Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94989
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳學禮zh_TW
dc.contributor.advisorHsuen-Li Chenen
dc.contributor.author陳宥蓁zh_TW
dc.contributor.authorYu-Chen Chenen
dc.date.accessioned2024-08-23T16:18:53Z-
dc.date.available2024-08-24-
dc.date.copyright2024-08-23-
dc.date.issued2024-
dc.date.submitted2024-08-14-
dc.identifier.citationNovoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
Gupta, A., T. Sakthivel, and S. Seal, Recent development in 2D materials beyond graphene. Progress in Materials Science, 2015. 73: p. 44-126.
Gleiter, H., Nanostructured materials: Basic concepts and microstructure. Acta Materialia, 2000. 48(1): p. 1-29.
Neto, A.C., et al., The electronic properties of graphene. Reviews of modern physics, 2009. 81(1): p. 109.
Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature materials, 2007. 6(3): p. 183-191.
Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200.
Cooper, D.R., et al., Experimental review of graphene. International Scholarly Research Notices, 2012. 2012.
Jariwala, D., et al., Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. Acs Nano, 2014. 8(2): p. 1102-1120.
Bhimanapati, G.R., et al., Recent advances in two-dimensional materials beyond graphene. Acs Nano, 2015. 9(12): p. 11509-11539.
Tan, C.L., et al., Recent advances in ultrathin two-dimensional nanomaterials. Chemical Reviews, 2017. 117(9): p. 6225-6331.
Novoselov, K.S., et al., 2D materials and van der Waals heterostructures. Science, 2016. 353(6298): p. aac9439.
Dong, Z.Y., et al., Raman characterization on two-dimensional materials-based thermoelectricity. Molecules, 2019. 24(1): p. 25.
Waldrop, M.M., The chips are down for Moore’s law. Nature News, 2016. 530(7589): p. 144.
Moore, G.E., Cramming more components onto integrated circuits. Proceedings of the IEEE, 1998. 86(1): p. 82-85.
Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature Nanotechnology, 2011. 6(3): p. 147-150.
Voiry, D., et al., Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Letters, 2013. 13(12): p. 6222-6227.
Zhan, Y.J., et al., Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small, 2012. 8(7): p. 966-971.
Wang, X.S., et al., Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. Journal of the American Chemical Society, 2013. 135(14): p. 5304-5307.
Liu, B.L., et al., Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. Acs Nano, 2015. 9(6): p. 6119-6127.
Lin, Y.C., et al., Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012. 4(20): p. 6637-6641.
Kang, K., et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015. 520(7549): p. 656-660.
Jeon, J., et al., Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale, 2015. 7(5): p. 1688-1695.
Huang, J.K., et al., Large-area synthesis of highly crystalline WSe2 mono layers and device applications. Acs Nano, 2014. 8(1): p. 923-930.
Eichfeld, S.M., et al., Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. Acs Nano, 2015. 9(2): p. 2080-2087.
Yue, R.Y., et al., HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. Acs Nano, 2015. 9(1): p. 474-480.
Yan, M.Z., et al., High quality atomically thin PtSe2 films grown by molecular beam epitaxy. 2d Materials, 2017. 4(4): p. 6.
Liu, Z.L., et al., Epitaxially grown monolayer VSe2: an air-stable magnetic two-dimensional material with low work function at edges. Science Bulletin, 2018. 63(7): p. 419-425.
Zheng, Z.Q., et al., Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology, 2016. 27(22): p. 11.
Sirota, B., N. Glavin, and A.A. Voevodin, Room temperature magnetron sputtering and laser annealing of ultrathin MoS2 for flexible transistors. Vacuum, 2019. 160: p. 133-138.
Muratore, C., et al., Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Applied Physics Letters, 2014. 104(26): p. 5.
Wu, M., et al., Synthesis of two-dimensional transition metal dichalcogenides for electronics and optoelectronics. Infomat, 2021. 3(4): p. 362-396.
Singh, A.K., et al., 2D layered transition metal dichalcogenides (MoS2): Synthesis, applications and theoretical aspects. Applied Materials Today, 2018. 13: p. 242-270.
Brent, J.R., N. Savjani, and P. O'Brien, Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Progress in Materials Science, 2017. 89: p. 411-478.
Hossen, M.F., S. Shendokar, and S. Aravamudhan, Defects and defect engineering of two-dimensional transition metal dichalcogenide (2D TMDC) materials. Nanomaterials, 2024. 14(5): p. 410.
Kuc, A., Low-dimensional transition-metal dichalcogenides, in Chemical Modelling: Volume 11, M. Springborg and J.-O. Joswig, Editors. 2014, The Royal Society of Chemistry. p. 0.
Yang, D., et al., Structure of single-molecular-layer MoS2. Physical Review B, 1991. 43(14): p. 12053-12056.
Xu, D.Y., et al., Microwave-assisted 1T to 2H phase reversion of MoS2 in solution: a fast route to processable dispersions of 2H-MoS2 nanosheets and nanocomposites. Nanotechnology, 2016. 27(38): p. 7.
Fan, X.B., et al., Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Letters, 2015. 15(9): p. 5956-5960.
Ataca, C., et al., A comparative study of lattice dynamics of three- and two-dimensional MoS2. Journal of Physical Chemistry C, 2011. 115(33): p. 16354-16361.
Keum, D.H., et al., Bandgap opening in few-layered monoclinic MoTe2. Nature Physics, 2015. 11(6): p. 482-U144.
Ugeda, M.M., et al., Characterization of collective ground states in single-layer NbSe2. Nature Physics, 2016. 12(1): p. 92-U126.
Moncton, D.E., J. Axe, and F. DiSalvo, Neutron scattering study of the charge-density wave transitions in 2H-TaSe2 and 2H-NbSe2. Physical Review B, 1977. 16(2): p. 801.
Yun, W.S., et al., Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Physical Review B, 2012. 85(3): p. 5.
Tongay, S., et al., Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Letters, 2012. 12(11): p. 5576-5580.
Splendiani, A., et al., Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010. 10(4): p. 1271-1275.
Ataca, C., H. Sahin, and S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. Journal of Physical Chemistry C, 2012. 116(16): p. 8983-8999.
Zeng, H.L., et al., Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnology, 2012. 7(8): p. 490-493.
Mak, K.F., et al., Tightly bound trions in monolayer MoS2. Nature Materials, 2013. 12(3): p. 207-211.
Liu, H.Z., et al., High-harmonic generation from an atomically thin semiconductor. Nature Physics, 2017. 13(3): p. 262-+.
Wang, K.P., et al., Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. Acs Nano, 2013. 7(10): p. 9260-9267.
Li, Y.X., et al., Giant two-photon absorption in monolayer MoS2. Laser & Photonics Reviews, 2015. 9(4): p. 427-434.
Wu, S.F., et al., Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015. 520(7545): p. 69-U142.
Salehzadeh, O., et al., Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Letters, 2015. 15(8): p. 5302-5306.
Fang, H., et al., High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Letters, 2012. 12(7): p. 3788-3792.
Fathi-Hafshejani, P., et al., Two-dimensional-material-based field-effect transistor biosensor for detecting COVID-19 virus (SARS-CoV-2). Acs Nano, 2021. 15(7): p. 11461-11469.
Chen, X., et al., CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nature Communications, 2018. 9: p. 12.
Ross, J.S., et al., Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nature Nanotechnology, 2014. 9(4): p. 268-272.
Salehzadeh, O., et al., Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS2 light-emitting devices. Nano Letters, 2014. 14(7): p. 4125-4130.
Ye, G.L., et al., Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Letters, 2016. 16(2): p. 1097-1103.
Tsai, M.-L., et al., Monolayer MoS2 heterojunction solar cells. ACS nano, 2014. 8(8): p. 8317-8322.
Pospischil, A., M.M. Furchi, and T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature nanotechnology, 2014. 9(4): p. 257-261.
Shokri, A. and N. Salami, Gas sensor based on MoS2 monolayer. Sensors and Actuators B: Chemical, 2016. 236: p. 378-385.
Medina, H., et al., Wafer-scale growth of WSe2 monolayers toward phase-engineered hybrid WOx/WSe2 films with sub-ppb NOx gas sensing by a low-temperature plasma-assisted selenization process. Chemistry of Materials, 2017. 29(4): p. 1587-1598.
Savan, A., et al., Modern solid lubrication: recent developments and applications of MoS2. Lubrication Science, 2000. 12(2): p. 185-203.
Wu, M. and J. Li, Sliding ferroelectricity in 2D van der Waals materials: Related physics and future opportunities. Proceedings of the National Academy of Sciences, 2021. 118(50): p. e2115703118.
Rosenberger, M.R., et al., Twist angle-dependent atomic reconstruction and Moire patterns in transition metal dichalcogenide heterostructures. Acs Nano, 2020. 14(4): p. 4550-4558.
Christy, R., Sputtered MoS2 lubricant coating improvements. Thin Solid Films, 1980. 73(2): p. 299-307.
Park, T.Y., I.-S. Nam, and Y.G. Kim, Kinetic analysis of mixed alcohol synthesis from syngas over K/MoS2 catalyst. Industrial & engineering chemistry research, 1997. 36(12): p. 5246-5257.
Kwon, J.-H., et al., The electrochemical properties of Li/TEGDME/MoS2 cells using multi-wall carbon nanotubes as a conducting agent. Research on Chemical Intermediates, 2010. 36: p. 749-759.
Ganatra, R. and Q. Zhang, Few-layer MoS2: A promising layered semiconductor. Acs Nano, 2014. 8(5): p. 4074-4099.
Castellanos-Gomez, A., et al., Elastic properties of freely suspended MoS2 nanosheets. Advanced Materials, 2012. 24(6): p. 772-775.
Bertolazzi, S., J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2. Acs Nano, 2011. 5(12): p. 9703-9709.
Mignuzzi, S., et al., Effect of disorder on Raman scattering of single-layer MoS2. Physical Review B, 2015. 91(19): p. 7.
Lee, C., et al., Anomalous lattice vibrations of single- and few-layer MoS2. Acs Nano, 2010. 4(5): p. 2695-2700.
Bertrand, P.A., Surface-phonon dispersion of MoS2. Physical Review B, 1991. 44(11): p. 5745-5749.
Chen, J.M. and C.S. Wang, Second-order Raman-spectrum of MoS2. Solid State Communications, 1974. 14(9): p. 857-860.
Verble, J., T. Wietling, and P. Reed, Rigid-layer lattice vibrations and van der waals bonding in hexagonal MoS2. Solid State Communications, 1972. 11(8): p. 941-944.
Verble, J. and T. Wieting, Lattice mode degeneracy in MoS2 and other layer compounds. Physical review letters, 1970. 25(6): p. 362.
Molina-Sánchez, A. and L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2. Physical Review B, 2011. 84(15): p. 8.
Chakraborty, B., et al., Layer-dependent resonant Raman scattering of a few layer MoS2. Journal of Raman Spectroscopy, 2013. 44(1): p. 92-96.
Li, H., et al., From bulk to monolayer MoS2: Evolution of Raman scattering. Advanced Functional Materials, 2012. 22(7): p. 1385-1390.
Mak, K.F., et al., Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters, 2010. 105(13): p. 4.
Coehoorn, R., et al., Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Physical review B, 1987. 35(12): p. 6195.
Coehoorn, R., C. Haas, and R. De Groot, Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Physical Review B, 1987. 35(12): p. 6203.
Kadantsev, E.S. and P. Hawrylak, Electronic structure of a single MoS2 monolayer. Solid State Communications, 2012. 152(10): p. 909-913.
Cortijo-Campos, S., et al., Forbidden and second-order phonons in Raman spectra of single and few-layer MoS2 close to C exciton resonance. Journal of Physical Chemistry C, 2021. 125(43): p. 23904-23910.
Song, B.K., et al., Layer-dependent dielectric function of wafer-scale 2D MoS2. Advanced Optical Materials, 2019. 7(2): p. 7.
Qiu, D.Y., F.H. da Jornada, and S.G. Louie, Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Physical Review Letters, 2013. 111(21): p. 5.
Molina-Sánchez, A., et al., Effect of spin-orbit interaction on the optical spectra of single-layer, double-layer, and bulk MoS2. Physical Review B, 2013. 88(4): p. 6.
Steinhoff, A., et al., Efficient excitonic photoluminescence in direct and indirect band gap mono layer MoS2. Nano Letters, 2015. 15(10): p. 6841-6847.
Lin, Y.X., et al., Dielectric screening of excitons and trions in single-layer MoS2. Nano Letters, 2014. 14(10): p. 5569-5576.
Wen, X.L., Z.B. Gong, and D.H. Li, Nonlinear optics of two-dimensional transition metal dichalcogenides. Infomat, 2019. 1(3): p. 317-337.
Säynätjoki, A., et al., Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers. Nature Communications, 2017. 8: p. 8.
Clark, D.J., et al., Strong optical nonlinearity of CVD-grown MoS2 monolayer as probed by wavelength-dependent second-harmonic generation. Physical Review B, 2014. 90(12): p. 5.
Malard, L.M., et al., Observation of intense second harmonic generation from MoS2 atomic crystals. Physical Review B, 2013. 87(20): p. 5.
Kumar, N., et al., Second harmonic microscopy of monolayer MoS2. Physical Review B, 2013. 87(16): p. 6.
Li, Y.L., et al., Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Letters, 2013. 13(7): p. 3329-3333.
Suess, H.E. and H.C. Urey, Abundances of the elements. Reviews of Modern Physics, 1956. 28(1): p. 53.
Eftekhari, A., Tungsten dichalcogenides (WS2, WSe2, and WTe2): Materials chemistry and applications. Journal of Materials Chemistry A, 2017. 5(35): p. 18299-18325.
Xu, K., et al., Atomic-layer triangular WSe2 sheets: Synthesis and layer-dependent photoluminescence property. Nanotechnology, 2013. 24(46): p. 465705.
Schutte, W., J. De Boer, and F. Jellinek, Crystal structures of tungsten disulfide and diselenide. Journal of Solid State Chemistry, 1987. 70(2): p. 207-209.
Wilson, J.A. and A. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics, 1969. 18(73): p. 193-335.
Falin, A., et al., Mechanical properties of atomically thin tungsten dichalcogenides: WS2, WSe2, and WTe2. Acs Nano, 2021. 15(2): p. 2600-2610.
Lai, K., et al., Bending rigidity of transition metal dichalcogenide monolayers from first-principles. Journal of Physics D-Applied Physics, 2016. 49(18): p. 5.
Zhao, W.J., et al., Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale, 2013. 5(20): p. 9677-9683.
Ye, F., et al., Ultra-high interfacial thermal conductance via double hBN encapsulation for efficient thermal management of 2D electronics. Small, 2023. 19(12): p. 11.
Zeng, H.L., et al., Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Scientific Reports, 2013. 3: p. 5.
Li, H., et al., Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small, 2013. 9(11): p. 1974-1981.
Late, D.J., et al., Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe2 and WSe2. Chemphyschem, 2014. 15(8): p. 1592-1598.
Sahin, H., et al., Anomalous Raman spectra and thickness-dependent electronic properties of WSe2. Physical Review B, 2013. 87(16): p. 6.
De Luca, M., et al., New insights in the lattice dynamics of monolayers, bilayers, and trilayers of WSe2 and unambiguous determination of few-layer-flakes' thickness. 2d Materials, 2020. 7(2): p. 12.
Du, L.J., et al., Strongly enhanced exciton-phonon coupling in two-dimensional WSe2. Physical Review B, 2018. 97(23): p. 7.
del Corro, E., et al., Atypical exciton-phonon interactions in WS2 and WSe2 monolayers revealed by resonance Raman spectroscopy. Nano Letters, 2016. 16(4): p. 2363-2368.
del Corro, E., et al., Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman spectroscopy. Acs Nano, 2014. 8(9): p. 9629-9635.
Luo, X., et al., Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2. Physical Review B, 2013. 88(19): p. 7.
Chen, S.Y., et al., Helicity-resolved Raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers. Nano Letters, 2015. 15(4): p. 2526-2532.
Yuan, H.T., et al., Evolution of the valley position in bulk transition-metal chalcogenides and their monolayer limit. Nano Letters, 2016. 16(8): p. 4738-4745.
Riley, J.M., et al., Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor. Nature Physics, 2014. 10(11): p. 835-839.
Chen, X., et al., Electronic structure evolution and exciton energy shifting dynamics in WSe2: From monolayer to bulk. Journal of Physics D-Applied Physics, 2021. 54(35): p. 7.
Yuan, H.T., et al., Zeeman-type spin splitting controlled by an electric field. Nature Physics, 2013. 9(9): p. 563-569.
Zhu, Z.Y., Y.C. Cheng, and U. Schwingenschlögl, Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Physical Review B, 2011. 84(15): p. 5.
Zhao, W.J., et al., Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. Acs Nano, 2013. 7(1): p. 791-797.
Sun, Y.J., D. Wang, and Z.G. Shuai, Indirect-to-direct band gap crossover in few-layer transition metal dichalcogenides: A theoretical prediction. Journal of Physical Chemistry C, 2016. 120(38): p. 21866-21870.
Ramasubramaniam, A., Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Physical Review B, 2012. 86(11): p. 6.
Zhang, C.D., et al., Probing critical point energies of transition metal dichalcogenides: Surprising indirect gap of single layer WSe2. Nano Letters, 2015. 15(10): p. 6494-6500.
Hsu, W.T., et al., Evidence of indirect gap in monolayer WSe2. Nature Communications, 2017. 8: p. 7.
Le, D., et al., Spin-orbit coupling in the band structure of monolayer WSe2. Journal of Physics-Condensed Matter, 2015. 27(18): p. 5.
Mennel, L., M. Paur, and T. Mueller, Second harmonic generation in strained transition metal dichalcogenide monolayers: MoS2, MoSe2, WS2, and WSe2. Apl Photonics, 2019. 4(3): p. 10.
Jiang, J., et al., Defect engineering in 2D materials: Precise manipulation an improved functionalities. Research, 2019. 2019: p. 14.
Hu, Z.H., et al., Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chemical Society Reviews, 2018. 47(9): p. 3100-3128.
Wu, Z.T. and Z.H. Ni, Spectroscopic investigation of defects in two-dimensional materials. Nanophotonics, 2017. 6(6): p. 1219-1237.
Zhou, W., et al., Intrinsic structural defects in monolayer molybdenum disulfide. Nano Letters, 2013. 13(6): p. 2615-2622.
Hong, J.H., et al., Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications, 2015. 6: p. 8.
Vancsó, P., et al., The intrinsic defect structure of exfoliated MoS2 single layers revealed by Scanning Tunneling Microscopy. Scientific Reports, 2016. 6: p. 7.
Yin, Z.Y., et al., Single-Layer MoS2 Phototransistors. Acs Nano, 2012. 6(1): p. 74-80.
Lee, Y.H., et al., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 2012. 24(17): p. 2320-2325.
Dolui, K., I. Rungger, and S. Sanvito, Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate. Physical Review B, 2013. 87(16): p. 7.
Singh, A. and A.K. Singh, Origin of n-type conductivity of monolayer MoS2. Physical Review B, 2019. 99(12): p. 5.
van der Zande, A.M., et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Materials, 2013. 12(6): p. 554-561.
Li, Y.F., et al., MoS2 nanoribbons: High stability and unusual electronic and magnetic properties. Journal of the American Chemical Society, 2008. 130(49): p. 16739-16744.
Komsa, H.P., et al., From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Physical Review B, 2013. 88(3): p. 8.
Komsa, H.P., et al., Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Physical Review Letters, 2012. 109(3): p. 5.
Schweiger, H., et al., Shape and edge sites modifications of MoS2 catalytic nanoparticles induced by working conditions: A theoretical study. Journal of Catalysis, 2002. 207(1): p. 76-87.
Dong, J.C., et al., Edge reconstruction-dependent growth kinetics of MoS2. Acs Nano, 2023. 17(1): p. 127-136.
Lauritsen, J.V., et al., Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. Journal of Catalysis, 2004. 221(2): p. 510-522.
Bollinger, M.V., et al., One-dimensional metallic edge states in MoS2. Physical Review Letters, 2001. 87(19): p. 4.
Besenbacher, F., et al., Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, structural and particle size effects. Catalysis Today, 2008. 130(1): p. 86-96.
Lauritsen, J.V., et al., Size-dependent structure of MoS2 nanocrystals. Nature Nanotechnology, 2007. 2(1): p. 53-58.
Lucking, M.C., et al., Multivalency-induced band gap opening at MoS2 edges. Chemistry of Materials, 2015. 27(9): p. 3326-3331.
Hansen, L.P., et al., Atomic-scale edge structures on industrial-style MoS2 nanocatalysts. Angewandte Chemie-International Edition, 2011. 50(43): p. 10153-10156.
Haldar, S., et al., Systematic study of structural, electronic, and optical properties of atomic-scale defects in the two-dimensional transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se, Te). Physical Review B, 2015. 92(23): p. 12.
Zhang, S., et al., Defect structure of localized excitons in a WSe2 monolayer. Physical review letters, 2017. 119(4): p. 046101.
Zheng, Y.J., et al., Point defects and localized excitons in 2D WSe2. Acs Nano, 2019. 13(5): p. 6050-6059.
Ding, S.J., F. Lin, and C.H. Jin, Quantify point defects in monolayer tungsten diselenide. Nanotechnology, 2021. 32(25): p. 9.
Zheng, Y.J. and S.Y. Quek, First principles study of intrinsic and extrinsic point defects in monolayer WSe2. arXiv preprint arXiv:1901.05238, 2019.
Jin, C.H., et al., On optical dipole moment and radiative recombination lifetime of excitons in WSe2. Advanced Functional Materials, 2017. 27(19): p. 5.
Zhu, Y., et al., Strongly enhanced photoluminescence in nanostructured monolayer MoS2 by chemical vapor deposition. Nanotechnology, 2016. 27(13): p. 7.
Lin, Y.C., et al., Three-fold rotational defects in two-dimensional transition metal dichalcogenides. Nature Communications, 2015. 6: p. 6.
Zhang, Y.Z., G.J. Zhu, and J.H. Yang, Origin of p-type conductivity in a WSe2 monolayer. Nanoscale, 2023. 15(28): p. 12116-12122.
Parkin, W.M., et al., Raman shifts in electron-irradiated monolayer MoS2. Acs Nano, 2016. 10(4): p. 4134-4142.
He, Z.Y., et al., Defect engineering in single-layer MoS2 using heavy ion irradiation. Acs Applied Materials & Interfaces, 2018. 10(49): p. 42524-42533.
Chen, Y., et al., Tuning electronic structure of single layer MoS2 through defect and interface engineering. Acs Nano, 2018. 12(3): p. 2569-2579.
Li, D.W., et al., Controlled defect creation and removal in graphene and MoS2 monolayers. Nanoscale, 2017. 9(26): p. 8997-9008.
Li, Z.W., et al., Efficient strain modulation of 2D materials via polymer encapsulation. Nature Communications, 2020. 11(1): p. 8.
Conley, H.J., et al., Bandgap engineering of strained monolayer and bilayer MoS2. Nano Letters, 2013. 13(8): p. 3626-3630.
Mouri, S., Y. Miyauchi, and K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Letters, 2013. 13(12): p. 5944-5948.
Chakraborty, B., et al., Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Physical Review B, 2012. 85(16): p. 4.
Tongay, S., et al., Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Letters, 2013. 13(6): p. 2831-2836.
Peto, J., et al., Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions. Nature Chemistry, 2018. 10(12): p. 1246-1251.
Chae, W.H., et al., Substrate-induced strain and charge doping in CVD-grown monolayer MoS2. Applied Physics Letters, 2017. 111(14): p. 5.
Rice, C., et al., Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Physical Review B, 2013. 87(8): p. 5.
Wang, Y.L., et al., Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small, 2013. 9(17): p. 2857-2861.
Michail, A., et al., Optical detection of strain and doping inhomogeneities in single layer MoS2. Applied Physics Letters, 2016. 108(17): p. 5.
Nan, H.Y., et al., Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. Acs Nano, 2014. 8(6): p. 5738-5745.
Gogoi, P.K., et al., Oxygen passivation mediated tunability of trion and excitons in MoS2. Physical Review Letters, 2017. 119(7): p. 6.
Mitterreiter, E., et al., The role of chalcogen vacancies for atomic defect emission in MoS2. Nature Communications, 2021. 12(1): p. 8.
Wang, Y.P., et al., First principles study on properties of monolayer MoS2 under different strains. Brazilian Journal of Physics, 2021. 51(4): p. 1230-1236.
Gontijo, R.N., et al., Resonant Raman scattering study of strain and defects in chemical vapor deposition grown MoS2 monolayers. Small, 2024: p. 9.
Windom, B.C., W.G. Sawyer, and D.W. Hahn, A Raman spectroscopic study of MoS2 and MoO3: Applications to tribological systems. Tribology Letters, 2011. 42(3): p. 301-310.
Yalon, E., et al., Energy dissipation in monolayer MoS2 electronics. Nano Letters, 2017. 17(6): p. 3429-3433.
Yamamoto, M., et al., Anisotropic etching of atomically thin MoS2. Journal of Physical Chemistry C, 2013. 117(48): p. 25643-25649.
Spychalsid, W.L., M. Pisarek, and R. Szoszkiewicz, Microscale insight into oxidation of single MoS2 crystals in air. Journal of Physical Chemistry C, 2017. 121(46): p. 26027-26033.
Rogala, M., et al., Direct identification of surface bound MoO3 on single MoS2 flakes heated in dry and humid air. Advanced Materials Interfaces, 2021. 8(13): p. 11.
Szoszkiewicz, R., M. Rogala, and P. Dabrowski, Surface-bound and volatile Mo oxides produced during oxidation of single MoS2 crystals in air and high relative humidity. Materials, 2020. 13(14): p. 14.
Kim, E., et al., Site selective doping of ultrathin metal dichalcogenides by laser-assisted reaction. Advanced Materials, 2016. 28(2): p. 341-346.
Ardekani, H., et al., Reversible photoluminescence tuning by defect passivation via laser irradiation on aged monolayer MoS2. Acs Applied Materials & Interfaces, 2019. 11(41): p. 38240-38246.
Zhang, S.N., et al., Laser annealing towards high-performance monolayer MoS2 and WSe2 field effect transistors. Nanotechnology, 2020. 31(30): p. 8.
Yalon, E., et al., Temperature-dependent thermal boundary conductance of monolayer MoS2 by Raman thermometry. Acs Applied Materials & Interfaces, 2017. 9(49): p. 43013-43020.
Taube, A., et al., Temperature-dependent thermal properties of supported MoS2 monolayers. Acs Applied Materials & Interfaces, 2015. 7(9): p. 5061-5065.
Cai, W.W., et al., Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Letters, 2010. 10(5): p. 1645-1651.
Oh, H.M., et al., Photochemical reaction in monolayer MoS2 via correlated photoluminescence, Raman spectroscopy, and atomic force microscopy. Acs Nano, 2016. 10(5): p. 5230-5236.
Kim, M.S., et al., Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. Acs Nano, 2016. 10(2): p. 2399-2405.
Huang, T.X., et al., Probing the edge-related properties of atomically thin MoS2 at nanoscale. Nature Communications, 2019. 10: p. 8.
Karvonen, L., et al., Rapid visualization of grain boundaries in monolayer MoS2 by multiphoton microscopy. Nature Communications, 2017. 8: p. 8.
Liu, Z., et al., Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nature Communications, 2014. 5: p. 9.
El-Kareh, B. and L.N. Hutter, Fundamentals of semiconductor processing technology. 2012: Springer Science & Business Media.
El-Mahalawy, S. and B. Evans, The thermal expansion of 2H-MoS2, 2H-MoSe2 and 2H-WSe2 between 20 and 800 C. Journal of Applied Crystallography, 1976. 9(5): p. 403-406.
Dadgar, A.M., et al., Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides. Chemistry of Materials, 2018. 30(15): p. 5148-5155.
Jones, A.M., et al., Optical generation of excitonic valley coherence in monolayer WSe2. Nature Nanotechnology, 2013. 8(9): p. 634-638.
Zhang, R., et al., Controlled layer thinning and p-type doping of WSe2 by vapor XeF2. Advanced Functional Materials, 2017. 27(41): p. 12.
Blades, W.H., et al., Thermally induced defects on WSe2. Journal of Physical Chemistry C, 2020. 124(28): p. 15337-15346.
Ji, H.G., et al., Chemically tuned p- and n-type WSe2 monolayers with high carrier mobility for advanced electronics. Advanced Materials, 2019. 31(42): p. 9.
Nam, H.J., J. Kim, and J.H. Park, Wide-range controllable doping of tungsten diselenide (WSe2) based on hydrochloric acid treatment. Journal of Physical Chemistry C, 2017. 121(26): p. 14367-14372.
Singh, A.K., et al., Tailoring the charge carrier in few layers MoS2 field-effect transistors by Au metal adsorbate. Applied Surface Science, 2018. 437: p. 70-74.
Doratotaj, D., J.R. Simpson, and J.A. Yan, Probing the uniaxial strains in MoS2 using polarized Raman spectroscopy: A first-principles study. Physical Review B, 2016. 93(7): p. 14.
Cain, J.D., et al., Growth mechanism of transition metal dichalcogenide monolayers: The role of self-seeding fullerene nuclei. Acs Nano, 2016. 10(5): p. 5440-5445.
Low, T., et al., Polaritons in layered two-dimensional materials. Nature Materials, 2017. 16(2): p. 182-194.
Wu, Z.T., et al., Defects as a factor limiting carrier mobility in WSe2: A spectroscopic investigation. Nano Research, 2016. 9(12): p. 3622-3631.
Zhao, S.D., et al., Strong room-temperature emission from defect states in CVD-grown WSe2 nanosheets. Nano Research, 2018. 11(7): p. 3922-3930.
Tian, X.L., et al., Photoluminescence nonuniformity from self-seeding nuclei in CVD-grown monolayer MoSe2. Nanoscale, 2018. 10(2): p. 752-757.
Fang, L., et al., Quick optical identification of the defect formation in monolayer WSe2 for growth optimization. Nanoscale Research Letters, 2019. 14(1): p. 10.
Qian, Q.K., et al., Defect creation in WSe2 with a microsecond photoluminescence lifetime by focused ion beam irradiation. Nanoscale, 2020. 12(3): p. 2047-2056.
Shi, W., et al., Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2. 2d Materials, 2016. 3(2): p. 10.
Göppert‐Mayer, M., Über elementarakte mit zwei quantensprüngen. Annalen der Physik, 1931. 401(3): p. 273-294.
Armstrong, J., et al., Interactions between light waves in a nonlinear dielectric. Physical review, 1962. 127(6): p. 1918.
Bloembergen, N. and P. Pershan, Light waves at the boundary of nonlinear media. Physical review, 1962. 128(2): p. 606.
Bloembergen, N. and Y.-R. Shen, Quantum-theoretical comparison of nonlinear susceptibilities in parametric media, lasers, and Raman lasers. Physical Review, 1964. 133(1A): p. A37.
Franken, e.P., et al., Generation of optical harmonics. Physical review letters, 1961. 7(4): p. 118.
Fiebig, M., V.V. Pavlov, and R.V. Pisarev, Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals. JOSA B, 2005. 22(1): p. 96-118.
Denev, S.A., et al., Probing ferroelectrics using optical second harmonic generation. Journal of the American Ceramic Society, 2011. 94(9): p. 2699-2727.
Corn, R.M. and D.A. Higgins, Optical second harmonic generation as a probe of surface chemistry. Chemical reviews, 1994. 94(1): p. 107-125.
Pantazis, P., et al., Second harmonic generating (SHG) nanoprobes for in vivo imaging. Proceedings of the National Academy of Sciences, 2010. 107(33): p. 14535-14540.
Ma, H., et al., Rich information on 2D materials revealed by optical second harmonic generation. Nanoscale, 2020. 12(45): p. 22891-22903.
Boyd, R.W., A.L. Gaeta, and E. Giese, Nonlinear optics, in Springer Handbook of Atomic, Molecular, and Optical Physics. 2008, Springer. p. 1097-1110.
Milonni, P.W. and J.H. Eberly, Laser physics. 2010: John Wiley & Sons.
Yin, X.B., et al., Edge Nonlinear Optics on a MoS2 Atomic Monolayer. Science, 2014. 344(6183): p. 488-490.
Carvalho, B.R., et al., Nonlinear dark-field imaging of one-dimensional defects in monolayer dichalcogenides. Nano letters, 2019. 20(1): p. 284-291.
Lin, K.-I., et al., Atom-dependent edge-enhanced second-harmonic generation on MoS2 monolayers. Nano letters, 2018. 18(2): p. 793-797.
Wang, Y., et al., Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017. 550(7677): p. 487-+.
Hsu, W.T., et al., Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. Acs Nano, 2014. 8(3): p. 2951-2958.
Liang, J., et al., Monitoring local strain vector in atomic-layered MoSe2 by second-harmonic generation. Nano Letters, 2017. 17(12): p. 7539-7543.
Murray, W., et al., Second harmonic generation in two-dimensional transition metal dichalcogenides with growth and post-synthesis defects. 2d Materials, 2020. 7(4): p. 10.
Liu, J., et al., A comprehensive comparison study on the vibrational and optical properties of CVD-grown and mechanically exfoliated few-layered WS2. Journal of Materials Chemistry C, 2017. 5(43): p. 11239-11245.
Yang, R.L., et al., Effect of layer and stacking sequence in simultaneously grown 2H and 3R WS2 atomic layers. Nanotechnology, 2019. 30(34): p. 11.
Solomon, J.M., et al., Ultrafast multi-shot ablation and defect generation in monolayer transition metal dichalcogenides. Aip Advances, 2022. 12(1): p. 6.
Orlando, A., et al., A comprehensive review on Raman spectroscopy applications. Chemosensors, 2021. 9(9): p. 28.
van Baren, J., et al., Stacking-dependent interlayer phonons in 3R and 2H MoS2. 2d Materials, 2019. 6(2): p. 11.
Kim, H., et al., Polarization-dependent anisotropic Raman response of CVD-grown vertically stacked MoS2 layers. Journal of Raman Spectroscopy, 2020. 51(5): p. 774-780.
Guo, Q.B., et al., Routing a chiral Raman signal based on spin-orbit interaction of light. Physical Review Letters, 2019. 123(18): p. 5.
Loudon, R., The Raman effect in crystals. Advances in Physics, 1964. 13(52): p. 423-482.
Ribeiro-Soares, J., et al., Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Physical Review B, 2014. 90(11): p. 10.
Zhao, Y., et al., Abnormal intensity and polarization of Raman scattered light at edges of layered MoS2. Nano Research, 2022. 15(7): p. 6416-6421.
Brooke, S.J. and M.R. Waterland, Edge modes of MoS2 via indirect double resonant Raman spectroscopy. Journal of Physical Chemistry C, 2022: p. 11.
Tan, S.M., et al., Pristine basal-and edge-plane-oriented molybdenite MoS2 exhibiting highly anisotropic properties. Chemistry-a European Journal, 2015. 21(19): p. 7170-7178.
Kim, H.J., et al., Changes in the Raman spectra of monolayer MoS2 upon thermal annealing. Journal of Raman Spectroscopy, 2018. 49(12): p. 1938-1944.
Khac, B.C.T., et al., Laser-induced particle adsorption on atomically thin MoS2. Acs Applied Materials & Interfaces, 2016. 8(5): p. 2974-2984.
Chen, S.H., S.W. Chang, and H.L. Chen, Characterization of 2D transition metal dichalcogenides through anisotropic exciton behaviors. Small Methods, 2023: p. 2301061.
Castellanos-Gomez, A., et al., Local strain engineering in atomically thin MoS2. Nano Letters, 2013. 13(11): p. 5361-5366.
Solomon, J.M., et al., Ultrafast laser ablation, intrinsic threshold, and nanopatterning of monolayer molybdenum disulfide. Scientific Reports, 2022. 12(1): p. 9.
Tan, C.Z., Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy. Journal of Non-Crystalline Solids, 1998. 223(1-2): p. 158-163.
Green, M.A., Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Solar Energy Materials and Solar Cells, 2008. 92(11): p. 1305-1310.
Gupta, S., A. Johnston, and S. Khondaker, Surface and physical properties modifications of electron beam-irradiated monolayer MoS2-Au heterointerface at nanoscale. Journal of Electronic Materials, 2023. 52(2): p. 1331-1346.
Stanford, M.G., et al., Lithographically patterned metallic conduction in single-layer MoS2 via plasma processing. Npj 2d Materials and Applications, 2019. 3: p. 7.
Zhang, Q.C., et al., Recoil effect and photoemission splitting of trions in monolayer MoS2. Acs Nano, 2017. 11(11): p. 10808-10815.
Yuan, H.T., et al., Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2. Nature Nanotechnology, 2014. 9(10): p. 851-857.
Liu, D., et al., Substrate effect on the photoluminescence of chemical vapor deposition transferred monolayer WSe2. Journal of Applied Physics, 2020. 128(4): p. 8.
Chen, S.Y., et al., Luminescent emission of excited Rydberg excitons from monolayer WSe2. Nano Letters, 2019. 19(4): p. 2464-2471.
Hsu, W.T., et al., Optically initialized robust valley-polarized holes in monolayer WSe2. Nature Communications, 2015. 6: p. 7.
Fowles, G.R., Introduction to modern optics. 1989: Courier Corporation.
Damen, T.C., S. Porto, and B. Tell, Raman effect in zinc oxide. Physical Review, 1966. 142(2): p. 570.
Kucinski, T.M., et al., Direct measurement of the thermal expansion coefficient of epitaxial WSe2 by four-dimensional Scanning Transmission Electron Microscopy. Acs Nano, 2024: p. 10.
Morell, N., et al., High quality factor mechanical resonators based on WSe2 monolayers. Nano Letters, 2016. 16(8): p. 5102-5108.
Kim, J., et al., Defect-engineered n-doping of WSe2 via argon plasma treatment and its application in field-effect transistors. Advanced Materials Interfaces, 2021. 8(14): p. 7.
Hoffman, A.N., et al., Atmospheric and long-term aging effects on the electrical properties of variable thickness WSe2 transistors. Acs Applied Materials & Interfaces, 2018. 10(42): p. 36540-36548.
Ma, D.W., et al., Interaction between H2O, N2, CO, NO, NO2 and N2O molecules and a defective WSe2 monolayer. Physical Chemistry Chemical Physics, 2017. 19(38): p. 26022-26033.
Rahaman, M., et al., Observation of room-temperature dark exciton emission in nanopatch-decorated monolayer WSe2 on metal substrate. Advanced Optical Materials, 2021. 9(24): p. 11.
Zhou, Y., et al., Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons. Nature Nanotechnology, 2017. 12(9): p. 856-+.
Zhang, X.X., et al., Magnetic brightening and control of dark excitons in monolayer WSe2. Nature Nanotechnology, 2017. 12(9): p. 883-+.
Chen, J.J., et al., Positively charged biexcitons in monolayer WSe2 in type-I GaSe/WSe2 van der Waals heterostructures: Implications for the biexciton laser. Acs Applied Nano Materials, 2022. 5(8): p. 10628-10635.
Ye, Z.L., et al., Efficient generation of neutral and charged biexcitons in encapsulated WSe2 monolayers. Nature Communications, 2018. 9: p. 6.
Wu, Z.T., et al., Defect activated photoluminescence in WSe2 monolayer. Journal of Physical Chemistry C, 2017. 121(22): p. 12294-12299.
Li, L.S. and E.A. Carter, Defect-mediated charge-carrier trapping and nonradiative recombination in WSe2 monolayers. Journal of the American Chemical Society, 2019. 141(26): p. 10451-10461.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94989-
dc.description.abstract隨著半導體產業在微縮元件上面臨瓶頸,各大廠商越發重視新型材料的研發。原子級厚度的二維材料(two-dimensional materials, 2D materials)憑藉卓越的機械強度、光電性質與能帶調制性,成為眾所矚目的焦點。其中,單層過渡金屬二硫屬化物(monolayer transition metal dichalcogenide, 1L-TMDC)擁有適宜的能隙與高度穩定性,再加上基底面(basal plane)與邊緣(edge)擁有迥異的導電能力,被譽為是新型半導體材料的明日之星,具有多重應用價值。由於化學氣相沉積(chemical vapor deposition, CVD)技術日趨成熟,1L-TMDC的大規模工業製造指日可待。然而,1L-TMDCs缺陷與應變經常減損元件性能,使得生產線上的非破壞性快速檢測變得至關重要。因此,本研究全面整合了一般拉曼光譜(Raman spectroscopy)、旋光解析拉曼光譜 (helicity-resolved Raman spectroscopy, HRRS)、室溫光致發光(photoluminescence, PL)光譜及二次諧波產生(second harmonic generation, SHG)量測,對富含應用價值的CVD 單層二硫化鉬(monolayer molybdenum disulfide, 1L-MoS2)與CVD 單層二硒化鎢(monolayer tungsten diselenide, 1L-WSe2)進行周密的探索。
我們首次觀察到CVD 1L-MoS2鋸齒型(zigzag)邊緣在垂直方向存在單軸壓縮應變梯度,並可透過鄰近邊緣處拉曼光譜的E'模式先行硬化,以及平行偏振解析SHG強度(I∥)極座標圖的六瓣對稱變形得以驗證;拉曼A'1峰值與PL光譜擬合分析則揭示了邊緣處的P型摻雜。我們主張1L-MoS2為了沿邊緣釋放CVD製程導入的拉伸應變,促使點缺陷排列成平行邊緣的線缺陷,從而造就了垂直邊緣方向的單軸壓縮應變場;此外,由於空氣分子易吸附於缺陷位置,導致電子轉移至吸附分子上,引起了邊緣處的P型摻雜。我們還發覺當激發光偏振垂直於扶手椅(armchair)方向的壓縮應變時,I∥擁有最高應變對比度,可不經擬合便鑑定出應變方向。
我們還初次發現了連續波(continuous wave, cw)雷射退火除了在CVD 1L-MoS2基底面引入熱致破壞之外,也可釋放CVD製程引入的拉伸應變;該拉伸應變的釋放能藉由E'模式軟化趨勢反彈以及A0峰值藍移印證。在拉曼強度與光學顯微鏡下無法識別的5秒cw雷射處理區,可經由SHG映射影像直接觀測;且SHG單點數據只需拉曼光譜百分之一的時間即可獲取,突顯了SHG檢測作為即時快速檢測工具的潛能。我們還定量了破壞造成的SHG去極化(depolarization)現象,並發現一分鐘的雷射退火可使SHG去極化從6.92%上升至7.53%。
由於1L-WSe2的拉曼光譜受限於高度重疊的聲子峰值,對晶體品質進行準確檢測極具挑戰性;因此,我們利用自行搭建的HRRS系統探討1L-WSe2在cw雷射下的熱致破壞性質,同時評估其他非線性光學方法的缺陷檢測能力。這是首篇研究以HRRS技術解析出熱破壞1L-WSe2的E'模式硬化與A'1模式軟化,分別指出了壓縮應變與N型摻雜之存在。相比之下,一般拉曼光譜以及PL光譜僅能取得1L-WSe2的訊號強度改變。我們還確認了熱致破壞可明顯降低1L-WSe2的SHG訊號強度,並導致SHG的去極化現象;此外,SHG極化非均向度也被證實在共極化(co-polarized)與正交極化(cross-polarized)的收光幾何條件下皆可計算。
本論文通過綜合應用非線性光學檢測技術,詳盡揭示了CVD 1L-MoS2的固有邊緣缺陷與熱致破壞特性,同時展示了HRRS在評估1L-WSe2晶體品質方面的強大潛能。我們還驗證了SHG技術在快速品質檢測中的實用性,並通過SHG極化非均向度揭示缺陷引起的去極化現象。這些結果不僅有助於推動1L-MoS2與1L-WSe2的應用與研究,也突顯了非線性光學技術在二維材料品質檢測中的不凡可能。
zh_TW
dc.description.abstractAs the semiconductor industry faces challenges in scaling down devices, there is an increasing emphasis on developing novel materials. Two-dimensional materials (2D materials) with atomic-scale thickness have garnered significant attention due to their exceptional mechanical strength, optoelectronic properties, and bandgap tunability. Among them, monolayer transition metal dichalcogenides (1L-TMDCs) are characterized by appropriate bandgap, high stability, and distinct conductive properties between the basal plane and edges. 1L-TMDCs are thus hailed as the future of new semiconductor materials with versatile applications. With the maturation of chemical vapor deposition (CVD) techniques, large-scale industrial production of 1L-TMDCs is imminent. However, defects, strains, and thermal degradation in 1L-TMDCs often compromise device performance, underscoring the critical need for non-destructive, rapid inspection technology on production lines.
Therefore, this thesis integrates conventional Raman spectroscopy, helicity-resolved Raman spectroscopy (HRRS), room-temperature photoluminescence (PL) spectroscopy, and second harmonic generation (SHG) measurements to thoroughly explore the characteristics of CVD monolayer molybdenum disulfide (1L-MoS2) and monolayer tungsten diselenide (1L-WSe2), which are both rich in applications.
For the first time, we have uncovered a uniaxial compressive strain field perpendicular to the CVD 1L-MoS2 zigzag edges, evidenced by the early hardening of the Raman E' mode and the six-petal deformation in the parallel-polarized SHG (I∥) polar plot. Analysis of the Raman A'1 peak and deconvoluted PL spectroscopy revealed the presence of p-type doping at the edges. We propose that point defects aggregate into line defects parallel to the edges to release the tensile strain from the CVD process, thereby creating uniaxial compressive strain fields orthogonal to the edges. Moreover, the air molecules readily adsorbing at defect sites leads to electron transfer from CVD 1L-MoS2 to molecules, resulting in p-type doping at the edges. Our findings also unveil that I∥ has the highest intensity contrast when polarized excitation is perpendicular to the armchair-direction compressive strain, enabling the determination of strain direction without fitting.
Furthermore, we were the first to identify that continuous wave (cw) laser annealing not only generates oxidative etching on the 1L-MoS2 basal plane but also releases the tensile strain induced by the CVD process. Tensile strain release via cw laser annealing is confirmed by the reversed trend of E' mode softening and the blue-shifted A0 peak. SHG mapping allows for the direct observation of areas annealed with a 5-second cw laser, which are indiscernible in optical microscopy and Raman intensity measurements. Additionally, SHG spectroscopy requires only 1/100th of the time required for Raman spectroscopy, highlighting its potential as a real-time rapid inspection tool. We also quantified the SHG depolarization caused by thermal damage and found that only 1 minute of laser annealing can elevate SHG depolarization from 6.92% to 7.53%.
Due to the highly overlapping phonon peaks in the Raman spectrum of 1L-WSe2, accurately assessing crystal quality is extremely challenging. Therefore, we utilized a custom-built HRRS system to investigate the thermal degradation properties of 1L-WSe2 under cw laser exposure, while contrasting the detection capabilities of other nonlinear optical methods. This study is the first to resolve the stiffened E' mode and the softened A'1 mode of 1L-WSe2 through HRRS, indicating the presence of compressive strain and n-type doping introduced by thermal degradation, respectively. In comparison, conventional Raman spectroscopy and PL spectroscopy only captured alterations in signal intensity. We also confirmed that thermal damage notably reduces the SHG intensity of 1L-WSe2 and induces SHG depolarization. SHG polarization anisotropy was corroborated to be calculable under both co-polarized and cross-polarized detection geometries.
This thesis employs nonlinear optical detection techniques to comprehensively unearth intrinsic edge defects and thermal damage characteristics of CVD 1L-MoS2, while demonstrating the HRRS’s potential in evaluating the crystal quality of 1L-WSe2. Furthermore, we validated the practicality of SHG detection for rapid quality assessment and gauged the degree of SHG depolarization induced by defects. These findings advance applications and research in 1L-MoS2 and 1L-WSe2, accentuating the remarkable possibilities of nonlinear optical detection in assessing the quality of 2D materials.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-23T16:18:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-23T16:18:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
謝辭 ii
摘要 iii
Abstract v
目次 viii
圖次 xi
表次 xx
第 1 章 緒論 1
1.1 前言 1
1.2 論文架構 3
第 2 章 文獻回顧 4
2.1 過渡金屬二硫屬化物要覽 4
2.1.1 二維材料之演進 4
2.1.2 過渡金屬二硫屬化物之梗概 6
2.1.3 2H二硫化鉬的特性闡析 8
2.1.4 2H二硒化鎢的特性闡析 15
2.2 單層過渡金屬二硫屬化物之檢測技術 22
2.2.1 過渡金屬二硫屬化物之缺陷 22
2.2.2 單層二硫化鉬的點缺陷與線缺陷 23
2.2.3 單層二硒化鎢的點缺陷 32
2.2.4 光學檢測單層二硫化鉬之性質 37
2.2.5 光學檢測單層二硒化鎢之性質 49
2.3 二維材料之非線性光學性質 58
2.3.1 二次諧波產生 58
2.3.2 拉曼散射 67
第 3 章 非線性光學檢測化學氣相沉積單層二硫化鉬固有邊緣缺陷與熱致缺陷之研究 70
3.1 研究動機與目的 70
3.2 實驗方法 72
3.2.1 實驗材料 72
3.2.2 實驗設備 72
3.2.3 實驗步驟 73
3.2.4 實驗數據分析 75
3.3 實驗結果與討論 76
3.3.1 以線掃描拉曼顯微光譜揭示CVD 1L-MoS2的邊緣性質 76
3.3.2 室溫PL光譜驗證CVD 1L-MoS2的邊緣性質 83
3.3.3 以SHG極化非均向性探測CVD 1L-MoS2邊緣應力方向 86
3.3.4 線掃描拉曼顯微光譜剖析雷射熱破壞對CVD 1L-MoS2的影響 93
3.3.5 室溫PL光譜印證CVD 1L-MoS2的熱致破壞 101
3.3.6 cw雷射熱破壞作用於CVD 1L-MoS2的SHG極化非均向性 104
3.4 結論 110
第 4 章 旋光解析拉曼與二次諧波產生檢測單層二硒化鎢缺陷之研究 111
4.1 研究動機與目的 111
4.2 實驗方法 113
4.2.1 實驗材料 113
4.2.2 實驗設備 113
4.2.3 實驗步驟 113
4.2.4 實驗數據分析 116
4.3 實驗結果與討論 117
4.3.1 搭建旋光解析拉曼光譜儀 117
4.3.2 以CVD 1L-MoS2之熱致破壞測試旋光解析拉曼光譜 122
4.3.3 以旋光解析拉曼光譜探查1L-WSe2的熱致破壞 125
4.3.4 室溫PL光譜檢測1L-WSe2的熱致破壞 130
4.3.5 1L-WSe2的熱致破壞對SHG強度非均向性的影響 134
4.4 結論 139
第 5 章 總結與未來展望 140
5.1 研究總結 140
5.2 未來展望 143
參考文獻 145
-
dc.language.isozh_TW-
dc.subject非線性光學檢測zh_TW
dc.subject線掃描拉曼顯微光譜zh_TW
dc.subject旋光解析拉曼光譜zh_TW
dc.subject二次諧波產生zh_TW
dc.subject極化非均向性zh_TW
dc.subject邊緣效應zh_TW
dc.subject化學氣相沉積zh_TW
dc.subject二維材料zh_TW
dc.subject單層二硒化鎢zh_TW
dc.subject單層二硫化鉬zh_TW
dc.subject熱致破壞zh_TW
dc.subjectnonlinear optical detectionen
dc.subjectedge effecten
dc.subjectchemical vapor depositionen
dc.subjecttwo-dimensional materialsen
dc.subjectmonolayer tungsten diselenideen
dc.subjectpolarization anisotropyen
dc.subjectsecond harmonic generationen
dc.subjectmonolayer molybdenum disulfideen
dc.subjecthelicity-resolved Raman spectroscopyen
dc.subjectline-scan Raman microspectroscopyen
dc.subjectthermal degradationen
dc.title非線性光學檢測單層過渡金屬二硫屬化物缺陷之研究zh_TW
dc.titleResearch on Nonlinear Optical Detection of Defects in Monolayer Transition Metal Dichalcogenidesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張殷榮;劉宇倫;陳維良;劉旻忠zh_TW
dc.contributor.oralexamcommitteeYin-Jung Chang;Yu-Lun Liu;Wei-Liang Chen;Min-Chung Liuen
dc.subject.keyword非線性光學檢測,單層二硫化鉬,單層二硒化鎢,二維材料,化學氣相沉積,邊緣效應,熱致破壞,線掃描拉曼顯微光譜,旋光解析拉曼光譜,二次諧波產生,極化非均向性,zh_TW
dc.subject.keywordnonlinear optical detection,monolayer molybdenum disulfide,monolayer tungsten diselenide,two-dimensional materials,chemical vapor deposition,edge effect,thermal degradation,line-scan Raman microspectroscopy,helicity-resolved Raman spectroscopy,second harmonic generation,polarization anisotropy,en
dc.relation.page158-
dc.identifier.doi10.6342/NTU202403779-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
dc.date.embargo-lift2029-08-11-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
33.32 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved