo, M. T.; Kehavarzian, A.; Hamaker, B. R. Influence of dietary fiber on inflammatory bowel disease and colon cancer. Importance of fermentation pattern. Nutr. Rev. 2007, 65(2), 51-62. Rosowski, J. R.; Walne, P. L.; West, L. K. Comparative effects of critical point and air-drying on the morphology of the rigid mucilagnious coating (lorica) of Trachelomonas (Euglenophyceae). Micron 1975, 5, 321-339. Rough, S. L.; Wilson, D. I.; Bayly, A. E.; York, D. W.; Mechanisms in high-viscosity immersion-granulation. Chem. Eng. Sci. 2005, 60(14), 3777-3793. Rowland, S. P.; Howley, P. S. Hydrogen bonding on accessible surfaces of cellulose from various sources and relationship to order within crystalline regions. J. Polym. Sci. Part A: Polym. Chem. 1988, 26, 1769-1778. Saake, B.; Horner, S.; Kruse, Th.; Puls, J.; Liebert, T.; Heinze, Th. Detailed investigation on the molecular structure of carboxymethyl cellulose with unusual substitution pattern by means of an enzyme-supported analysis. Macromol. Chem. Phys. 2000, 201, 1996-2002. Saleh, K.; Vialatte, L.; Guigon, P. Wet granulation in a batch high shear mixer. Chem. Eng. Sci. 2005, 60(14), 3765-3775. Sanguansri, P.;Augustin, M. A. Nanoscale materials development - a food industry perspective. Trends Food Sci. Tech. 2006, 17, 547-556. Sangnark, A.; Noomhorm, A. Effect of particle sizes on in-vitro calcium and magnesium binding capacity of prepared dietary fibers. Food Res. Int. 2003, 36, 91-96. Schneeman, B. O. Fiber, Inulin and Oligofructose: Similarities and Differences. J. Nutr. 1999, 129, 1424-1427. Slavin, J. Impact of the proposed definition of dietary fiber on nutrient databases. J. Food Compos Anal. 2003, 16, 287-291. Stanforth, D. H.; Baird, I. M.; Fowler, J.; Lister, R. E. The effect of dietary fibre on upper and lower gastrointestinal transit times and fecal bulking. J. Int. Med. Res. 1991, 19, 228-233. Steffe, J. F. Rheological methods in food process engineering. 2nd ed.; Freeman Press: East Lansing, MI, 1996; p xiii, 418. Sun, R. C.; Fang, J. M.; Tomkinson, J.; Geng, Z. C.;Liu, J. C. Fractional isolation, physico-chemical characterization and homogeneous esterification of hemicelluloses from fast-growing poplar wood. Carbohyd. Polym. 2001, 44, 29-39. Snyder, L.; Kirkland, J. J.Introduction of Modern Liquid Chromatography, 2nd edition.; John Wiley & Sons, Inc., 1979. Thibault, J. F.; Lahaye, M.; Guillon, F. Physicochemical properties of food plant cell walls. In Dietary Fibre-A Component of Food: Nutritional Function In Health and Disease; Schweizer, T. F., Edwards, C. A., Eds.; Spring-verlag: London, 1992; 21-39. Trowell, H. C.; Southgate, D. A. T.; Wolever, T. M. S.; Leeds, A. R.; Gassull, M. A.; Jenkins, D. J. A. Dietary fiber redefined. Lancet 1976, 1, 967. Varinot, C.; Hiltgun, S.; Pons, M. N.; Dodds, J. Identification of the fragmentation mechanisms in wet-phase fine grinding in a stirred bead mill. Chem. Eng. Sci. 1997, 52, 3605-3612. Wang, Y.; Hollingsworth, R. I.; Kasper, D. L. Ozonolytic depolymerization of polysaccharides in aqueous solution. Carbohydr. Res. 1999, 319, 141-147. Wu, S. C.; Wu, S. H.; Chau, C. F. Improvement of the Hypocholesterolemic Activities of Two common Fruit Fibers by Micronization Processing. J. Agr. Food Chem. 2009, 57, 5610-5614 Yang, W. L.; Hsiau, S. S. Wet granular materials in sheared flows. Chem. Eng. Sci. 2005, 60(15), 4265-4274. Zhang, H.; Wu, J.; Zhang, J.; He, J. 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid: A New and Powerful Nonderivatizing Solvent for Cellulose. Macromolecules 2005, 38, 8272-8277. Zhang, Y. H. P.;Lynd, L. R. Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation. Anal. Biochem. 2003, 322, 225-232. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9502 | - |
| dc.description.abstract | 纖維素是非水溶性膳食纖維的一種,是在自然界中分布最廣、含量最多的多醣,廣泛存在於食品中,且已證實可促進人體健康,例如:促進腸胃蠕動、減重、預防便秘及結腸癌等。然而,許多研究指出膳食纖維會結合巨量礦物元素鈉、鉀、鈣、鎂等離子,且結合力與粒徑大小及保水性有關。
纖維素原料的體積平均粒徑為27.4 | zh_TW |
| dc.description.abstract | Cellulose is an insoluble dietary fiber and is the most abundant polysaccharides in nature. It has been proved that cellulose can improve human health, such as promoting
gastrointestinal peristalsis, reducing weight, preventing constipation and colon cancer. It has been reported that macrominerals binding capacity of fiber is related with particle size and water holding capacity. Volume mean diameter of cellulose was significantly reduced by media-milling, resulted in both the reducing particle size and molecular weight. For example, the molecular weight was reduced from 646.29 kDa to 117.1 kDa after 90 min media-milling. Via sediment method, the suspended cellulose yield a zeta potential of -16.6 mV, a negative charge. After media-milling, the absolute value of zeta potential was increased, indicates that nano/submicron cellulose dispersion is more stable, Isoelectric point(IEP) of cellulose raw material is pH 3.03, and dropped to 2.74 after 90 min media-milled, shows that after media-milling, cellulose particles are more negative-charged. Media-milling also improves WHC of cellulosic particles. By centrifugation method, WHC increased 7.9 fold after 30 min media-milling, but decreased after 30 min. Viscosity of cellulose dispersion increased first from 1.71 cp to 25.46 cp and then decrease after 30 min. WHC and viscosity were found correlated. Media-milling can also enhance Mg, Ca, Na, K binding capacity with a relationship with WHC. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:25:41Z (GMT). No. of bitstreams: 1 ntu-100-R97641029-1.pdf: 20070265 bytes, checksum: e333ba78a143c235f1443901317e27cb (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 ....................................................................................................................................... i
Abstract ................................................................................................................................ ii 目錄 ..................................................................................................................................... iv 圖目錄 ................................................................................................................................. iv 表目錄 ................................................................................................................................. iv 壹、前言 ............................................................................................................................... 1 貳、文獻回顧 ....................................................................................................................... 2 2.1 膳食纖維 ............................................................................................................ 2 2.1.1 膳食纖維的定義 ..................................................................................... 2 2.1.2 膳食纖維的分類 ..................................................................................... 4 2.1.3 膳食纖維的保水性質 ............................................................................. 5 2.1.4 膳食纖維與離子的吸附 ......................................................................... 5 2.2 纖維素................................................................................................................ 8 2.2.1 纖維素的化學結構 ................................................................................. 8 2.2.2 纖維素的生理功效 ............................................................................... 10 2.2.3 纖維素的分子量 ................................................................................... 11 2.3 臨界點乾燥原理 .............................................................................................. 14 2.4 奈米科技 .......................................................................................................... 16 2.4.1 奈米科技的定義 ................................................................................... 16 2.4.2 奈米材料的製備 ................................................................................... 17 2.4.3 介質研磨 .............................................................................................. 18 2.4.4 奈米科技在食品上的應用 ................................................................... 20 2.5 實驗目的 .......................................................................................................... 23 參、材料與方法 ................................................................................................................. 24 3.1 材料 ................................................................................................................. 24 3.2 化學藥品 .......................................................................................................... 24 3.3 設備 ................................................................................................................. 25 3.4 實驗流程及步驟 .............................................................................................. 29 3.4.1 奈米/次微米纖維素懸浮液之製備 ....................................................... 30 3.4.2 粒徑分析 .............................................................................................. 30 3.4.3 固形物含量測定 ................................................................................... 31 3.4.4 分子量測定 .......................................................................................... 31 3.4.5 掃描式電子顯微鏡樣品製備 ............................................................... 32 3.4.6 界達電位測量 ...................................................................................... 32 3.4.7 保水性(Water holding capacity)測量 .................................................... 33 3.4.8 黏度測定 .............................................................................................. 33 3.4.9 巨量礦物元素結合力測定 ................................................................... 34 肆、結果討論 ..................................................................................................................... 35 4.1 固形物含量測定 .............................................................................................. 35 4.2 粒徑分析 .......................................................................................................... 35 4.3 分子量測量 ...................................................................................................... 40 4.4 掃描式電子顯微鏡觀察 ................................................................................... 42 4.5 界達電位測量 .................................................................................................. 45 4.6 保水性(Water holding capacity)測量 ................................................................ 47 4.7 黏度測量 .......................................................................................................... 49 4.8 巨量礦物元素結合力(binding capacity)之探討 ............................................... 51 伍、結論 ............................................................................................................................. 54 陸、參考文獻 ..................................................................................................................... 55 柒、附錄 ............................................................................................................................. 61 | |
| dc.language.iso | zh-TW | |
| dc.title | 介質研磨對纖維素表面性質與巨量礦物元素結合力之影響 | zh_TW |
| dc.title | Surface properties and macrominerals binding capacity
of media-milled cellulose | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧訓,馮臨惠,張克亮,陳時欣 | |
| dc.subject.keyword | 纖維素,介質研磨,保水性,界達電位,巨量礦物元素結合力, | zh_TW |
| dc.subject.keyword | cellulose,media-milling,water holding capacity,zeta potential,macromineral binding capacity, | en |
| dc.relation.page | 71 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2011-08-11 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 食品科技研究所 | zh_TW |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf | 19.6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
